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Abstract— Combining local state-feedback laws and open- |l. ROBUST GLOBAL STABILIZATION OF THE PENDUBOT
loop schedules, we design a hybrid control algorithm for roloist
global stabilization of the pendubot to the upright configuration
( both links straight up with zero velocity). Our hybrid

controller performs the swing-up task robustly by executirg a . . .
decision-making algorithm designed to work under the presece The pendubot is an underactuated mechatronic device fre-

of perturbations. The hybrid control algorithm features logic ~ duently used for research in nonlinear control and robotics
variables, timers, and hysteresis. We explicitly design #a As shown in Figure 1, it consists of a two-link planar
control strategy and implement it in a real pendubot system robot arm (two coupled pendulums) with only one torque
using Matlab/Simulink with Real-time Workshop. Experimental  5ctyator at the first link. The pendubot is equipped with two
results show the main capabilities of our hybrid controller. optical sensors that measure angles at the shoulder and elbo
joints. Each joint can fully rotat@60 degrees without any
|. INTRODUCTION constraints on their motion. The pendubot has a total of four

Followi he hvbrid | in 5] f b equilibrium points defined by the position of the inner and
| g)lowmg_l_t e ny ”f COT.UO strategy in [5] é)r robust o jter links: fully resting, resting and upright, uprightdan
global stabilization of nonlinear systems, we design anpesting, and fully upright.

implement in hardware a hybrid control strategy that swings
the pendubot to the upright position in a robust, globally
asymptotic manner, where both links have zero velocity. The
control strategy combines the following local feedbaclksta
lizers and open-loop control signal to steer the trajeetooif
the pendubot to the desired equilibrium point. By lineantgi
the system at the upright and resting equilibrium points
(A, and A,, respectively), we construct local stabilizers
for points in these neighborhoods. More specifically, we
construct an open-loop control signal to take the state to
a neighborhood of4, from a neighborhood of4,, and
two different open-loop controllers to take the state to a
nelghborhqoq OFA, from .a nelgh.borhood of around the two Fig. 1. The pendubot system: a two-link pendulum with torque aictoat
other equilibrium @, with the first link up and the second i, e irst link.
link down, andA,.,,, with the first link down and the second
link up). These control laws are combined with a “bootstrap”
feedback controller, which is designed to steer the state to Through use of Euler-Lagrange equations, we characterize
a neighborhood of the union od,, A,, A.,, andA,,, to the pendubot system as a vector of joint anglés,and
globally swing up the pendubot to the poidt,. Our hybrid a vector of their corresponding angular velocities, We
controller includes decision-making and hysteresis festu define ¢ := [¢; ¢2]T € R2 and ¢ := [b1 ¢]T € R2. As
that confer a margin of robustness to exogenous signals. shown in [2] these state vectors also serve to charactérize t
The paper is organized as follows. In Section Il, we presematrices employed by the Euler-Lagrange equation: inertia
a model for the pendubot system and our control strateggentrifugal Coriolis, derivative of potential energy, avid-
In Section 1, we describe the hybrid controller design andous friction N(¢), O(¢, ¢), P(¢), andQ(¢) respectively).
implementation that is used to globally stabilize the pdrmdu Together, these functions define the equation of motion for
to the upright equilibrium. In Section IV, we describe thetorque,
tools and hardware used to conduct the experiment, and

present the experimental results. R(p,$) = N(¢)d + O(¢, d)d + P(¢) + Q(¢), 1)

A. System Dynamics
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The respected matrices and vectors are given by: !

N(g) = :01 45291;32303;;; b2 92+9932cos ¢2] !
P = [ e
aw =[]

R(¢,0) = g] : Fig. 2. Equilibrium configurations of the pendubot.

u is defined as the input torque to the system. The seven

parameters (denoted és- - - §;) that defineN(¢), O(¢,#), particular, closed-loop solutions resulting from thesatst
P(4), Q(¢), andR(¢, ¢), relate to the physical properties gies starting from either of the unstable equilibrium psint
of the pendubot wheren, o, 112, a1, and I, » identify A, Ar, Stay there for all time.

