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Abstract— Invariance principles for hybrid systems are used
to derive invariance principles for nonlinear switching systems
with multiple Lyapunov-like functions. Dwell-time, persistent
dwell-time, and weak dwell-time solutions are considered.
Asymptotic stability results are deduced under observabity as-
sumptions or common bounds on the Lyapunov-like functions.

incorporates level sets of Lyapunov functions into the
description of the invariant set.

Corollary 4.6 is an invariance principle for nonlinear
switching systems that generalizes [7, Theorem 8] stated
for linear switching systems. Even in the linear setting,
Corollary 4.6 yields smaller, in comparison to [7, The-
orem 8], sets to which solutions converge.

[8, Theorem 7] is derived, in Corollary 4.11, from the
hybrid invariance principle in Theorem 4.1.

I. INTRODUCTION

A. Background

Switching systems are dynamical systems governed by
a differential equation whose right hand side is selected Invariance principles in [16], [17], are only used to prove
from a given family of functions, based on some (time ofheorems 4.1 and 5.2. The consequences of these theorems
state dependent) switching rule. Stability theory of shitg ~ for switching systems can be then derived in a self-conthine
systems has been an active area of research over the M3y, by using two techniques that should prove useful for

fifteen years. Sufficient conditions for stability were givie
[15], [14], [20], [2], [9], [4], [11]. Stability under partular
classes of switching signals were studied in [11], [7], [8],

[1]. For much more background, see [12], [11], [7].

In this paper, we focus on invariance principles for switch-
ing systems under certain classes of signals: dwell-time,
weak dwell-time, and persistent dwell-time signals. Early
work on this topic includes [7], [8], [1]. Related work
on invariance principles for hybrid systems — dynamical
systems where solutions can evolve continuously (flow) and
discontinuously (jump) — includes [13], [3], [16]. In [16]
(with the results announced in [17]), invariance principle
were shown for general hybrid systems in the framework of
[6], which allows for nonuniqueness of solutions, multiple
jumps at time instants, and Zeno behaviors, while only
posing mild regularity conditions on the data.

B. Contribution

We show how some of the results of [16] can be used
to obtain invariance principles for switching systems. Whi

doing that, we recover, generalize, and/or strengthen some

of the results of [7], [8], [1]. In particular:

« Corollary 5.3 strengthens [1, Theorems 1, 2] by includ-
ing both forward and backward invariance conditions
on the set to which solutions converge. Corollary 4.4,
while giving the same invariance conditions as [1], also
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purposes other than those in this paper:

« Given a solution to a switching system, and a sequence
of time intervals of length at leastp on which the
logical mode takes on a particular valgé, one can
identify the restriction of the solution to those intervals
with a function on[0, co). The resulting object is not

a solution to a switching system, as the continuous
variable of the original switching system may now be
only piecewise continuous. However, it is a solution to
an appropriately formulated hybrid system (truly hybrid
system, in which both the “continuous” variable and the
logical mode jump). To this hybrid system, invariance
principles of [16], [17] can be applied, with implications
for the original switching system. This technique is used
to obtain Corollaries 4.4, 4.6.

In the case of multiple Lyapunov functions, i.e., when
in logical modeg, a functionV; is decreasing at a rate
W,, itis often assumed that the value \gf- at the end

of an interval with modeg* is greater or equal than
the value ofV,- at the beginning of the next interval
with mode ¢*. Hence, the functionz,q) — V,(x)

can not be used in the standard Lyapunov sense: it
can increase during switches between different logical
modes. However, it can be shown that for each bounded
solution (x,q) to the switching system, the function
(xz,q) — Wy(z) is integrable. (A similar technique
was used in [8, Theorem 7].) This paves way to the
application of invariance principles of [16], [17] that
rely on an output function that decreases sufficiently
fast to0. Theorem 5.2 is used via this technique.

In presenting the results, we clearly separate the statsmen

only about invariance of sets to which bounded solutions

switched systems converge (Corollaries 4.4, 4.6, and

5.3) from stronger statements about asymptotic stabHigy t



rely on additional information like observability or commo time domain (for a hybrid are, its domain will be denoted
bounds on Lyapunov functions (Corollaries 4.8, 4.11). dom z) and such that for eache N, ¢ — (¢, j) is locally
absolutely continuous odom z N ([0, 00) x {j}).

