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Abstract— We present a control strategy that combines local and error, or relying on “human inspired” control signals

state feedback laws and open-loop schedules to robustly dlally a5 in [3]. Finally, we construct a feedback controller that
asymptotically stabilize a compact subset (typically a pait) of h h . A dA

the state space for a nonlinear system. The control algoritm is ~ St€ers the state to the union of,, A, A, and A,,.
illustrated on the problem of global stabilization of the upright ~ Since the system will have some natural damping, the zero

ggﬁitgﬁ)nf? r(])f tlf(l)e }(3:6ngrl,lgglteingmﬂfmce?tlegsin atrqyr?risdt g%gﬁ;o\ﬁ; control would suffice. Alternatively, additional dampingrc
also :orlegentglthev dlesign proced%lre l:)f th\(lavI hyb)r/id conltroller be added fthroug_h feedback. In this Wo_rk, we will show
for general nonlinear systems. Recent results in the litetare ~ how these ingredients can be used to build a robust, global
on robustness of asymptotic stability in hybrid systems are hybrid feedback stabilizer. To the best of our knowledgs, th
umsggsdr:e%sgﬁtblrl]soriusrégatr?;tomgr ?elgtseer%?g%t?rﬁgenrgeﬁ robusbt - nstitutes the first robust global feedback stabilizerthar
pendubot; cf. [2], [1], [6]. Moreover, the proposed control
|. INTRODUCTION strategy is applicable to general multi-link pendulums.

In this paper, we develop a novel hybrid feedback control In a sense, our work can be thought of as a generalization
strategy for the problem of globally asymptotically stahil of the work in [7] where a local controller is assumed to
ing a point (or a set). Our control strategy combines locdle known for the desired equilibrium point and, in addition,
feedback stabilizers and open-loop control signals (oedeh the “bootstrap” feedback controller steers the system & ne
ules) to steer the trajectories toward the desired poinhfrothis point. When the bootstrap controller has this esplgcial
other particular points in the state space, and a “bootstragtrong property, no additional open-loop controls and lloca
feedback controller that is capable of steering the trajget  stabilizers are needed. However, this type of assumption is
to a neighborhood of one of these points from which the localot reasonable for the pendubot. Indeed, topological densi
feedback stabilizers and the open-loop controls can be. usedations easily reveal the impossibility of building a rebu
A switching logic between these control laws with hystesesifeedback stabilizer to take the pendubot from every initial
is implemented in a hybrid controller with logic variablescondition to a neighborhood of the straight-up positionisTh
and logic rules. We follow the formalism for hybrid systemsobstruction motivates the relaxation considered herein.
used in [4], [5] where some of the first general results on
robustngss of hybrid control systems were _o_btai_ned. ROBUST “THROW" AND “CATCH”

We will use the problem of global stabilization of the I
upright position for the pendubot to explain the controfA' Robust Global Stabilization of the Pendubot
strategy and clarify the assumptions for the general case. F Consider the dynamical system given in Figlire 1 consist-
the purposes of the discussion, call the upright equilibriu ing of a pendulum with two links, th@endubot We are
point A,,, the straight-down equilibrium point,., and the
two other equilibriums, corresponding to the first link up
and the second link down, and vice versh,,, and A4,,,
respectively. By linearizing the system at the pointg
and A,., we construct local stabilizers for neighborhoods of
the points. A, and A,, respectively. We also construct an
open-loop control signal to take the state to a neighborhood
of the point 4, from a neighborhood of the point,,
and two different open-loop controls to take the state to a
neighborhood of the poin#, from neighborhoods of the
points A,,- and A,.,,. These control laws can be constructed