the mass, length, center of mass, and moment of inertiaThe hybrid control algorithm for nonlinear systems in [5],
of the inner (link 1) and outer (link 2) linksF,, , defines referred to ashrow-and-catch contrglhas been proposed
the viscous friction coefficients of the shoulder (joint hida to robustly globally stabilize nonlinear systems to contpac
elbow (joint 2) joints. sets. As outlined in [5, Section II.A], this strategy soltks
problem of swinging up the pendubot t4, globally and

_ 2 2
01 = may+maly + 4 robustly. We review this control strategy below.
0o = mias+ 1> Given
03 = malias « a local state-feedback stabilizing controller for the
0, = mias +maly resting equilibrium pointA,.,
s = moas « a local state-feedback stabilizing controlleg for the
7 upright equilibrium pointA4,,,
06 = Fy « an open-loop controllet,., ., to transition fromA,.,
97 - F'UQ . to .Ar,
The general form of the state equations is thereby derived as® z)njpen—loop controlles,,—. to transition fromA,,
. T
1 = ¢1 « an open-loop controllet,._,,, to transition fromA,. to
1:2 :fl(xvu) Au’
x = f(x,u) = ds = ¢ : 3) « abootstrap controllet,. to remove energy quickly from
A the system, and
Ty = fa(x,u) « a reset controller, to recalibrate joint angles,

X = [¢1 b1 bo %}T € R* and f(x,u) : R* x R — execute the following algorithm:
R* is a nonlinear, locally Lipschitz function that define the 1) When the pendubot state is nedr, or A, apply

dynamics of the pendubot. Qur—r OF apyrr, respectively, to steer the trajectories
The equilibrium points of the pendubot system are given  toward A,.
by 2) When the pendubot state is nedy apply . to steer
« Upright (4,): ¢1 = 0, ¢1 = 0, b2 = 0, by = 0: the trajectories toA, . _
. Rgst?ng ((4T)): ¢11 - 1(51 —0, 2,2 —0, 2@ -0 3) When the pendubot state is ne§rapplya,._.,, to steer
« Upright/Resting A..,): ¢1 = 0, él =0, ¢o =, ¢2 _ the trajectories towardgl,, . _
0; 4) When the pendubot state is near, apply x, to
« Resting/Upright @,.): ¢1 = —m, 1 = 0, o = , stabilize the pendubot in the upright position.
by = 0. 5) For any other point inR*, apply x. to steer the

trajectories toward,..
6) When the pendubot does not readh for more then
B. Hybrid Control Strategy Treset S€CONAS, applyg for 75 Seconds to recali-

Several control strategies such as energy pumping [3], DPrate the link angles.
trajectory tracking [4], and jerk control [1] have been use The transitions between equilibrium points in 1) and 2)
to stabilize the pendubot system to the upright positiomwitis called throw mode, and the local stabilization in 3) and
zero velocity. These strategies, however, do not guarantégis calledcatchmode. The sets where throws neathy,.,
swing up to A, for every initial conditonx € R* In A,,, or A, are started are denoted 8, _.,, Syu_r, OF

These are depicted in Figure 2.



Sr—u, respectively. The sets where throws neary and pendubot were recorded and loaded into a Matlab M-
A, are finished are denoted lyy, and Ly, , respectively. file where the identification algorithm was executed. This
The decision made in 5) and 6) corresponedsitoverymode.  identification algorithm used equation £4dnd MATLAB’s
Figure 3 shows the combination of these tasks to accomplislsqnonneg() function (a linear least squares function with

global stabilization to the poin#,, of the pendubot. nonnegativity constraints) to solve for a set of parameter
valuesd. The system identification algorithm was iterated
A ¢ 32 times to obtain a proper set of parameter values. The
A, ; .
T ’ . average values resulting from the runs are:
e(x) _5._—>4|}—fE y X
\ Sg #1 g 6, = 0.0271,60, = 0.0091, 65 = 0.0072, 60, = 0.1817,
e X I\ "\ 65 = 0.0640, 65 = 0.0034, 6 = 0.0014.
h;) Lw, A The derived parameter set is consistent with a similar pub-
/ N lished pendubot model [2], and proves to be an appropriate
representation of the system based on experimental tests.
® ) NEru—u
A 35 S A B. Local State Feedback Control
Sru N L, The local state feedback controllers,.(and x,) are