Il PRELIMINARIES A hybrid arc z is a solution to the hybrid systerf if

A. Switching systems 2(0,0) € CUD, x(t, j) € O for all (t,5) € domz, and
LetO C R" be an open set, l€f = {1,2,...,¢mas},and (S1) for all j € N such thatl; x {j} := domz N
for each(_] € Q, I_et fg: O —R" be_ a continuous function. ([0,00) x {7}) is nonemptyz(-, j) is locally absolutely
We consider switching systems given by continuous int on I; and, for almost alt € I,

SW: o i= fyla). @) z(t,j) € C, it j) € F(x(t, ));

For more background on switching systems, see [11] or [{§2) for all (¢, j) € domz such that(t, j + 1) € dom z,
A completesolution to the switching syste8VV consists

of a locally absolutely continuous functian: [0, 0c) — O z(t,j) €D, xz(t,j+1) € G(z(t, j))

and a functiory : [0,00) — @ that is piecewise constantand  pegyts on structural properties of solutiongHplike (ap-

has a finite pumber of discontinuities in each compact t'mﬁropriately understood) sequential compactness of theespa
mFervaI, andi(t) = fqq) (x(t))_for almost alltle [0, 00). We of solutions and outer/upper semicontinuous dependence of
W'" say that a complete solutiofr, ) to SW IS precompact - g4 utions on initial conditions, were obtained in [6]. Thes

if 2 is bounded with respect t0), that is, there exists a roqts made possible the general invariance principles of
compact setk’ C O such thatz(t) € K for all ¢ € [0, c0). [16], [17]. The assumptions on the dai@, F, G, C, D) of

Let (z,¢) be a complete solution t6V and letto =0, 3/ that enabled the results of [6], [16], [17] are as follows:
andtq,ts,... be the consecutive (positive) times at whic 0) O is open:

q is discontinuous (We assume that there is indeed infinit .
many such times, as otherwise, the system is not a switch'nl) C'and D are relatively closed subsets o,
' ' A%) F : O = R™ is outer semicontinuous and locally

system for the purposes of asymptotic analysis.) Inforyna .
t; is the time of thei-th switch. The solution(z,q) is a goeurged, and(z) is nonempty and convex for all

-ti ionwi i if g —t; > . . . .
dwell-time solutiorwith dwell time 7p > 0 if ¢4 — ¢; > a(tA‘S) G : O = R™ is outer semicontinuous, an@(x) is

mp for ¢ = 0,1,.... (That is, jumps are separated by
leastrp amount of time.) The solutiof, ¢) is a persistent nonempty and such that(x) c O for all > € D.

dwell-time solutionwith persistent dwell timer, > 0 and (The set-valued mag": O = R" is o,uter_ semicontinuous
period of persistencd > 0 if there exists a subsequencelf fOr every convergent sequence of's with limz; € O,

0 = t;y, b, ti,, ... Of the sequencdt;} such thatt; ., — 2and every convergent sequence iof F(x;), limy; €
t; > 7pfork =1,2 andt;, .. —t; .1 < T for k = F(lim z;). F is locally boundedf for every compact C O
1 — Py k41 1k — . n

0,1,.... (Thatis, at mosf’ amount of time passes betweenthere exists a compadt” C R" such thatF'(K) c K.

two consecutive intervals of length at least on which there Similarly for G.) Let us say that all hybrid systems we write
is no jumps.) Finally, a solutiofiz, ¢) is aweak dwell-time down in this paper do satisfy the assumptions just stated.

solutionwith dwell timerp > 0 if there exists a subsequence . SWITCHING SYSTEMS AS HYBRID SYSTEMS
0 = tiy,tiy, iy, - .. Of the sequencét;} such thatt;, 1 — . L . .
t;,, > 7p fork=1,2,.... (Thatis, there are infinitely many I Sven a}dSW|'[r]ch|Eng_3éster§W as presented in Section
intervals of lengthrp with no switching.) These classes of " "™ consider the hybrid system
solutions follow the definitions in [7], see also [9]. i = f,(z) z€0,g€Q
. Hsw : n o (3)

B. Hybrid systems " €Q 2€0,q€qQ

We consider hybrid systems of the form with the variable(x, q) € R™*!. (Not mentioningg in the

. description of flow orz™ in the description of jumps means
& € F(x) x € C, . ; .

