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Abstract— Invariance principles for hybrid systems are used
to derive invariance principles for nonlinear switching systems
with multiple Lyapunov-like functions. Dwell-time, persistent
dwell-time, and weak dwell-time solutions are considered.
Asymptotic stability results are deduced under observability as-
sumptions or common bounds on the Lyapunov-like functions.

I. I NTRODUCTION

A. Background

Switching systems are dynamical systems governed by
a differential equation whose right hand side is selected
from a given family of functions, based on some (time or
state dependent) switching rule. Stability theory of switching
systems has been an active area of research over the last
fifteen years. Sufficient conditions for stability were given in
[15], [14], [10], [2], [9], [4], [11]. Stability under particular
classes of switching signals were studied in [11], [7], [8],
[1]. For much more background, see [12], [11], [7].

In this paper, we focus on invariance principles for switch-
ing systems under certain classes of signals: dwell-time,
weak dwell-time, and persistent dwell-time signals. Early
work on this topic includes [7], [8], [1]. Related work
on invariance principles for hybrid systems — dynamical
systems where solutions can evolve continuously (flow) and
discontinuously (jump) — includes [13], [3], [16]. In [16]
(with the results announced in [17]), invariance principles
were shown for general hybrid systems in the framework of
[6], which allows for nonuniqueness of solutions, multiple
jumps at time instants, and Zeno behaviors, while only
posing mild regularity conditions on the data.

B. Contribution

We show how some of the results of [16] can be used
to obtain invariance principles for switching systems. While
doing that, we recover, generalize, and/or strengthen some
of the results of [7], [8], [1]. In particular:

• Corollary 5.3 strengthens [1, Theorems 1, 2] by includ-
ing both forward and backward invariance conditions
on the set to which solutions converge. Corollary 4.4,
while giving the same invariance conditions as [1], also
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incorporates level sets of Lyapunov functions into the
description of the invariant set.

• Corollary 4.6 is an invariance principle for nonlinear
switching systems that generalizes [7, Theorem 8] stated
for linear switching systems. Even in the linear setting,
Corollary 4.6 yields smaller, in comparison to [7, The-
orem 8], sets to which solutions converge.

• [8, Theorem 7] is derived, in Corollary 4.11, from the
hybrid invariance principle in Theorem 4.1.

Invariance principles in [16], [17], are only used to prove
Theorems 4.1 and 5.2. The consequences of these theorems
for switching systems can be then derived in a self-contained
way, by using two techniques that should prove useful for
purposes other than those in this paper:

• Given a solution to a switching system, and a sequence
of time intervals of length at leastτD on which the
logical mode takes on a particular valueq∗, one can
identify the restriction of the solution to those intervals
with a function on[0,∞). The resulting object is not
a solution to a switching system, as the continuous
variable of the original switching system may now be
only piecewise continuous. However, it is a solution to
an appropriately formulated hybrid system (truly hybrid
system, in which both the “continuous” variable and the
logical mode jump). To this hybrid system, invariance
principles of [16], [17] can be applied, with implications
for the original switching system. This technique is used
to obtain Corollaries 4.4, 4.6.

• In the case of multiple Lyapunov functions, i.e., when
in logical modeq, a functionVq is decreasing at a rate
Wq, it is often assumed that the value ofVq∗ at the end
of an interval with modeq∗ is greater or equal than
the value ofVq∗ at the beginning of the next interval
with mode q∗. Hence, the function(x, q) 7→ Vq(x)
can not be used in the standard Lyapunov sense: it
can increase during switches between different logical
modes. However, it can be shown that for each bounded
solution (x, q) to the switching system, the function
(x, q) 7→ Wq(x) is integrable. (A similar technique
was used in [8, Theorem 7].) This paves way to the
application of invariance principles of [16], [17] that
rely on an output function that decreases sufficiently
fast to0. Theorem 5.2 is used via this technique.

In presenting the results, we clearly separate the statements
only about invariance of sets to which bounded solutions
of switched systems converge (Corollaries 4.4, 4.6, and
5.3) from stronger statements about asymptotic stability that



rely on additional information like observability or common
bounds on Lyapunov functions (Corollaries 4.8, 4.11).