designed to steer the system from points in a defined basin of

Fig. 3. Control strategy for robust global stabilization of the plefvot to the ; ; i ilibrius
point A,,. A sample trajectory in the; , ¢2 plane resulting from our control attraction to the the uprlght and resting equmbrl (and

strategy is depicted. From the initial point, the trajectory is steered to <A, r€Spectively) through linearization and pole placement.
the neighborhoodS; .. of A, with kr(x), from which it is “thrown” 1) Design of<,,: The linearized model of the plant around
to the neighborhood;-., .- of A,- with the control lawa,,— . The local A, is given by

stabilizer x,- “catches” the state to a point ir5,-—.., from where the open- “

loop law o, is applied. Finally, after the “throw”, the state reaches a 0 1 0 0 0
point in E;,_,,, and the last “catch” by the local stabilizek,, steers the
trajectory 1o Av. (— |60 <016 =23 014 | 14T g
0 0 0 1 0 ’
-39 0.29 111 —-0.42 —84
IIl. HYBRID CONTROL DESIGN AND IMPLEMENTATION Given k,(x) = —K,x, we solve for the control gain

To control the pendubot’s position to the upright equilibiSing & ZOH discretization of (3) around,, with sam-
rium, a hybrid controller is implemented with logic variebl Pling time 7. A discrete LQR function is used to solve
and logic rules on a digital control board with sampling timgor K, with weighting functionsQ = diag(13 5 5 3)

T, = 0.0005 sec. and R = 1. The resulting control gains ar&, =
- [-7.41,1.90,—-10.02, —1.01]. These control gains place all
A. ldentification of Parameters the poles of the closed-loop system inside the unit cir-

The model parameters, ---6; were determined using cle at locations{0.9139,0.9992,0.9965 + 0.00051}. The
a least squares method of system identification. Téx) controller x,(x) locally asymptotically stabilizesd,,. An
denote both motor torque and friction forcds(x) kinetic estimate of the basin of attraction for this local stabilizas
energy, andU,(x) potential energy (with respect tal,). computed experimentally by trial and error and it was found
Using the energy theorénfor a standard over-determinedthat initial 1W,,(x) lower than0.55 permits the pendubot
matrix equation of the formAx = b, we obtain to locally stabilize A,. A much more conservative value
. . . is used for the sublevel sdty, (c,) = {Wu(x) < Cuts
/ T(x)Tddt = 3 K (x) 0, U, (x) 0. (@) Cu= 0.08, whereW, (x) = K (x) +Uu(x) andU,(x) is the
0 pt 00; P 00; potential energy with respect td,,. Figure 4 characterized
the evolution of the energy from different initial energyéés

where W, (x).
T(x) = R(6, é) + Q(gz'S), (5) 2) D(_esign ofk,: The linearized model of the plant around
A, is given by
1. ' 0 1 0 0 0
K(x)==¢"N 6
() = 3¢ N©@)9, ©®© 60 016 23 o E ©

1o 0 0 1| o|"

Up(x) = Oag(cos (¢1) + 1) + O59(cos (d1 + ¢2) + 1).  (7) 39 029 —111 —0.42 —84

To implement this identification scheme, the pendubot waSiven «,.(x) := -K,x, we solve for the control

driven with an open-loop random signa}, : [0,15 se¢ — gain using a ZOH discretization of (3) aroundl,
[—1,1]. The input, u7q, and outputs,¢; and ¢z, of the with a sampling time7,. A discrete LQR function is

1The energy theorem states that the work applied to a systemuial to 2MATLAB’s trapz() function was used to approximate the integral in
the change of total energy in the system. (4).