H: { N (2) thatq remains constant during flow while does not change

2t € G(z) z €D, during jumps.) To view the system (3) as a special case of

with an associated state spa®ec R™. Above, F' (respec- (2), one can take the state space t&be: O xR, the flow set
tively, G) is the possibly set-valued map describing the flowC' = O x @, the flow mapF'(z, ¢) = (f,(z),0) if (z,q) € C
(respectively, the jumps) whil€' (respectively,D) is the set and F(x,q) = () otherwise; the jump seb = O x @Q; and
on which the flow can occur (respectively, from which thehe (set-valued!) jump ma@'(z, q) = (z, @) for (z,q) € D
jumps can occur). For more background on hybrid systen@nd G(x,q) = 0 otherwise. With such data, the conditions
in this framework, see [5] or [6]. (A0)-(A3) are satisfied.

A subsetE C R>¢ x N is ahybrid time domairif it is a To every solution toSW there corresponds a solution
union of intervalslt;, ¢;11] x {j}, for some finite or infinite to the hybrid system. Indeed, #f, = 0 and t,t,,...
sequence of time = ty < t; < t5 ... < ty, with the are the times at whicly is discontinuous, one can easily
“last” interval possibly of the fornit;, T') with T finite or build a solution toHsy, on a hybrid time domaint =
T = oco. A hybrid arcis a function whose domain is a hybrid U.‘].]ZO([tj, tj+1] x {j}) that corresponds t@r, ¢). Of course,



there are solutions t@{syy that do not correspond to any foundation to those will be an invariance principle for higbr
solution toSW, for exampleHsyy has solutions that only systems, which comes out of [17], and is based on a

jump (instantaneous Zeno solutions). Whii&s,y satisfies
(A0)-(A3), using invariance principles applied sy to

deduce convergence of, say, dwell-time solutions to it (an,
behavior of these reflects the behavior of dwell time sohstio

nonincreasing Lyapunov function.

. A hybrid invariance principle using a nonincreasing
unction

to SW) may lead to invariant sets whose invariance is 'he following result follows from [17, Corollary 4.3],
verified by the said Zeno solutions. This does not leadPecialized to dwell time solutions along the lines of [17,
to useful conclusions for the underlying switching systemcorollary 4.2], or more directly from [16, Corollary 4.4].

Thus, better hybrid representations&fV under dwell time
and other classes of switching signals are needed.

To each dwell-time solutiofiz, ¢), with dwell timerp >
0, to SW there corresponds a solutiofx,q,7) to the
following hybrid system:

&= fy(x), T € Kp(T) T€[0,7D]
r 4
HD{ gt eqQ, 7t = T=17p . )
Above, k., : R = R is the (set-valued) map given by
1 if 7<7p
krp(T) =< [0,1] if 7=7p.
0 if 7>7p

Solutions tor € x.,(7) increase at the ratewhenr < 7p

and remain constant otherwise. The map is such that the

Theorem 4.1: Let O C R” be open,f : O — R" bhe
continuous,K C O be nonempty and compadt,: O — R
be continuously differentiablé})” : O — R be continuous
and such thatVV(xz) - f(z) < —=W(z) for all z € O.
Consider a hybrid system

" { &= f(x),7 € hirp(T)

e K, =0

on the state spac® xR. Let(z, 7) : dom(z,7) — O xR
be a complete solution té{; such thatx(¢,j) € K for all
(t,7) € domz and such thalV/ (z(t, j+1)) < V(z(t, 7)) for
all (¢,5) € domz such that(t,j + 1) € domz. Then, for
some constant € R, x approaches the largest subset of

Vi) nKnWw0)

T € [0, 7],

T =1TD,

(6)

variabler remains bounded (byp) regardless of the length that is invariant in the following sense: for eaah € M

of the flow intervals.

there exists a solutiog to & = f(z) on [0, 7p/2] such that

In the opposite direction, some solutions to (4) may flové () € M for all ¢ € [0,7p/2] and either{(0) = o or
before the first jump for less thaty, amount of time, but §(mp/2) = xo.

those that have (0,0) = 0 do correspond directly to dwell B, |nvariance principles for switching systems

time solutions, with dwell timep, to SW.
Let F': O = R" be the set valued map defined by

