GRADUATE COURSE ON ROBUST HYBRID CONTROL SYSTEMS – Homework #3

Problem 1 (40 points) For the bouncing ball system given by the hybrid system with

$$f(x) = \begin{bmatrix} x_2 \\ -\gamma \end{bmatrix}, \qquad C := \left\{ x \in \mathbb{R}^2 : x_1 \ge 0 \right\}$$
$$g(x) = \begin{bmatrix} x_1 \\ -ex_2 \end{bmatrix}, \qquad D := \left\{ x \in \mathbb{R}^2 : x_1 = 0, x_2 \le 0 \right\}$$

where $e \in [0, 1)$ and $\gamma > 0$:

- 1. Show that the origin (0,0) is asymptotically stable.
- 2. In the plane, plot: a) the flow and jump sets, b) level sets of the Lyapunov functions, and c) a solution starting from (1,0) and a solution starting from (0,-1). Show graphically that the motion of the solutions is such that they go from larger to smaller level sets of the Lyapunov function.

Problem 2 (40 points) Consider the hybrid system with state $x \in \mathbb{R}^2$ and data

$$C := \{x : x_1 \ge 0\}, \qquad f(x) := \begin{bmatrix} \alpha & \omega \\ -\omega & \alpha \end{bmatrix} x \quad \forall x \in C,$$

$$D := \{x : x_1 = 0, x_2 \le 0\}, \qquad g(x) := -\gamma x \quad \forall x \in D,$$

where $\gamma > 0$, $\omega > 0$, and $\alpha \in \mathbb{R}$ are the system parameters.

- 1. Using the sufficient conditions for Lyapunov stability, find conditions on the system parameters for which the origin of the hybrid system is *uniformly globally pre-asymptotically stable*. Show your work in detail.
- 2. Confirm your answer to item 1 via simulations.
- 3. Is the origin uniformly globally asymptotically stable? Justify your answer.

Problem 3 (20 points) For the hybrid system \mathcal{H} that you proposed in Homework 1:

- 1. Define a set \mathcal{A} that is to be stabilized.
- 2. Study the stability properties of the system, either using the definition of asymptotic stability or using the sufficient conditions in terms of Lyapunov functions.