20— : : ‘ (11) and plugged back into (10) to get

o / | Ni1v + O11¢1 + Oracho + P + Q1 = u (12)
161 1
/ .
14t / 1 wherev = ¢, and
o 12 / 1 _ NiaNoyy — N1209;
2 ] Nii =Ny — —22 Oy =041 — ;
= IJ Nao Noo
X
0.6 - < B
- _ — N12P1 — NlQQl
O12 =012, PP =P, — =Q — .
04l . I 12 12, 171 1 Noy Q1= Noo
‘ ‘ — —— This allows us to design an outer loop controller for the
0 0.25 05 0.75 1 input v that will track a given trajectory of;. We control

el v through a PD controller with feed-forward acceleration,

Fig. 4. The catch mode energy evolution for varying initis@ndubot D/ ; P/.R

positions with near zero energy (with respect.4,) using control law v=1J (¢R - ¢1) +J (¢ - ¢1), (13)
ku. All initial W, (x) lower than 0.55 (solid black line) can be stabilized ) o ) ] - )

by the controllerx,,. The black dotted represents thg value that is used where.J? is the derivative gain/” is the position galnqﬁR

in the sublevel seLw, . is the pendubot’s inner link reference position, aiftlis its
respective reference velocity.

; P : Through trial and error, we found that a reference signal,
sed to solve forK, with weighting functions = . . .
p v with weighting functions Q rr, defined as¢? = 0 and ¢; = 0 and gain values of

diag(13 5 5 3) and R = 1. The resulting control gains "4} ™ B L :
are K, — [—88.06, —14.44, —85.46, —10.27]. These control “« = 20 andJ,” = 191 consistently swung the links up

gains place all the poles of the closed-loop system inside tﬁo_a nelgh_borhood Om.“ from a neighborhood oA, To
unit circle at locationg0.9145,0.9992, 0.9995 £ i0.00035}.  °1ng the links to a neighborhood of, from A, or A,
The controllerx, (x) locally asymptotically stabilizesd,. 2 reference signat;:, defined asp; = 0 and¢; = —r and
We computed an estimate of its basin of attraction expe

gain values of/P = 20 and JF = 80 were used.
imentally by trial and error as the sublevel sBf;, = 1) Design ofa,_.,: Given a reference signal; and

(Wo(x) < &}, ¢ = 0.2, where W, (x) = K(x) + Un(x) gains.J;” and J,/, the control inputu resulting from (12) is
andU, (x) is the potential energy with respect.t.. Similar recorded on memory during the throw from a point n_earby
experiments to the ones in Figure 4 were also performed & [©© @ point nearby4,.. The open-loop controd, ., is
computec,.. given by this recorded input. Experlmentally, we estimate a
3) Determining Additional Control Parameterghe catch  Sublevel set oV, denoteds, ..., defined by the constant
mode energy evolution figure (Figure 4) can also be uséd—w Tom where such throws are successful. _
to determinec, and,, which define maximum sublevel ~2) Design ofv,,—.. anda,, ., Given areference signal
sets in whichx, and . are to be applied, respectively.” and gainsJ” and J{" the control inputu is recorded
To incorporate hysteresis switching, we desigrande, to  for the pendubot during the throws from,, and A,
be larger tharr, andc,, respectively. Then, to leave catch!® “A-. Then, as in Section IIl-C.1, the open-loop control
mode, the energy of the system needs to change at le@st—r @nd o, is set equal to the respected recorded
%, —c, OI' 2, —cy, respectivelye, is extracted from Figure 4, input . Experimentally, we estimate a subleyel setlBf,,
where we infer that when the enerdy, is greater tharg, ~and W, denotedS.,, ., and S,,.., and defined by the
the pendubot will not stabilize thel,, equilibrium, thereby Constantscy;, .. and cry—r from where such throws are
requiring to jump to the recovery mode, was obtained Successful, respectively, whet€,, (x) = K(x) + Uur(x)

similarly: ¢, = 2. and W, (x) = K(x) 4+ Uy (%), Uy (x) andU,.,(x) are the
potential energy with respect td,,,. and A,.,, respectively.
C. Open-Loop Control 3) Determining Constant Value€xperiments were con-

The necessary control inputs to swing the links either ugucted to determine appropriate values to use for the con-
or down are are found through partial feedback lineariratiostantsc,_,.,, cur—, andcy,_.. We studied the throw mode
as described in [2]. To perform partial feedback lineait@at energy evolution for varying initial pendubot positionsthwi
on the pendubot system (1) is broken up into near zero energy (with respectty.) using control law,. .,