F(z) =con | fy(x)
qeQ
whereconS stands for the closed convex hull of the set
To each persistent dwell-time solutidm, ¢) to SW, with
dwell time 7p > 0 and period of persistencgE > 0, there
corresponds a solutiofx, ¢, 1, 72) to the following system:

®)

&= fq(z), 71 € Krp(m1)  q€Q,m €0,7D]
.I"EF(SC)J"221 qZO,TQE[O,T]
TeQuiol,
Hoep,r 7?1+_§27_2+{_}0} q€Q, 1 ="1p
+
qr€Q, _
TT—O,T;_—O} q_OvTQG[()?T]'

In other words, solutiong: to & = f,(x) under arbitrary
switching signals; are solutions to the inclusioh € F(z).

We now apply Theorem 4.1 to switching systems. The re-
sults are shown for the case of multiple Lyapunov functions,
under the following assumptions.

Assumption 4.2: O C R"™ is an open set,Q =
{1,2,...,Gmaz}, and for eachq € @, f, : O — R"
is a continuous function};, : O — R is a continuously
differentiable functionW, : O — Ry is a continuous
function, andVV,(z) - fy(z) < —W,(z) forall z € O.

Assumption 4.3: The solution(z, ¢) to SW is such that,
for eachq* € @, for any two consecutive intervals;, t;11),
(tk,tr+1) such thatg(t) = ¢* for all ¢t € (¢;,¢,41) and all
te (tk,tk+1), we haveI/}Z* (x(tj+1)) > ‘/:1* (x(tk))

In short, the value oV, at the end of an interval on which
q = q* is greater or equal to the value &f- at the beginning
of the next interval on whicly = ¢*. This assumption is
usually needed when establishing convergence and syabilit
results for switching systems, see e.g. [7],[1].

1) Invariance principle for dwell-time solutions ®V:

(In fact, 2 is a solution to the inclusion, on some boundede pegin with an application of Theorem 4.1 to dwell-time
time interval, if and only if it is a uniform limit of some g tions ofSW.

sequence of solutions generated via switching.)

IV. HYBRID INVARIANCE PRINCIPLE USING A
NONINCREASING FUNCTION AND CONSEQUENCES

In this section, we present invariance principles to e
tablish convergence of dwell-time, persistent dwell-time
and weak dwell-time solutions to switching systems. The

S_

Corollary 4.4: Let Assumption 4.2 hold, and let, q) be
a precompact dwell-time solution, with dwell timg > 0,
to the switching syste®)V satisfying Assumption 4.3. Then
there existry,...,rg,... € R such thatz approaches

M = U Mq(rq; D),
qeq

(@)



whereM,(r, 7p) is the largest subset &f,~* (r, )W, *(0) Consider the case of linear vector fields(z) = Aqz,
that is invariant in the following sense: for each, € quadraticV(z) = 2" Py, Wy(z) = " CI Cyx. A very
M,(rq,7p) there exists a solutiorf to ¢ = f,(x) on similar case was treated by [7, Theorem 8]. [7, Theorem
[0,7p/2] such thaté(t) € M,(rq,7p) for all ¢ € [0,7p/2] 8] concludes that every precompact persistent dwell-time
and either(0) = z¢ or £(7p/2) = xo. solution (z,q) to SW is such thatz converges toL, the

If, given a continuously differentiable : O — R”, and a small_est subspace that i§;-invariant for eachy ¢ Q and
continuousiV : O — Rxo, we have thal/, = V, W, = W contains the unc_)bservable subspa_ces of all the pa;;sc_q). .
for all ¢ € Q, the conclusion of Corollary 4.4 is stronger thanCorollary 4.6 gives a more precise statement, taking into
that of Theorem 1 in [1]. One of the reasons is due to [1§ccount the period of persistengy The setM of Corollary
not taking advantage of the invariant set to which solution&-4 iS the union of unobservable subspaces of all the pairs
converge being a subset of some level set (and not just(dq: Cq)- While Fr(M, M) C L, the setFr(M, M) is a
sublevel set) ofi/. Further strengthening of this result will Strict subset ofZ. (and not a subspace) for eagh In fact,
be carried out in Theorem 5.2 and Corollary 5.3. Fr(M, M) is a subset of a neighborhood 8f, the radius
of which depends off" and on the matriced,.