II. PRELIMINARIES

A. Switching systems

Let O ⊂ R
n be an open set, letQ = {1, 2, . . . , qmax}, and

for eachq ∈ Q, let fq : O → R
n be a continuous function.

We consider switching systems given by

SW : ẋ = fq(x). (1)

For more background on switching systems, see [11] or [7].
A completesolution to the switching systemSW consists

of a locally absolutely continuous functionx : [0,∞) → O
and a functionq : [0,∞) → Q that is piecewise constant and
has a finite number of discontinuities in each compact time
interval, andẋ(t) = fq(t)(x(t)) for almost allt ∈ [0,∞). We
will say that a complete solution(x, q) to SW is precompact
if x is bounded with respect toO, that is, there exists a
compact setK ⊂ O such thatx(t) ∈ K for all t ∈ [0,∞).

Let (x, q) be a complete solution toSW and lett0 = 0,
and t1, t2, . . . be the consecutive (positive) times at which
q is discontinuous (We assume that there is indeed infinitely
many such times, as otherwise, the system is not a switching
system for the purposes of asymptotic analysis.) Informally,
ti is the time of thei-th switch. The solution(x, q) is a
dwell-time solutionwith dwell time τD > 0 if ti+1 − ti ≥
τD for i = 0, 1, . . . . (That is, jumps are separated by at
leastτD amount of time.) The solution(x, q) is a persistent
dwell-time solutionwith persistent dwell timeτD > 0 and
period of persistenceT > 0 if there exists a subsequence
0 = ti0 , ti1 , ti2 , . . . of the sequence{ti} such thattik+1 −
tik

≥ τD for k = 1, 2, . . . and tik+1
− tik+1 ≤ T for k =

0, 1, . . . . (That is, at mostT amount of time passes between
two consecutive intervals of length at leastτD on which there
is no jumps.) Finally, a solution(x, q) is a weak dwell-time
solutionwith dwell timeτD > 0 if there exists a subsequence
0 = ti0 , ti1 , ti2 , . . . of the sequence{ti} such thattik+1 −
tik

≥ τD for k = 1, 2, . . . . (That is, there are infinitely many
intervals of lengthτD with no switching.) These classes of
solutions follow the definitions in [7], see also [9].

B. Hybrid systems

We consider hybrid systems of the form

H :

{

ẋ ∈ F (x) x ∈ C,

x+ ∈ G(x) x ∈ D,
(2)

with an associated state spaceO ⊂ R
m. Above,F (respec-

tively, G) is the possibly set-valued map describing the flow,
(respectively, the jumps) whileC (respectively,D) is the set
on which the flow can occur (respectively, from which the
jumps can occur). For more background on hybrid systems
in this framework, see [5] or [6].

A subsetE ⊂ R≥0 × N is a hybrid time domainif it is a
union of intervals[tj , tj+1]×{j}, for some finite or infinite
sequence of times0 = t0 ≤ t1 ≤ t2 ... ≤ tJ , with the
“last” interval possibly of the form[tJ , T ) with T finite or
T = ∞. A hybrid arc is a function whose domain is a hybrid

time domain (for a hybrid arcx, its domain will be denoted
domx) and such that for eachj ∈ N, t → x(t, j) is locally
absolutely continuous ondomx ∩ ([0,∞) × {j}).

A hybrid arc x is a solution to the hybrid systemH if
x(0, 0) ∈ C ∪ D, x(t, j) ∈ O for all (t, j) ∈ domx, and

(S1) for all j ∈ N such that Ij × {j} := domx ∩
([0,∞) × {j}) is nonempty,x(·, j) is locally absolutely
continuous int on Ij and, for almost allt ∈ Ij ,

x(t, j) ∈ C, ẋ(t, j) ∈ F (x(t, j));

(S2) for all (t, j) ∈ domx such that(t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)).