- - : : _ to determine:,._,,,. Based on the results described in Figure 4
N+ Nizgz + Onudn + Ondo+ P+ Qu=u (10) o initial pendubot positions withV,.(x) lower than

and 10~2 can be caught by the controllar,. This method was
- - . . also used to determing,,_,, andc¢,,_., both are set to be
No1d1 + Noogpo + Oz1¢1 + Oapa + Po + Q2 =0 (11) equal t00.1. e ‘

whereN;;, Oy, P;, and@; correspond to the entries in the The time series data in Figure 5 can also be used to
matricesN, O, P, andQ, respectively¢, is solved for in determiner,, ,,—., andr,._,,, which define the greatest time



interval required to reaci,. and.A,, during a throw, respec- angles. Calibration is performed by setting= 0 in order to
tively. We determined,_,,, = 1.5 seconds and,, ,,—.» =2  allow the pendubot to naturally return to its resting posifi
seconds. after which the states are reset to those defined hywhen
there are no numerical errors in the measured joint angles,
k. brings the trajectories of the pendubot with$h_.,,, in

osl | some finite amount of timer{...; = 10 seconds). Therefore,

' ¢ calibration occurs when the controller. is applied to the
system for more than some finite amount of timg.{.; = 8

0.4r 1 seconds)kg is applied to the system fot, ;.. = 7 Seconds,
before resetting the states to the resting equilibrium.

03} | F. Angular velocity estimation

Joint velocities,¢, are estimated via a finite difference
estimator. Joint velocities are calculated by taking thfe di
ference between the current sampled joint angle and the
o1r ] previous sampled joint angle then dividing that differebge
T the sampling periodT;): ¢ =~ (¢(kTs) — ¢((k — 1)T%))/Ts.

: : This method is susceptible to the noise introduced via the
-3.5 -3 -25 -2 -15 -1 -0.5 .. . . .
log(W(x)) at t=0 [J] finite resolution of the optical encoders. We use first order
low pass filters at the outputs of the joint positions to
Fig. 5. Minimum energy (with respect td.) resulting from usingv,—.,. ~minimize the effect of noise. The poles of these filters
The y-axis describes the minimum energy (with respecidig) resulting \yere adjusted experimentally until reasonable resultsswer
from the throw. Usinge, = 0.8, we confirmed that all initial pendubot reached. These poles were placed at 100 rad/s. The estimated

positions withIW,-(x) < 10~2 can be caught by the controller, . y
angular velocitygp, implemented for the pendubot is defined
as,

min(W.(x)) [J]

D. Bootstrap Control . .
In order to steer trajectories from points not in a neighbor-¢(k) =97.6(p(k — 1) — p(k —2)) +0.95¢(k — 1). (16)
hood of A, UA,UA,,UA,, to a small neighborhood around gxperimentally, we found that this simple estimation algo-

A, energy is removed from the system via the controtler  rithm works for the purposes of our problem. More advanced

Since the system is naturally damped, one would assurggtimation techniques can be as well applied, e.g. Kalman
that . = 0 would be sufficient to steer the trajectories offjjtering.

the pendubot tod, in time. The friction in the pendubot _
is so small, however, that a more sophisticated contradler 5. Hybrid Controller

developed. The control laws defined in the previous sections are
From (6) and (7), the energy of pendubot (with respect timplemented in a hybrid controller as in [5]. Logic variable
A;) is given by W, (x) = K(x) + U,(x) and satisfies and a timer are used to implement the decision-making
strategy described in Section II-B. Complete details about
(VI (x), f(x,u)) <0, ¥x # 0. (14) its implementation in a hybrid controller can be found in

[5]. Its implementation is summarized below.

Reformulatingf(x, u) t0 fe(x) + ge(x)u, Two logic states,q and p, taking value inQ :=

(VE(x), f(x,u)) = (VE(x), fe(x) + ge(x)u) {-3,-2,0,1,2,4} and P := {1,2}), and one timer,r,
= (VE(x), fo(x)) + (VE(x), ge(x))u. define the state of the hybrid controller, denotedHyy Let
(15) ¢ = [x",q,p,7]" be the control state. The value of logic

(VE(x), fo(x)) < 0, Vx # 0 by virtue of the dissipative variablesg andp identify the appropriate control scheme:
properties of the system. To guarantee that (15) is negative

Controller
definite, we define the input ag := —A(VE(x), g.(x)), (?3 | 1 - 2 |
where A > 0. Through trial and error, we determined '2 1 8: 2 o
- Ky

that A\ = 0.2 provides the best results for the pendubot.