Further improvement in Corollary 4.6 can be made by
noting that one can repladd in that corollary byM’, with
[—2) — @9 M’ being the union of only those sefd,«(r4-,7p) from

] ’ Corollary 4.4 for whichg* is attained by the variable for
at leastrp units of time, infinitely many times.

—T1 — T .

[ lxl 2} if 23 <0 3) Observability and stabilityWe will say that a pair of

f(z) = . functions(f, W) is observable if, for each < b, the only
[ 2} if 1 >0 solutionz : [a,b] — R™ to & = f(z) with W (z(¢)) = 0 for

all t € [a,b] is z(t) = 0 for all ¢ € [a, b].
where x = [z x5]7 € R2% Let Q = {1,2}. With the Assumption 4.7: For eachqg € Q, (f,, W,) is observable.

i i — 2 2 — 2
quadratic funct|ori[2/(_:v) = i + a3, We getiy (z) = —2a7 This assumption implies, in particular, that the sets
and Wy (z) = =27 if 1 <0 andWs(z) = 0if 21 > 0. M,(r,7p) in Corollary 4.4 all equa0}.
[1, Theorem 1] establishes that bounded solutions to the )
switching system starting from® € R? converge toS := Corollary 4.8: Let Assumptions 4.2, 4.7 hold. Then, every

Example 4.5: Consider the switching system in [1, Ex-
ample 5] given by

filz) = .
1

Z1

{zreR? |2 >0} {xeR? ‘ V(z) < V(2)} since precompact dwel_l-time solutiorz, ¢) to SW satisfy.in.g
Assumption 4.3 is such that converges to the origin.
w;h0) = {z eER? |z =0}, If furthermore, for eachg € @, f, is locally Lipschitz
Wy l0) = {x ER? |1 > O} continuous andf,(0) = 0, then every precompact persistent
2 - - 9

dwell-time solution(z, ¢) to SW satisfying Assumption 4.3
and the largest invariant set inJ,., W, '(0) n is such thatz converges to the origin.
{z eR? | V(z) <V(2%)} = S is the setS itself. A function v : R>g — Rsq is in classk,, if (0) = 0
For eachq € {1,2}, the only invariant set i/ ~!(r) N and~ is continuous, strictly increasing, and unbounded.

—1 ; ; _
W, (0) (in the sense of Corollary 4.4) is for= 0. Hence Assumption 4.9: There exist clas#., functionsa, 3 :

M,=0forqe {1,2} and quollary 4.4 im_plie_s that VerY p_, — R such thata(|z]) < V,(z) < B(|z|) for each
precompact dwell-time solution to the switching system % cQ, alzeo.

such that thee component converges to the origin. A

. . _ The following result is immediate; see [2, Theorem 2.3].
In addition to the improvement due to using a level set

of V in Corollary 4.4, the invariance properties requested in Lemma 4.10: Under Assumptions 4.2, 4.9 there exists a
Corollary 4.4 are stronger than those in [1, Theorem 1]. ClassKoo function y : R>q — Rxo such that, for any
2) Invariance principle for persistent dwell-time soluti  SOlution (z, ) to SWV satisfying Assumption 4.3z(t)| <
to SW: Given fi,..., f,... asin Assumption 4.2, lef : 7(|z(0)]). In particular, for anys > 0 there existss > 0
O = R" be the set-valued map given by (5). Given setsuch Fhat every solutl(_)(r_c,q) to SW satisfying Assumption
S1,S» C R”, let Fr(Sy,S2) be the set of all points that 4.3 with|z(0)| < ¢ satisfies|z(t)| < e for all t € R>o.
can be expressed gs$t) where¢ : [0,7'] — O, with some In particular, Assumption 4.9 implies that all solutions to
T’ € [0,T), is a solution tof € F(£) such thatt(0) € S; SW are bounded. Furthermore, it guarantees stability,of
and¢(T’) € So. Note that considering@” = 0 suggests that and hence quite weak conditions are sufficient for solutions
S C Fr(S,S) for any setS C R™. (z,q) to SW to be such that — 0. In particular, we have
Corollary 4.6: Under Assumption 4.2, lefz,q) be a the following result, that parallels [8, Theorem_ 7], andoals
precompact persistent dwell-time solutiongV, with dwell [7» Theorem 4] that was given for the case of linear systems
time 7p > 0 and period of persistenc§’ > 0, satisfying 2and quadratic Lyapunov functions.
Assumption 4.3. Then, there exist...,r,,.. € R such Corollary 4.11: Let Assumptions 4.2, 4.7, and 4.9 hold.
that « approachesFr (M, M), with M as in Corollary 4.4. Then any weak dwell time solutidn, ¢) to SW satisfying