Results on structural properties of solutions toH, like (ap-
propriately understood) sequential compactness of the space
of solutions and outer/upper semicontinuous dependence of
solutions on initial conditions, were obtained in [6]. These
results made possible the general invariance principles of
[16], [17]. The assumptions on the data(O, F, G, C, D) of
H that enabled the results of [6], [16], [17] are as follows:

(A0) O is open;
(A1) C andD are relatively closed subsets ofO;
(A2) F : O →→ R

m is outer semicontinuous and locally
bounded, andF (x) is nonempty and convex for all
x ∈ C;

(A3) G : O →→ R
m is outer semicontinuous, andG(x) is

nonempty and such thatG(x) ⊂ O for all x ∈ D.

(The set-valued mapF : O →→ R
n is outer semicontinuous

if for every convergent sequence ofxi’s with limxi ∈ O,
and every convergent sequence ofyi ∈ F (xi), lim yi ∈
F (limxi). F is locally boundedif for every compactK ⊂ O
there exists a compactK ′ ⊂ R

n such thatF (K) ⊂ K ′.
Similarly for G.) Let us say that all hybrid systems we write
down in this paper do satisfy the assumptions just stated.

III. SWITCHING SYSTEMS AS HYBRID SYSTEMS

Given a switching systemSW as presented in Section
II-A, consider the hybrid system

HSW :

{

ẋ = fq(x) x ∈ O, q ∈ Q

q+ ∈ Q x ∈ O, q ∈ Q
(3)

with the variable(x, q) ∈ R
n+1. (Not mentioningq̇ in the

description of flow orx+ in the description of jumps means
thatq remains constant during flow whilex does not change
during jumps.) To view the system (3) as a special case of
(2), one can take the state space to beO = O×R, the flow set
C = O×Q, the flow mapF (x, q) = (fq(x), 0) if (x, q) ∈ C
and F (x, q) = ∅ otherwise; the jump setD = O × Q; and
the (set-valued!) jump mapG(x, q) = (x, Q) for (x, q) ∈ D
and G(x, q) = ∅ otherwise. With such data, the conditions
(A0)-(A3) are satisfied.

To every solution toSW there corresponds a solution
to the hybrid system. Indeed, ift0 = 0 and t1, t2, . . .
are the times at whichq is discontinuous, one can easily
build a solution toHSW on a hybrid time domainE =
⋃J

j=0([tj , tj+1]×{j}) that corresponds to(x, q). Of course,



there are solutions toHSW that do not correspond to any
solution toSW , for exampleHSW has solutions that only
jump (instantaneous Zeno solutions). WhileHSW satisfies
(A0)-(A3), using invariance principles applied toHSW to
deduce convergence of, say, dwell-time solutions to it (and
behavior of these reflects the behavior of dwell time solutions
to SW) may lead to invariant sets whose invariance is
verified by the said Zeno solutions. This does not lead
to useful conclusions for the underlying switching system.
Thus, better hybrid representations ofSW under dwell time
and other classes of switching signals are needed.

To each dwell-time solution(x, q), with dwell timeτD >
0, to SW there corresponds a solution(x, q, τ) to the
following hybrid system:

HτD

{

ẋ = fq(x), τ̇ ∈ κτD
(τ) τ ∈ [0, τD]

q+ ∈ Q, τ+ = 0 τ = τD .
(4)

Above,κτD
: R →→ R is the (set-valued) map given by

κτD
(τ) =







1 if τ < τD

[0, 1] if τ = τD

0 if τ > τD

.

Solutions toτ̇ ∈ κτD
(τ) increase at the rate1 whenτ < τD

and remain constant otherwise. The mapκτD
is such that the

variableτ remains bounded (byτD) regardless of the length
of the flow intervals.

In the opposite direction, some solutions to (4) may flow
before the first jump for less thanτD amount of time, but
those that haveτ(0, 0) = 0 do correspond directly to dwell
time solutions, with dwell timeτD, to SW .