by solving a two-point boundary value problem, using triafig. 1. The pendubot system: a two-link pendulum with torque actmat
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pumping [2], trajectory tracking [6], and jerk control [Xh  Of(x,u)/0u|s=4, u—0, ChooseK € R* and P € R**4,
just list a few. Our goal is to design a control algorithmP = P7 > 0, such that
that accomplishes thg _stab|I|za}t_|on taglobally (by this, (A— BKTY'P + P(A— BKT) <0, @)
we mean for every initial condition of the pendubot), and . _ _
robustly with respect to measurement noise and externand lets,(z) := K" z. (SuchK and P exist as(4, B) is
disturbances. controllable.) The basin of attraction of this controllemc
Let ¢, and ¢, denote the angles relative to the upright® estimated with a sublevel séi, (r,) of the Lyapunov
position,w; andw» the angular velocities, and € R the functionV,(z) := 2" Px.

control input. The dynamical model of this system can be 2y open-loop control laws for steering from/to neighbor-
obtained with the Lagrange method. The resulting equationg,ods of points tod,, A, A, and A,.,: Construct open-

are of the form loop controllersa, ., Gtyr—y , anda,._., such that

by = wi, @1 = fi(z,u) a) a_.,(t) steers the trajectories dfl(1) from points
by = wa, = fo(z,u) 1) nearby therestingequilibrium A,. to points nearby
the upright equilibrium A,;
where z := [¢1 w1 ¢2 wo]l € R* and fi, fo : R* x b) aur—r(t) steers the trajectories dfl(1) from points

nearby the upright/resting equilibrium A,,. to
points nearby theesting equilibrium A,.;

am—r(t) steers the trajectories dil(1) from points
nearby the resting/upright equilibrium A, to

R — R are nonlinear, locally Lipschitz functions that
define the dynamics of the pendulum. Lé{z,u) :=

[wi filx,u) wo fa(w,u)]T. We consider thaty; and ¢ c)
are given by the angle of a vector in the unit cirdle:=

{z €R? | ||z]|s =1}. More precisely, for each = 1,2, points nearby theesting equilibrium A,..

¢; is given by the angle of the vectar € Z. Note that, For example, for item a), we construct a piecewise-
with this embedding technique, the problem of globallycontinuous function of timev,_,, : R>o — R such that
stabilizing the pendubot to the upright position is equewal for the initial conditionz® = A,,¢° = 0, the solution to

to globally stabilizing the system to the compact set defined = f(x, a.—(t)) is in a small neighborhood of.,. Then,

byzl 22’2:[1 O]T,wl =wo = 0.
The pendubot system has four equilibrium points:
° Resting @r): ¢p1=—m, w1 =0, g2 = —7, wo =0;
] Uprlght (Au) 01 =wi = Py =wy =0,
e Upright/Resting @.): ¢1 = w1 =0, ¢ = —7,ws = 0;
e Resting/Upright @4,.,.)): ¢1 = —7, w1 = ¢2 = we = 0.
These equilibrium points are depicted in Figlte 2.
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Fig. 2. Equilibrium configurations of the pendubot.

B. Control Strategy

We build our feedback control strategy upon the followin

state-feedback and open-loop control laws.

1) Local state-feedback stabilizeks, and x,.: The con-
struction of local state-feedback stabilizets for the up-
right equilibrium A, and x, for the resting equilibrium
A, are designed to steer points nearldy, and A, to
the equilibrium point itself, respectively. Such conteod

can be designed by linearization and pole placement. For

example, fors,, let A := df(z,u)/0z|y=4, u=0 @NdB :=

by continuity with respect of initial conditions t@l(1), ttee
exists a neighborhood of A, and a neighborhood’ of
A, such that solutions t& = f(z, o, (t)) starting from
S reachE in finite time 7;°_,, > 0. We designo,,,_,, and
o Similarly. One technique that can be used to design
these open-loop controllers is to define a parameterized bas
function for the control law and then determine its paramsete
by trial and error. A different approach is to solve a twosoi
boundary value problem (or some other constrained optimal
control problem) with boundary constraints corresponding
neighborhoods of4,., A, A.,, and A,.,,.