We thereby design the bootstrap controller to be given by 0]1or2 Fe

Ke(x) = —0.2(VE(x), g(x)).2 1 1 Qur—r

1 2 Qg —s e

E. Reset Control 2|1 or 2 Qg
Due to the the numerical errors that arise when the 411 or?2 Ko

pendubot links complete a number of revolutions, a resg words,p denotes the “path” in the tree in Figure 3 taken
control strategy is necessary to recalibrate the measaied j py the trajectories, which can be either

39 (x) may be found using the following relationshig; (x) = W. Apr = A — Ay 0r A,y — A — Ay,



while ¢ denotes the node in the current path.

pii2 T T T T T
Jumps in the logic statg andp occur as follows: T of
e Wheng # 1 and W, (x) < cupr OF Wyy(x) < = 'p'gw
¢ru_r) then updatey to 1, i.e., gt = 1. - ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10

e Wheng =0 o0r¢=1andW,(x) < ¢, then updatey

to -2, i.e., ¢t = —2. T pi2 | | | |
o Wheng = -2 andW, (x) < ¢,_,, then updatey to 2, = ot\\/v\/\ﬁ W
S -pilzf

ie., gt =2. : ‘ ‘ ‘ ‘ ‘
« Wheng # —3 and W, (x) < ¢, then update; to —3, Po 2 z B e 10
i.e., q+ == _3. %: ' ' ' ' j 1
« Wheng =1 andr > 7, ., then updatey to 0, i.e., _ :
gt = -2t 1
. 2t
« Wheng = —2 and W,.(x) > L,,. then update; to 0, 0 2 s s 8 10
i.e.,¢gm =0. e
« Wheng = 2 andr > 7,_, then update; to 0, i.e., , _ _ _ _
+_90 Fig. 6. Experiment 1: results using the hybrid control sggtto swing up
a ="b. the pendubot from a point not in the neighborhooddefu. A, UArUA .
o Wheng = -3 andW,(x) > L,, then update; to 0, Initial conditions: z° = [—0.96,—9.68,1.12,12.5]T, ¢° = 0, p° = 1,
i.e.,¢gt =0. 79 = 0. Pendubot angless; (red), 2 (blue), g (black). While in recovery

mode ¢ = 0), x is directed towardsA,.. A "catch” is performed (at around

« Wheng =4 and7 > 7. then update; to 0, ie., sec.) to bring x to a neighborhood of4,-. A "throw” is performed (at

q"' = 0. around6.5 sec.) from nearby.A, to nearbyA,,. Finally, another "catch”
« When g= -2 and T > T,eser then update; to 4, i.e., is performed (at around.5 sec.) to steerx to A,.
+
q" = 4.

o WhenW,,(x) < ¢y thenupdate to 1,i.e.,p™ = 1. _
« WhenW,,(x) < cy,. then update to 2, i.e.,p* = 2.  Figure 6 represenis,, the second plot (red curve) represents
At every jump, the timerr is reset to zero. Other variables¢2’ and third plot (the black curve) represenisin this

remain constant and are omitted in the description above_experiment, the pendubot starts from an arbitrarily chosen
point not in neighborhood ofl, UA, UA,,UA,,. From this

IV. EXPERIMENTAL RESULTS initial condition, the hybrid controller applies. bringingx

The experiments described in this paper are executed §h @ neighborhood ofd,. When W,.(x) < ¢, the hybrid
the Mechatronic Systems Inc. pendubot model P-1. THeontroller has a jump that mapsto —2, and therefore, the
hybrid controller makes use of a PC running The MathWork$0ntrol . is applied to the system. When the pendubot state
Inc. MATLAB, SIMULINK, and Real-Time Workshop. The 1S such thati, < ¢, a jump tog = 2 follows and the
PC communicated with the pendubot through the Quans@P€n-1oop controk,. .., is invoked to “throw” the pendubot
MultiQ3 1/O board at a sampling frequency of 2 kHz. MAT-10 & neighborhood ofA,,. At aboutt = 7.5, the statex is
LAB's legacy.code() function was used to create specialize§Uch thatW.,(x) < c,, ¢ jumps to —3 and the links are
SIMULINK blocks to allow the jump map and set to bec@ught byr,, and consequentlyl, locally stabilized.
written in C code and embedded into a SIMULINK model. Figure 7(a) shows a planar plot of this same experiment.