Let F : O →→ R
n be the set valued map defined by

F (x) = con
⋃

q∈Q

fq(x) , (5)

whereconS stands for the closed convex hull of the setS.
To each persistent dwell-time solution(x, q) to SW , with
dwell time τD > 0 and period of persistenceT > 0, there
corresponds a solution(x, q, τ1, τ2) to the following system:

HτD,T



































ẋ = fq(x), τ̇1 ∈ κτD
(τ1) q ∈ Q, τ1 ∈ [0, τD]

ẋ ∈ F (x), τ̇2 = 1 q = 0, τ2 ∈ [0, T ]

q+ ∈ Q ∪ {0},
τ+
1 = 0, τ+

2 = 0

}

q ∈ Q, τ1 = τD

q+ ∈ Q,
τ+
1 = 0, τ+

2 = 0

}

q = 0, τ2 ∈ [0, T ] .

In other words, solutionsx to ẋ = fq(x) under arbitrary
switching signalsq are solutions to the inclusioṅx ∈ F (x).
(In fact, x is a solution to the inclusion, on some bounded
time interval, if and only if it is a uniform limit of some
sequence of solutions generated via switching.)

IV. H YBRID INVARIANCE PRINCIPLE USING A

NONINCREASING FUNCTION, AND CONSEQUENCES

In this section, we present invariance principles to es-
tablish convergence of dwell-time, persistent dwell-time,
and weak dwell-time solutions to switching systems. The

foundation to those will be an invariance principle for hybrid
systems, which comes out of [17], and is based on a
nonincreasing Lyapunov function.

A. A hybrid invariance principle using a nonincreasing
function

The following result follows from [17, Corollary 4.3],
specialized to dwell time solutions along the lines of [17,
Corollary 4.2], or more directly from [16, Corollary 4.4].

Theorem 4.1: Let O ⊂ R
n be open,f : O → R

n be
continuous,K ⊂ O be nonempty and compact,V : O → R

be continuously differentiable,W : O → R≥0 be continuous
and such that∇V (x) · f(x) ≤ −W (x) for all x ∈ O.
Consider a hybrid system

H1 :

{

ẋ = f(x), τ̇ ∈ κτD
(τ) τ ∈ [0, τD],

x+ ∈ K, τ+ = 0 τ = τD,
(6)

on the state spaceO×R. Let (x, τ) : dom(x, τ) → O×R≥0

be a complete solution toH1 such thatx(t, j) ∈ K for all
(t, j) ∈ domx and such thatV (x(t, j+1)) ≤ V (x(t, j)) for
all (t, j) ∈ domx such that(t, j + 1) ∈ domx. Then, for
some constantr ∈ R, x approaches the largest subsetM of

V −1(r) ∩ K ∩ W−1(0)

that is invariant in the following sense: for eachx0 ∈ M
there exists a solutionξ to ẋ = f(x) on [0, τD/2] such that
ξ(t) ∈ M for all t ∈ [0, τD/2] and eitherξ(0) = x0 or
ξ(τD/2) = x0.

B. Invariance principles for switching systems

We now apply Theorem 4.1 to switching systems. The re-
sults are shown for the case of multiple Lyapunov functions,
under the following assumptions.

Assumption 4.2: O ⊂ R
n is an open set,Q =

{1, 2, . . . , qmax}, and for eachq ∈ Q, fq : O → R
n

is a continuous function,Vq : O → R is a continuously
differentiable function,Wq : O → R≥0 is a continuous
function, and∇Vq(x) · fq(x) ≤ −Wq(x) for all x ∈ O.

Assumption 4.3: The solution(x, q) to SW is such that,
for eachq∗ ∈ Q, for any two consecutive intervals(tj , tj+1),
(tk, tk+1) such thatq(t) = q∗ for all t ∈ (tj , tj+1) and all
t ∈ (tk, tk+1), we haveVq∗(x(tj+1)) ≥ Vq∗(x(tk)).

In short, the value ofVq∗ at the end of an interval on which
q = q∗ is greater or equal to the value ofVq∗ at the beginning
of the next interval on whichq = q∗. This assumption is
usually needed when establishing convergence and stability
results for switching systems, see e.g. [7],[1].