3) Bootstrap stabilizer xg: The main task of this
controller is to steer trajectories starting from everynpoi
notin A, UA,UA,.UA,, to an small enough neighborhood
of 4, UA, UA, UA,,. One such a controller i, = 0
as the natural damping present in the system steer the
trajectories tad, U A, U A, U A, with zero control input.

In the next section, to obtain better performance, we use a
more sophisticated control law which removes energy from
the system much faster.

With the control ingredients designed in 1), 2), and 3), the

d)asic tasks that our control strategy performs are:

« For points nearbyA,, apply the state-feedback law
k. to steer the state to the sét corresponding to
o, and then apply,._,,, to steer the trajectories to
a neighborhood of4,,;

« For points nearby4,,, apply the state feedback lawy,
to stabilize the trajectories td,,;

« For points nearby4,, and A,,, apply the open-loop
control lawsay,,—., and «,.,_.., respectively, to steer
the trajectories to a neighborhood 4f ;



« For any other point iR?*, apply the lawx, to steer the
trajectories to a neighborhood &f,. U A, UA,-UA,,.

In Figure[3, we show the combination of these tasks to ac-
complish global stabilization to the poist, of the pendubot.
When the open-loop control laws are applied, we say that
there is a “throw” between neighborhoods of the equilibrium
points, and when the feedback stabilizers are applied, we sa
that there is a “catch” to one of the equilibrium points.
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Fig. 3. Control strategy for robust global stabilization of the piervot to the
point.A,,. A sample trajectory in the; , ¢2 plane resulting from our control
strategy is depicted. From the initial point, the trajectory is steered to
the neighborhoodS;, . of Ay, with xo(x), from which it is “thrown”
to the neighborhood,,,—. of A, with the control lawa;,—r. The local
stabilizer k- “catches” the state to a point ir5,-—.,, from where the open-
loop law a—.,, is applied. Finally, after the “throw”, the state reaches a
point in E;,_,,, and the last “catch” by the local stabilizek,, steers the
trajectory to A,

C. Hybrid Controller

The control strategy outlined in Sectién1I-B is imple-
mented in a hybrid controller with logic variables and logic
rules with hysteresis. In contrast to the discontinuougrobn
law case, our implementation as a hybrid system guarante
robustness properties of the closed-loop system.

First note that our control strategy can be interpreted as
directed treeor graph with nodes given by the equilibrium
points. The directed tree consists of two paths given b
Ayr = A — Ay and A, — A, — A, .

We number the nodes in each of the paths, starting fro
A, and A,,, and finishing atA,, by the pairs(i,j) €
{1,2,3} x {1,2} wherei indicates the node number and
j the path number. Then, the two paths are

Path1: (1,1) — (2,1) — (3,1) (i.e. Aur — A — Ay).

Path2: (1,2) — (2,2) — (3,2) (i.e. Ay — A — Ay).

The controller has two logic stateg, and p, (¢,p) €
{-3,-2,0,1,2} x {1,2}, and a timer state € R. The

M

(R)

« Throw modewheng > 0. This mode indicates that the
trajectories are being steered from a neighborhood of
the (¢, p)-th node to a neighborhood of thie+ 1, p)-th
node of the current pathp. If ¢ = 1,p = 1, then the
control law applied isa,—.; if ¢ = 1,p = 2, then
aryu—r 1S applied; and ifg = 2 thenca,._,,, is applied.

« Recovery modavheng = p = 0. This mode indicates
that the trajectories are being steered to the tree with
the control lawkg.