In this section, four different experiments of the pendubde@ch subfigure of Figure 7(a) shows the experiment in a
illustrate the capabilities of our hybrid control strategydifferent controller mode;. The bluex is the point where
Experiment 1 shows a nominal case with the pendubg't\e pendubot initially start and the solid red curve is the
starting with an arbitrary initial condition. This expermt Path they follow while the controller, corresponding to the
is represented in three different plots shown in Figure gurrent mode, is applied to the system. For aiding the visu-
through Figure 7(b). Experiment 2 shows a nominal case witdlization of these results, we included the blue dotted €urv
the pendubot starting at the equilibrium poiat,,. and the corresponding to the trajectories generated by the previou
results are in Figure 8. Experiment 3 shows how the closegontroller to the current mode. The blagkmarks represent
loop system can recover from small and large disturbancée equilibrium points of the pendubot system (projected to
while the pendubot is being stabilized in the upright positi the plane(¢:, ¢2)).
Results are shown in Figure 9. Experiment 4 shows closed-Figure 7(b) demonstrates another representation of the
loop recovery from a large disturbance while the pendub§@me experiment that shows snapshots of the pendubot
is in throw mode going fromd,. to A,,. Figure 10 shows the links as a function of time for each of the control modes
experimental data for Experiment 4. Additionally, a viddo odetermined byg. The red lines represent link 1 while the
the pendubot using hybrid control to stabilize to the uprighPlue line represent link 2.

equilibrium can accessed at http://www.scivee.tv/node12 B. Experiment 2

A. Experiment 1 Figure 8 depicts an experiment that demonstrates the
Figure 6, Figure 7(a), and Figure 7(b) are three differemiendubot’s ability to start in the equilibrium point &f,, and
representations of Experiment 1. The first plot (blue cuiwve) be stabilized ta4,,. Starting from a small neighborhood of
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q=0 a=-2 Fig. 8. Experiment 2: results using the hybrid contro_l_ﬂggtto ‘s‘Wing
up the pendubot from a small neighborhood 4f,-. Initial conditions:
20 = [0,0,pi,0]T, ¢° = 0, p° = 1, 70 = 0. Starting in recovery mode,
the controller jumps to throw mode and bringgo a neighborhood o4,
A "catch” is performed (at around.5 sec.) to bring x to A,.. A "throw”
is performed (at around.5 sec.) from nearby the resting configuratios;,
49 to a neighborhood of the upright configuratigh,. Finally, another "catch”
performed (at around.5 sec.) steersx to A,
q=2 q=-3
t=7.2 =838 —
sec.). The plots in Figure 9 show that the system recovers
r and returns and stabilizes the links backA4q. At around
18 sec, a large disturbance is applied. At this event, the local
6.9 stabilizer ,, is not able to reject the disturbance and the

system jumps tq = 0 sincelW,, > ¢,. From such condition,
a normal catch-throw-catch sequence takes the system first
to a neighborhood ofd,. (at around5 sec.) and then ta4,

Fig. 7. Results from Experiment 1. Top 4x4 array depicts aglilot of the (at around®7 sec )

pendubot trajectories: initial condition (blug, the trajectory path for the
current controller (solid red curve), trajectory path foe previous controller
(dotted blue curve), and equilibrium points (blagk marks). Bottom 4x4
array depicts snap shots of link 1 (red line) and link 2 (blume)l from a
frontal view while the different controllers are applied. dll three figures,
it can be seen that when= 0 (i.e. applyingx.) the trajectories approach
A, during the recovery mode. When= —2 (i.e. applyingx.), the system
is in catch mode and the trajectories approach a very smiajhiberhood .. . . .
of A,.. Whenq = 2 (i.e. applyinga,—.), the system is in throw mode condition, a point not in nelghborhood of. U A, UA, U