Assumption 4.3 is bounded and any such complete solutionConvergence to the origin can be shown using Corol-

is such thatz converges to the origin.

lary 4.4. Let us apply Corollary 5.3 instead. It is more samil

to [1, Theorem 1], as it does not use a level setipfin

V. HYBRID INVARIANCE PRINCIPLE USING A MEAGRE
FUNCTION, AND CONSEQUENCES

the characterization of the invariant set. The basic difiee
between [1, Theorem 1] and Corollary 5.3 is the notion of

We now improve one of our results, Corollary 4.4, byinvariance. X ,
relying on an invariance principle for hybrid systems from We have U,co W, '(0) = {z€R* [21 =0}. Any
[16], [17] that does not involve a nondecreasing LyapunoRoint 2o # 0 in this set is in W, '(0) but not in

function, but rather, an appropriately fast vanishing atitp W5 '(0). Now, the fact that no subset of’;'(0)

We will rely on the following version of Assumption 4.3 {z € R? | 1 = 0} except{0} is invariant undetf; implies

which is appropriate for solutions to hybrid systems.

Assumption 5.1: The  hybrid arc (z,q), with
dom(z,q) = Uj_qlt;,tj41] x {j} whereJ € NU {oc}, is

J« < j* such thatq(t,j.) = ¢* for all t € [t;,,t;,41]
and q(t,j*) = ¢ for all ¢t € [tj«,tj-41],
Ve (2(t. 1)) = Vor (2(t5+)).
Now, [16, Corollaries 5.4, 5.6] yield the following result:
Theorem 5.2: Let Assumption 4.2 hold. Lét, ¢, 7) be a

precompact solution t@<,, in (4) such that(z, q) satisfies
Assumption 5.1. Then approaches the largest subsit of

PEQ

(1]
(2]

(3]

that is invariant in the following sense: for eaahy € N
there existp;,p2 € Q such thatzy € W' (0) U W,,*(0),
ti1,t9 > 0 with t1 + 15 > 7p, a SO|Uti0n§1 : [—tl,O] —
W H0) NN to & = fp, (&) such thaté;(0) = o, and a
solution & : [0,2] — W1 (0) NN 10 & = fp, (&) such
that 62(0) = 9.

Corollary 5.3: Let Assumption 4.2 hold. Lé€tr, q) be a
precompact dwell-time solution ®)V that satisfies Assump-
tion 4.3. Then the conclusions of Theorem 5.2 hold. (8]

When compared to [1, Theorem 2], Corollary 5.3 gives
stronger invariance conditions on the set to whichmust
converge. In [1], it is only required that there exist eitlaer
forward or a backward solution (i.e., eithér or &) while
here, Theorem 5.2 calls for the existence of both a forward”!
and a backward solution.

Example 5.4: Consider the switching system in [1, Ex-
ample 4] given by

hw =[] R = [0

T —x2

(4]
(5]
(6]

(7]

[9

[11]
[12]

(23]

wherez = [z z2]7 € R?. Let Q := {1,2}. Following [1, ¥

Example 4], withV (z) = 2} + 23 we getW;(z) = —227
andWs(z) = =V (). Then

[15]

Wit 0)={zeR? |21 =0}, W, '(0)=/{0}, 6]

and the largest invariant set ib), ., W, (0) is equal

to {x € R? | 21 =0}. Then, via [1, Theorem 1], every [17]
solution starting fromz® converges tdz € R? | z; =0}N

{z €eR? | V(z) <V (2°)}, which corresponds to a seg-
ment on thers-axis centered at the origin.

that the subsetv of J,.q W, *(0), invariant in the sense
of Theorem 5.2, is exactly0}. Hence, all solutions of the
system under discussion haveconverging to{0}.

such that, for eacly* € Q, for any two consecutive numbers The example above shows that one way to obtain stronger
results from invariance principles is by considering imvar

one has ance notions that involve both forward and backward invari-
ance. This is, of course, the case in simpler settings.

A
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