The hybrid controller updates its state under the following
events:

(C) “Throw-to-catch” transitions : when the stater is in

some neighborhoo#' of an open-loop control law and
in throw mode(q > 0), the controller jumps taatch
mode (¢ updated to—(|¢| + 1)). The timer stater is
reset to zero.
“Catch-to-throw” transitions : when the stater is in
some neighborhood of an open-loop control law and
in catch mode(g < 0), the controller jumps tahrow
mode (¢ updated to|g|). The timer stater is reset to
zero.
“Throw- or catch- to-recovery” transitions : when the
trajectories
— while in throw mode do not reach a neighborhood
of the associated sdt in the expected amount of
time (that is,g > 0 and7 > 7 ); or
— while in catch modeleave the basin of attraction
of the current local stabilizer;

then the controller jumps t@covery modég, p updated
toqg=p=0).

stateq indicates the mOde _Of the controller,indicates Fhe Fig. 4. Simulation of the pendubot system with our hybrid contraitegy.
current path of the trajectories, amdeeps track of the time Initial conditions: 2 = [—n/4,0,—7/4,0]T, ¢ = p® =1, 70 = 0.

that the system has been in open loop. kgt = 7
Tik,2 = Tr*u—wi

as follows:

r—r?

of

The figure depicts: pendubot angles (red) and g2 (blue), logic stateg
=7 (dashed blue), logic state (dashed red), and timer state (dashed black).
andrs; = 755 = 7,_,,,. The control logic is After an initial switch to recovery mode, whenreaches a neighborhood

[—,0,—m,0]7, a “throw” is performed (at arounds.5sec.) from the

resting configuration (nod¢2, 1), A,) to a neighborhood of the upright
« Catch modewhengq < 0. This mode indicates that the configuration (nodg3, 1), .A.,). Finally, a switch to the local stabilizes,-

statex is steered to thé|q|, p)-th node of the curren
pathp. If ¢ = —2 then the control law applied is..,
while if ¢ = —3 then the control law applied is,, .

t (¢ = —3) (at around9.5sec.) steers: to the origin.

Figure[@ shows a simulation of the closed-loop system



resulting from controlling the pendubot with our hybrid @) is known with the state-feedback laws;. The functions
controller. The initial state of the pendubot is such that ity j)—(i+1,;) are functions of time that can be recorded in
is far away from the regions where the open-loop laws anile memory of the digital controller. L

the local stabilizers,, are applicable. Therefore, the hybrid The compact setdl; ;, (i, j) € R, define adirected treen
controller initially switches tarecovery moddg = p = 0)  the sense that for every compact skt; with i < ¢/, j €

and appliesso. (In this case, the controllef, was designed P, there exists an open-loop control law that transfers the
to be given by—L,V := —(VV(x),g(x)) whereV is state from nearby points o4, ; to nearby points of4, 1 ;.

the kinetic plus potential energy of the pendubot @ns  Every path has the last node in common and first independent
such thatf(z,u) = f(z) + g(z)u. This controller removes nodes defining the paths which eventually merge with other
energy faster tham, = 0. With this controller, the angles paths. This connectivity between nodes is denoted in Flgure
of the pendulums reach a neighborhood -ofr and the by a directed arc joining the nodé; ; with the nodeA,; ;.
angular velocities a neighborhood 6f Then, the hybrid Note that Assumptiofi3.1.4 guarantees the existence of a
controller switches tahrow modein the first path and from state-feedback law:, such that, when the trajectories are
node (2,1) to node(3,1) (¢ = 2,p = 1). The open-loop away from the basin of attraction of the local stabilizers or
control law applied isa,—.,, Which steers the state to a at points where the open-loop control laws are not able to
neighborhood of the origin. In that event, a switch to theransfer the state to the next node, the trajectories aeeeste
local stabilizerx,, follows, and the state converges to the back to the tree.

origin asymptotically.
—Al,j+1
IIl. THROW-CATCH HYBRID CONTROL FOR GENERAL Ay A A

NON-LINEAR SYSTEMS

We now generalize the control strategy described for the
pendubot to general nonlinear control systems. Considger th J Az
nonlinear control system