1) Invariance principle for dwell-time solutions toSW :
We begin with an application of Theorem 4.1 to dwell-time
solutions ofSW .

Corollary 4.4: Let Assumption 4.2 hold, and let(x, q) be
a precompact dwell-time solution, with dwell timeτD > 0,
to the switching systemSW satisfying Assumption 4.3. Then
there existr1, . . . , rqmax

∈ R such thatx approaches

M =
⋃

q∈Q

Mq(rq, τD), (7)



whereMq(rq, τD) is the largest subset ofV −1
q (rq)∩W−1

q (0)
that is invariant in the following sense: for eachx0 ∈
Mq(rq , τD) there exists a solutionξ to ẋ = fq(x) on
[0, τD/2] such thatξ(t) ∈ Mq(rq, τD) for all t ∈ [0, τD/2]
and eitherξ(0) = x0 or ξ(τD/2) = x0.

If, given a continuously differentiableV : O → R
n, and a

continuousW : O → R≥0, we have thatVq = V , Wq = W
for all q ∈ Q, the conclusion of Corollary 4.4 is stronger than
that of Theorem 1 in [1]. One of the reasons is due to [1]
not taking advantage of the invariant set to which solutions
converge being a subset of some level set (and not just a
sublevel set) ofV . Further strengthening of this result will
be carried out in Theorem 5.2 and Corollary 5.3.

Example 4.5: Consider the switching system in [1, Ex-
ample 5] given by

f1(x) =

[

−x1 − x2

x1

]

,

f2(x) =















[

−x1 − x2

x1

]

if x1 < 0

[

−x2

x1

]

if x1 ≥ 0

where x = [x1 x2]
T ∈ R

2. Let Q = {1, 2}. With the
quadratic functionV (x) = x2

1 + x2
2, we getW1(x) = −2x2

1

and W2(x) = −2x2
1 if x1 < 0 and W2(x) = 0 if x1 ≥ 0.

[1, Theorem 1] establishes that bounded solutions to the
switching system starting fromx0 ∈ R

2 converge toS :=
{

x ∈ R
2 | x1 ≥ 0

}

∩
{

x ∈ R
2

∣

∣ V (x) ≤ V (x0)
}

since

W−1
1 (0) =

{

x ∈ R
2 | x1 = 0

}

,

W−1
2 (0) =

{

x ∈ R
2 | x1 ≥ 0

}

,

and the largest invariant set in
⋃

q∈Q W−1
q (0) ∩

{

x ∈ R
2

∣

∣ V (x) ≤ V (x0)
}

= S is the setS itself.
For eachq ∈ {1, 2}, the only invariant set inV −1(r) ∩

W−1
q (0) (in the sense of Corollary 4.4) is forr = 0. Hence

Mq = 0 for q ∈ {1, 2} and Corollary 4.4 implies that every
precompact dwell-time solution to the switching system is
such that thex component converges to the origin. △

In addition to the improvement due to using a level set
of V in Corollary 4.4, the invariance properties requested in
Corollary 4.4 are stronger than those in [1, Theorem 1].

2) Invariance principle for persistent dwell-time solutions
to SW : Given f1, . . . , fqmax

as in Assumption 4.2, letF :
O →→ R

n be the set-valued map given by (5). Given sets
S1, S2 ⊂ R

n, let FT (S1, S2) be the set of all points that
can be expressed asξ(t) whereξ : [0, T ′] → O, with some
T ′ ∈ [0, T ], is a solution toξ̇ ∈ F (ξ) such thatξ(0) ∈ S1

andξ(T ′) ∈ S2. Note that consideringT ′ = 0 suggests that
S ⊂ FT (S, S) for any setS ⊂ R

n.

Corollary 4.6: Under Assumption 4.2, let(x, q) be a
precompact persistent dwell-time solution toSW , with dwell
time τD > 0 and period of persistencyT > 0, satisfying
Assumption 4.3. Then, there existr1, . . . , rqmax

∈ R such
that x approachesFT (M, M), with M as in Corollary 4.4.