and the trajectories move towardé,. Finally, again in catch mode but 4,,. The same sequence of controllers are applied as were
wit_h q = —3 (i.e. applying x.,), the trajectories approach a very small applied in Experiment 1 to swing up the pendubot. The
neighborhood of4,,. ” " .
throw” performed (at around.5sec.) from the resting con-

figuration A, is interrupted by a disturbance which obstructs
the pendubot from reaching a neighborhood of the upright
configurationA,,. However, the hybrid controller is capable
to detect that the throw failed (by using the timer state) and
after bringing the links to a neighborhood gf,., attempts
the throw again (at aroundl sec.). This throw is successful,
and is followed by the application @f, (at aroundl2 sec.)
to steerx to 4,. Since throw are an open-loop maneuver,
the recovery feature of our hybrid control algorithm under

Figure 9 depicts an experiment that demonstrates therturbations is needed to have a robust closed-loop system
pendubot’s robustness to small and large disturbance® whil
in the upright position. In this experiment, the pendubaitst
at an arbitrary point not in neighborhood of,. U A, U Using a novel control strategy for robust global stabi-
Aur U A,,. The same sequence of controllers are applielization of nonlinear systems, we design and validate ex-
as in Experiment 1 to swing up the pendubot, which takgserimentally a hybrid controller to globally swing up the
about 8 sec. Three small perturbations are applied whilependubot with robustness to exogenous disturbances. We
x in a neighborhood of4,, (betweent = 11 and¢ = 17 introduced our control strategy and provided a step-bpg-ste

D. Experiment 4

Figure 10 depicts an experiment that demonstrates the pen-
dubot’s robustness to a large disturbances during a "throw”
In this experiment the pendubot starts at a random initial

A, the controller jumps to throw mode bringigtowards
A,. A "catch” is performed (at aroundl.5 sec.) to bring x
to a neighborhood aft,.. A "throw” is performed (at around
4.5 sec.) from the resting configuratiad,. to a neighborhood
of the upright configuration4,. Finally, another "catch”
performed (at around.5 sec.) steersx to the A,.

C. Experiment 3

V. CONCLUSION
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Fig. 9. Experiment 3: results using the hybrid control siggtto swing
up the pendubot under the presence of disturbances. Imitiatlitions:
20 = [~4.66,10.82, —1.76,—-7.68]T, ¢° = 0, p° = 1, 70 = 0. The
figure depicts: pendubot angles (red), ¢2 (blue), ¢ (black). Starting in
recovery mode to bringx towards.A,., a "catch” is performed (at around
2 sec.) to bring x to a point nearbyA,. A "throw” is performed (at
around6.5 sec.) from the resting configuratiom,- to a neighborhood of
the upright configurationd,,. A jump to the local stabilizek,, (at around
7.5 sec.) steersx to A,. While x is at A, three small perturbations are
applied (betweert = 11 andt = 17 sec.). The plot shows that the system
can recover and return back to the swing-up configurationeiWa large
disturbance is applied (at around 18 sec.), the system eexdrom being
destabilized by performing a successful throw-catch secpiefirst takes
x to nearby A, (at around25 sec.) followed by a throw-and-catch that
stabilizes A, (at around27 sec.).
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Fig. 10. Experiment 4: results using the hybrid controltstyg to stabilize
the pendubot from a random initial position, which is a pomtt in
the neighborhood ofd, U Ay, U Ay, U Ary. Initial conditions: 20 =
[1.30, —6.52, —2.99,17.38]T, ¢° = 0, p° = 1, 70 = 0. The figure depicts:
pendubot angleg1 (red), ¢ (blue), g (black). From initially starting in
recovery mode to bring towards.A;, a "catch” is performed (at around
2sec.) to bringx to A,.. A "throw” is performed (at around 5.5 sec.) from
the resting configuratiod,.. During the "throw” a disturbance obstructs the
pendubot from reaching a neighborhood of the upright cordiipn A.,,.
Recovery from this disturbances is done by attempting theathagain (at
around11 sec.).

design procedure. Experimental results prove the efficAcy o
the algorithm, even under the presence of large disturlsance
that are practically impossible to reject by any local dizti

for the swing-up configuration.
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