= f(z,u) ©)) _ As j

where f : R" x R™ — R", z € R" is the state, and
u € R™ is the control input. LetA C R™ be compact; | .
P :={1,2,...,pmax} C N, pmax > 1; for eachj e P, | |
Q; = {1,2,...,¢dx} C N, ¢ > 2, and R :=
Urepr (Qr X {k}). We assume the following.
Assumption 3.1The functionf : R” x R™ — R" is A A
continuous. For eachi, j) € R, there exist:
1. Disjoint compact setslz-,j c R» satisfyingAz-,j = A Fig. 5. General case of directed tree (left) ageth path (right).
for eachi = ¢ .., j € P.
2. Wheni > 1, continuous state-feedback laws; :
R™ — R™ such that the compact sgl; ; is asymptot- A, Control Design

;pzill);c(sxtag!g(\/xv;t)h basin of attractioBs,, ¢ R™ for We design a state-feedback hybrid controller, which we
= » iy g /*

3. Wheni < ¢, piecewise-continuous functions denote byH., that performs the 5W|tch|ng between the feed-
i j)—(i+1,5) : R0 — R™ that are capable of steering back control lawsx, ; ;, and the functionsy; j)—.(i+1,5)
trajectories of [[B) from a ses, ; to an open sef; ; N Assumptmn[}ﬂl. We foIIovy the framework fqr hybnd
in finite time with maximum timer;, > 0, where systems in [4], [5] where solutions are given loybrid time
S;; C R™ contains an open neigh’[gorhood o ;, domaing.

E; ; contains an open neighborhood 4f, ; and is Let Q5 = {—Gluw —Ghax + 1,-.-,—2} and Q} :=
§uch tha_\t an .opefiﬁj-neighborhood of itselfyy ; > 0, {1,2,...,¢)..—1}, foreachj € P; Q := Ujep(QS UQ;);
is contained InBAi+1,j' L' :=Ujep(Q5x{j}); andL := (U;ep((Q5UQ%) x {j}))U
Moreover, there exists: (0,0). The controller state is given Hy p 7|7, whereq and

4. Continuous state-feedback law : R" — R™, such  are logic states and € R is a timer state. The logic state
that, for each solutiom to & = f(z, o(x)) there exists ), takes value inP U {0} and the logic state takes value in
finite T > 0 such thatz(T) is in the union of each of QU {0}. They store the state of the system:

5 :
the setsr; ; + —*B and.S; ; above (this corresponds | «catch mode” at theg|-th node of thep-th path when
to a “bootstrap” feedback controlld) geQc, peP.

Remark 3.2:In most applications, the compact sets ;,
(2'7]’) € R, are given by single points, in particular equilib- 2In this framework, a solutionz to a hybrid system on a hybrid time

; ; ; ; ; : domaindom x is parameterized by a continuous variablevhich keeps
rium points, for which local regulatlon of the traJECtO”eS track of the continuous dynamics and a discrete varigblehich keeps
track of the discrete dynamics. Then(t, j) is the value of the solution at

15B denotes the open ball of radids> 0 centered at the origin ilR™.  time (¢, j) € dom z. For more details, see [4], [5].



« “Throw mode” at theg-th node of thep-th path when then jumps to catch mode are enabled with updategtaw:

qgeQt, peP. —(lg] + 1). If in catch modeand the state: is such that a
« “Recovery mode” whery = p = 0. “throw” is possible, i.e.
Following the control logic outlined in SectionIIIC, the (0.9) € (Q2\ {~qha}) x {P}, @ €Dy, 8)

output of the hybrid controller is given by _ )
then jumps to throw mode are enabled with updatedaw=

Klql.p(2) if g €Q; lq-
Ke(Z,q,0,T) = Q(q,p)—(q+1,p)(T) fge@, (4 If in throw modeand the timer state is larger thanr; ,
Ko(x) if g=0. or if in catch modeand the stater is such thatr € D; ,

then jumps torecovery modere enabled with update law
gT = 0,p"t = 0. While in this mode, the controller enables
updates of(g, p) to a pair inUiep((Q5 U QL) x {k}) when