Consider the case of linear vector fieldsfq(x) = Aqx,
quadraticVq(x) = xT Pqx, Wq(x) = xT CT

q Cqx. A very
similar case was treated by [7, Theorem 8]. [7, Theorem
8] concludes that every precompact persistent dwell-time
solution (x, q) to SW is such thatx converges toL, the
smallest subspace that isAq-invariant for eachq ∈ Q and
contains the unobservable subspaces of all the pairs(Aq, Cq).
Corollary 4.6 gives a more precise statement, taking into
account the period of persistencyT . The setM of Corollary
4.4 is the union of unobservable subspaces of all the pairs
(Aq, Cq). While FT (M, M) ⊂ L, the setFT (M, M) is a
strict subset ofL (and not a subspace) for eachT . In fact,
FT (M, M) is a subset of a neighborhood ofM , the radius
of which depends onT and on the matricesAq.

Further improvement in Corollary 4.6 can be made by
noting that one can replaceM in that corollary byM ′, with
M ′ being the union of only those setsMq∗(rq∗ , τD) from
Corollary 4.4 for whichq∗ is attained by the variableq for
at leastτD units of time, infinitely many times.

3) Observability and stability:We will say that a pair of
functions(f, W ) is observable if, for eacha < b, the only
solutionx : [a, b] → R

n to ẋ = f(x) with W (x(t)) = 0 for
all t ∈ [a, b] is x(t) = 0 for all t ∈ [a, b].

Assumption 4.7: For eachq ∈ Q, (fq, Wq) is observable.

This assumption implies, in particular, that the sets
Mq(r, τD) in Corollary 4.4 all equal{0}.

Corollary 4.8: Let Assumptions 4.2, 4.7 hold. Then, every
precompact dwell-time solution(x, q) to SW satisfying
Assumption 4.3 is such thatx converges to the origin.
If furthermore, for eachq ∈ Q, fq is locally Lipschitz
continuous andfq(0) = 0, then every precompact persistent
dwell-time solution(x, q) to SW satisfying Assumption 4.3
is such thatx converges to the origin.

A function γ : R≥0 → R≥0 is in class-K∞ if γ(0) = 0
andγ is continuous, strictly increasing, and unbounded.

Assumption 4.9: There exist class-K∞ functionsα, β :
R≥0 → R≥0 such thatα(|x|) ≤ Vq(x) ≤ β(|x|) for each
q ∈ Q, all x ∈ O.

The following result is immediate; see [2, Theorem 2.3].

Lemma 4.10: Under Assumptions 4.2, 4.9 there exists a
class-K∞ function γ : R≥0 → R≥0 such that, for any
solution (x, q) to SW satisfying Assumption 4.3,|x(t)| ≤
γ(|x(0)|). In particular, for any ε > 0 there existsδ > 0
such that every solution(x, q) to SW satisfying Assumption
4.3 with |x(0)| ≤ δ satisfies|x(t)| ≤ ε for all t ∈ R≥0.

In particular, Assumption 4.9 implies that all solutions to
SW are bounded. Furthermore, it guarantees stability of0,
and hence quite weak conditions are sufficient for solutions
(x, q) to SW to be such thatx → 0. In particular, we have
the following result, that parallels [8, Theorem 7], and also
[7, Theorem 4] that was given for the case of linear systems
and quadratic Lyapunov functions.

Corollary 4.11: Let Assumptions 4.2, 4.7, and 4.9 hold.
Then any weak dwell time solution(x, q) to SW satisfying



Assumption 4.3 is bounded and any such complete solution
is such thatx converges to the origin.

V. HYBRID INVARIANCE PRINCIPLE USING A MEAGRE

FUNCTION, AND CONSEQUENCES

We now improve one of our results, Corollary 4.4, by
relying on an invariance principle for hybrid systems from
[16], [17] that does not involve a nondecreasing Lyapunov
function, but rather, an appropriately fast vanishing output.
We will rely on the following version of Assumption 4.3
which is appropriate for solutions to hybrid systems.

