GRADUATE COURSE ON ROBUST HYBRID CONTROL SYSTEMS – Homework #2

Problem 1 (30 points) Consider a simplified model of the Newton's cradle consisting of a pair of pendulums with mass m_L , m_R as shown in Figure 1.

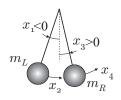


Figure 1: Simplified Newton's cradle.

- 1.1 Determine the state of the system.
- 1.2 Define each element of a hybrid system model (C, f, D, g) assuming the following:
 - Viscous friction for circular motion.
 - Conservation of momentum at impacts.
 - Dissipation of energy at impacts.
- 1.3 Perform the following simulations of the resulting hybrid system for parameters $m_L = 1, m_R = 2$, unitary viscous friction, and a restitution law with parameters such that there is dissipation at impacts:
 - (a) Plot trajectories as a function of t for pendulums starting at $x_1 = -\pi/4$ and $x_3 = \pi/4$ with zero velocity.
 - (b) Plot trajectories as a function of t for pendulums starting at $x_1 = 0$ and $x_3 = \pi/4$ with zero velocity.
 - (c) Plot trajectories as a function of t for pendulums starting at $x_1 = \pi/4$ and $x_3 = \pi/2$ with zero velocity.

Problem 2 (30 points) Consider the implementation of a static controller

$$\kappa: \mathbb{R}^n \to \mathbb{R}^m$$

for the continuous-time plant

$$\dot{\xi} = \tilde{f}(\xi, u)$$

in a *digital device*, e.g. computer, microcontroller, digital signal processor, etc. This is depicted in Figure 2, where the controller is interfaced with sample-and-hold devices. The sample-and-hold device that samples the state ξ of the plant is referred to as *sampling device* (or analog-to-digital (A/D) converter), while the sample-and-hold device that stores the output of the controller in between computations is referred to as *hold device* (or digital-to-analog (D/A) converter) which is assumed to be of zero-order type, that is, a zero-order hold (ZOH).

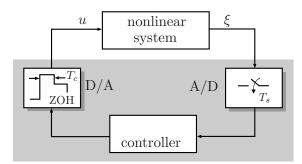


Figure 2: Sample-and-hold control of a nonlinear system.

2.1 Define each element of a hybrid system model (C, f, D, g) and its state assuming the following:

- The computation of the static feedback law takes no time, i.e., is instantaneous.
- The positive constants T_s and T_c are not necessarily equal.

2.2 Explain how the model would change if the computation of the control law takes $\delta > 0$ units of time.

Problem 3 (30 points) For the hybrid system \mathcal{H} with data

$$\begin{array}{rcl} C & := & \left\{ x \in \mathbb{R}^2 \ : \ |x| < 1 \ \right\}, & f(x) & := & \left[\begin{matrix} -x_2 \\ x_1 \end{matrix} \right] \\ D & := & \left\{ x \in \mathbb{R}^2 \ : \ x_1 = 0, x_2 \in (-\frac{1}{2}, 0] \ \right\}, & g(x) & := & \frac{x}{2} \end{array}$$

with state $x \in \mathbb{R}^2$,

- 1. Classify all of its solutions following the definitions in Definition 2.5 and Definition 2.7.
- 2. Indicate the points in $\overline{C} \cup D$ from which nontrivial solutions exist.
- 3. Indicate the properties of maximal solutions to \mathcal{H} .

You may want to apply Proposition 2.10 in answering these questions.

Problem 4 (10 points) For the hybrid system \mathcal{H} that you proposed in Homework 1, answer items 1-3 in Problem 3 above.