We now design several sets used in the control logic.
I) Sets for “Catch mode” update logic
For each(i,j) € L', let E;; and 7, be given as in

. ! x € Dg .
AssumptiorL3]1.3, and define The construction of the sets in I)-11) define the flow and
. . = . = O jump sets of the hybrid controller (while in modee @
Di;=Ei;+6;;B,  Ci;=R*\Df;+°B. and in pathp € P, the setsCf, ~and D, : Cf ~and
D! . andC” Cr,andD”,  Dp, define the flow
% ” H lq|,p’ —lql,p’. 0,0 —lql,p’ 0,0
Il) Sets for “Throw mode” update logic anﬂ fump sets %orjumps toatch t%rgw, andrecovery mode

For each(i, ) € Lt't let Si; be given as in Assump- respectively). Figurgl6 illustrates the sets used in theatepd
tion B:tl.S, and d_ef!neDi_j to be a closed set such that for|,, 4nq 5 sample trajectory for thieth compact set in the
somed; ; > 0 satisfies j-th path,(i,j) € L, i € {2,3,...,¢). — 1}.
5t
Am‘ + 550-153 c D! D;j + %B C Sl}j .

1,7
Then, for each(s, j) € L', let C} ; be given by
t

— 0,
Ci;=Rr\ D! + 5B

Ill) Sets for “Recovering mode” update logic
For each(i,j) € Ukepr (Qf x {k}), for somed;,; > 0,
define

Cij = Rij(Dfj_1 ) + 6 ;B (5)
Fig. 6. The compact setl; ;, (i,5) € L, i € {2,3,.. o Qhax — 1}; the

& 1 . _
where ,R’ivj(DMfl,j) is the reaCh_able set ofi = associated flow setS¢ , C;j, CT, ;i and the jump setd? ., D;j, Dr, .
[z, kp;,5(x)) from Dy, _, ;- Also, defineDy ; as are depicted. The seéfﬁl'j and 3¢, ; associated with the compadi set
’ i A;_1,; are also shown for the computation @'ﬁm and Dim.. Vaguely,
T the control strategy is such that with= 7 — 1 andp = j, a jump can
D;"j :— Rn \ ClT 4 IR (6) occur as soon as the trajectory enters the&;éﬁtlyj, from where the local
’ 7 2 state feedback lavk; ; is applied. A jump that activates the control law

. .o a(i,5)—(i4+1,5) Can be triggered as soon as the trajectory hits theDsi t
Define 06,0 and D6,0 as follows. For each(z,]) € The local stabilizer fotd; 11 ; is enabled when the trajectory enters the set

Ukep(Qr x {k}) define an auxiliary Sef)irj to be a closed Dy ;. The sequence is repeated until the compactéset;, i* = glax, is

set such that for som@-d > (0 satisfies reached.
A+ 6. BC Dl DT+ 6I’jIB% c D¢, . UD! B. Hybrid controller

i,j i.j 1,5 1.7 B) i—1,5 ) . Rybn

. . _ . Let X := R" x L xR, 7 = max7}, for all (i,j) €

whereDg; = D, . =0foralljc P.Then,C5,and 1t where 77, is given by Assumptioi=31.3, ang :=
Dy o are given by [T ¢ p 7]T. Our hybrid controller, denoted b, is

r nr T ™n\ 660— (q7p) = (010)7 T = 11 5 € Cc
Do,o = U me Co,o =R \Do,o + TB Hc{ (q,p)+ € g.(6), =0, e D,

i,7)EU Q k .
(B EDer(Quxihy) where the set§’. and D, are given by

wheredg  is the minimumd; ; over Uxep(Qr x {k}). . . .
With these definitions, the update laws are designed 4& = {5 €x ‘ q € Q \ {=dmax}: € Clg, N CW}
follows. If in throw modeand the stater is such that a U {£€X |g=— z€ L}
“catch” is possible, i.e. ¢ . .
U {¢ex |qe@l zeC;,, r<7,}
(¢,p) € Q) x {p}, ze€D,, @) U {{£€X |q=p=0,2€C,} ,