Assumption 5.1: The hybrid arc (x, q), with
dom(x, q) =

⋃J

j=0[tj , tj+1] × {j} whereJ ∈ N ∪ {∞}, is
such that, for eachq∗ ∈ Q, for any two consecutive numbers
j∗ < j∗ such thatq(t, j∗) = q∗ for all t ∈ [tj∗ , tj∗+1]
and q(t, j∗) = q∗ for all t ∈ [tj∗ , tj∗+1], one has
Vq∗(x(tj∗+1)) ≥ Vq∗(x(tj∗ )).

Now, [16, Corollaries 5.4, 5.6] yield the following result:

Theorem 5.2: Let Assumption 4.2 hold. Let(x, q, τ) be a
precompact solution toHτD

in (4) such that(x, q) satisfies
Assumption 5.1. Thenx approaches the largest subsetN of

⋃

p∈Q

W−1
p (0)

that is invariant in the following sense: for eachx0 ∈ N
there existp1, p2 ∈ Q such thatx0 ∈ W−1

p1
(0) ∪ W−1

p2
(0),

t1, t2 > 0 with t1 + t2 ≥ τD, a solutionξ1 : [−t1, 0] →
W−1

p1
(0) ∩ N to ξ̇1 = fp1

(ξ1) such thatξ1(0) = x0, and a
solution ξ2 : [0, t2] → W−1

p2
(0) ∩ N to ξ̇2 = fp2

(ξ2) such
that ξ2(0) = x0.

Corollary 5.3: Let Assumption 4.2 hold. Let(x, q) be a
precompact dwell-time solution toSW that satisfies Assump-
tion 4.3. Then the conclusions of Theorem 5.2 hold.

When compared to [1, Theorem 2], Corollary 5.3 gives
stronger invariance conditions on the set to whichx must
converge. In [1], it is only required that there exist eithera
forward or a backward solution (i.e., eitherξ1 or ξ2) while
here, Theorem 5.2 calls for the existence of both a forward
and a backward solution.

Example 5.4: Consider the switching system in [1, Ex-
ample 4] given by

f1(x) =

[

−x1 − x2

x1

]

, f2(x) =

[

−x1

−x2

]

wherex = [x1 x2]
T ∈ R

2. Let Q := {1, 2}. Following [1,
Example 4], withV (x) = x2

1 + x2
2 we getW1(x) = −2x2

1

andW2(x) = −V (x). Then

W−1
1 (0) =

{

x ∈ R
2 | x1 = 0

}

, W−1
2 (0) = {0},

and the largest invariant set in
⋃

q∈Q W−1
q (0) is equal

to
{

x ∈ R
2 | x1 = 0

}

. Then, via [1, Theorem 1], every
solution starting fromx0 converges to

{

x ∈ R
2 | x1 = 0

}

∩
{

x ∈ R
2

∣

∣ V (x) ≤ V (x0)
}

, which corresponds to a seg-
ment on thex2-axis centered at the origin.

Convergence to the origin can be shown using Corol-
lary 4.4. Let us apply Corollary 5.3 instead. It is more similar
to [1, Theorem 1], as it does not use a level set ofVq in
the characterization of the invariant set. The basic difference
between [1, Theorem 1] and Corollary 5.3 is the notion of
invariance.

We have
⋃

p∈Q W−1
p (0) =

{

x ∈ R
2 | x1 = 0

}

. Any
point x0 6= 0 in this set is in W−1

1 (0) but not in
W−1

2 (0). Now, the fact that no subset ofW−1
1 (0) =

{

x ∈ R
2 | x1 = 0

}

except{0} is invariant underf1 implies
that the subsetN of

⋃

p∈Q W−1
p (0), invariant in the sense

of Theorem 5.2, is exactly{0}. Hence, all solutions of the
system under discussion havex converging to{0}. △

The example above shows that one way to obtain stronger
results from invariance principles is by considering invari-
ance notions that involve both forward and backward invari-
ance. This is, of course, the case in simpler settings.
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