D.:=D.UDcnUD.3 , This result states that every solution #,; is such that
Da:={¢€X |qeqQ, zeD:,, <7, }U thexz component converges t4 and that every solution with
feex [q— _g " ,)qg It épDc D) initial 2 close to.A stays close for all time. This corresponds
1=pP=5 0P » & ap' 0,05 to global asymptotic stability ofd4 for the the nonlinear
Do = {g exXx ‘ 7€ Q\{—dhax}, TE Dltqup U fsystemlﬂ%) cotntrlollleq b_?‘lc. IThe p[ogf_;; thl_?hresult fol:ows
o ., . . , rom the control logic implemented ift{.. The open-loop
{€eX [a=p=0,(¢.p) €L’ 2 €Dy N Doo} s gohedules are used to steer trajectories from a neighborhoo

\p

D3 = {5 eEX ] qc QZ, T>T., } U of one node to a neighborhood of the following node, and
{5 cx ‘ gEQS, 3¢ D‘rq‘,p} ’ :Ee state-feedback control laws steer t_he tra_jectorieambw
e nodes of the tree. The control logic H. is such that
and the jump mag. is given by for every point in the state space, by measuring the state,
a sequence of switches between the control laws takes the
ger(§) €€ D state of the system tgl.
9e(§) == 4 9e2(§) & € De2 The hybrid controllerH, confers a margin of robustness
(0,0) €€ Des to measurement noise on the stater. This is stated in
L : ¢ the following result. Below,z| 4 = infyeca|z — y|. Also,
(=lal = 1.7) It (a,p) € LY, recall thatdom(z, ¢, p, 7) denotes the domain of the solution
ge1(§) = {(_|q/| —1,p) ‘ (d.p) € It z € DZ’,p/ } (7,q,p,7) t0 He. .
if (¢,p) = (0,0) The_orem 3.4: (robustness to measurement noise) Let As-
) sumption3IL hold. Then, there existse KL, for each
(lgl,p) if ¢ €Qp\ {—dhaxl e > 0 and each compact sét C B there existss* > 0,
Gea(£) = such_ that for each measurement noise Ry — 5*1[5
© {(¢.p) | (d,p)eLt, xe Dl } solutions(z, ¢, p, 7) to H; exist, are complete, and for initial
if (¢,p) = (0,0) conditions (2°, ¢°,p°,7°) € K the = component of the

) ) solutions satisfies
and outputs. given in [4).

The jump mapy,; and jump seiD,; implement the logic 12(t:)la < B(|2°.4),t + ) + ¢ V(t,5) € dom(z,q,p, 7).
for catch mode while g., and D., implement the logic  The proof of this result follows by the regularity propestie
throw mode The first pieces of these sets correspond tof the data ofH. and the results for perturbed hybrid
the conditions in[{7) and18), while the second pieces allowystems in [5]. Due to space limitations, we do not discuss
jumps fromrecoveringto catch or throw mode Moreover, the concept and the issues on existence of solutions todhybri
the definitions ofD.; and D, differ from the corresponding systems with measurement noise here. See [8] for more
ones in [7)IB) as they implement jumps that update the patetails.
statep to a correct one. Similarly fog.; and g... (This In addition to the property in TheorelB.4, the hybrid
mechanism is needed when the initialization of the logicontroller /. confers an additional robustness property to
states is not correct.) The jump sBt; states the conditions the closed-loop system when the open-loop schedules are in
for jumps torecovery modeThe flow setC, includes all the loop. When a disturbance or failure prevents a “throw”
points at which jumps are not allowed, and to guarantgiecom being successful, the recovery logic implemented én th
robust existence of solutions (see e.g. the discussioneat thybrid controller steers the state of the system back to the
end of [8, Section Ill]), it overlaps with the jump sét.. tree and retries the “throw-catch” sequence.
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