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Abstract— We show that for time-invariant hybrid systems
given by a flow map, flow set, jump map, and jump set,
uniform global stability of a compact set plus the existence
of Lyapunov-like functions and continuous functions satisfying
a nested condition imply uniform global asymptotic stability
of the compact set (“uniform” in the sense that bounds on
the solutions and on the convergence time depend only on the
distance to the compact set of interest). The required nested
condition is a combination of the conditions in nested Matrosov
theorems for time-varying continuous-time and discrete-time
systems available in the literature. Our result also shows that
Matrosov’s theorem is a reasonable alternative to LaSalle’s in-
variance principle for time-invariant hybrid systems to conclude
attractivity to a compact set. We illustrate the application of
our main result by examples.

I. I NTRODUCTION

Matrosov’s theorem is a powerful tool to establish uniform
global asymptotic stability for time-varying differential equa-
tions. The result reported by Matrosov in [13] shows that, in
addition to other technical conditions, given a continuously
differentiable functionV that establishes uniform global sta-
bility of the origin, the existence of an auxiliary continuous
function with derivative that is “definitely nonzero” in theset
of points where the derivative ofV vanishes is a sufficient
condition for uniform global asymptotic stability of the ori-
gin. Several extensions of Matrosov’s theorem have appeared
in the literature; see, e.g., [9] and its references. Matrosov’s
theorem has been applied to solve several nonlinear control
problems, including tracking control [16], output feedback
[15], and adaptive control [12], among others.

The extensions of the classical Matrosov theorem that
seem to give most flexibility when applied in practice are
those allowing for multiple auxiliary functions rather than
simply one auxiliary function as in the original result by
Matrosov. Such extensions are known asnested Matrosov
theoremssince to assert uniform global asymptotic stability,
they require some of the auxiliary functions to be negative at
points where other ones vanish. For continuous-time systems
see [9], where five auxiliary functions are used in stability
analysis for nonholonomic vehicles, and [19], where3n− 2
auxiliary functions are used for the interconnection ofn
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subsystems. Extensions of Matrosov’s theorem with multiple
auxiliary functions have also been proposed for discrete-time
systems; see [14]. A Matrosov theorem with one auxiliary
function but a weaken negativity condition, expressed in
terms of persistency of excitation, has been proposed in [11]
for a class of single-valued time-varying hybrid systems.

In this paper, we develop a nested Matrosov theorem
for time-invariant hybrid systems allowing for set-valued
dynamics, nonuniqueness of solutions, multiple jumps at the
same instant, and Zeno solutions. Hybrid systems are given
by a flow map, a flow set, a jump map, and a jump set.
In this context, uniformity of asymptotic stability properties
of compact sets indicates that bounds on the solutions and
on the convergence time depend only on the distance to the
compact set of interest. We show that uniform global stability
of a compact set plus the existence of Lyapunov-like func-
tions and continuous functions satisfying anested condition
imply uniform global asymptotic stability of the compact
set. This result extends the nested Matrosov theorems in
[14] and [9] to time-invariant hybrid systems. To the best of
our knowledge, all instances of Matrosov’s theorem in the
literature have focused on time-varying systems. Certainly
a Matrosov theorem reaches its full power in the context
of time-varying (not necessarily periodic) systems, where
general invariance principles are not available. Here, we
emphasize that it can be applied to time-invariant systems
where it provides a useful alternative to LaSalle’s invariance
principle for concluding attractivity of a compact set. In
particular, no notions of invariance need to be introduced to
apply Matrosov’s theorem. We provide illustrative examples
that emphasize this point. A nested Matrosov theorem for
time-varying hybrid systems will be reported elsewhere.

The rest of the paper is organized as follows. Section II
introduces the hybrid systems framework as well as
stability definitions used in this paper. Section III presents
a motivational example and states our main result. In
Section IV, we illustrate its applicability by examples.

Notation: R
n denotesn-dimensional Euclidean space.R

denotes the real numbers.R≥0 denotes the nonnegative real
numbers, i.e.,R≥0 := [0,∞). N denotes the natural numbers
including 0, i.e., N := {0, 1, . . .}. Z denotes the integers.
Z≥k denotes integers greater than or equal to the integer
k. Given a setS, S denotes its closure. Given a setS ⊂
R

n and a pointx ∈ R
n, |x|S := infy∈S |x − y|. Given a

set S ⊂ R
n and constantsδ, ∆, 0 ≤ δ ≤ ∆, ΩS(δ, ∆) :=

{x ∈ R
n | δ ≤ |x|S ≤ ∆}. A function α : R≥0 → R≥0 is

said to belong to class-K∞ if it is continuous, zero at zero,
strictly increasing, and unbounded.



II. H YBRID SYSTEMS

Hybrid systems are dynamical systems with both contin-
uous and discrete dynamics. Several frameworks to model
hybrid systems have been proposed in the literature, includ-
ing [18], [3], [10], [2], [6], to just list a few. In this paper,
we follow the hybrid systems framework introduced in [6],
where a hybrid systemH with state spaceRn is given by
four objects defining itsdata:

• Flow mapgiven by a set-valued mapF : R
n →→ R

n

defining the flows (or continuous evolution) ofH.
• Flow setC ⊂ R

n specifying the points where flows are
possible.

• Jump mapgiven by a set-valued mapG : R
n →→ R

n

defining the jumps (or discrete evolution) ofH.
• Jump setD ⊂ R

n specifying the points where jumps
are possible.

A hybrid systemH := (F, C, G, D) can be written in the
compact form:

H : x ∈ R
n

{

ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D ,

(1)

where the statex can contain both continuous and dis-
crete states. That is, the statex can be given byx :=
[ξ⊤ q]⊤ where ξ ∈ R

n−1 is the continuous state and
q ∈ {1, 2, . . . , N} ⊂ R is the discrete (or logic) state.

Solutions can evolve continuously (or flow) and/or dis-
cretely (or jump) depending on the continuous and discrete
dynamics and the sets where those dynamics apply. We treat
the number of jumps as an independent variablej and we
parametrize the state by(t, j). Solutions toH will be given
by hybrid arcson hybrid time domains.

Definition 2.1: (hybrid time domain) A subsetE ⊂ R≥0×
N is a compact hybrid time domainif

E =

J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times0 = t0 ≤ t1 ≤ t2 ... ≤ tJ .
A subsetE ⊂ R≥0 × N is a hybrid time domainif for all
(T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ...J}) is a compact hybrid
time domain. �

Definition 2.2: (hybrid arc) A functionx : domx → R
n

is a hybrid arc if domx is a hybrid time domain and if for
eachj ∈ N, the functiont 7→ x(t, j) is locally absolutely
continuous. �

Definition 2.3: (solution toH) A hybrid arcx is asolution
to the hybrid systemH if x(0, 0) ∈ C ∪ D and:

(S1) For allj ∈ N and almost allt such that(t, j) ∈ domx,

x(t, j) ∈ C, ẋ(t, j) ∈ F (x(t, j)) .

(S2) For all(t, j) ∈ domx such that(t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)) .

�

A solution x is said to benontrivial if domx contains
at least one point different from(0, 0), maximal if there
does not exists a solutionx′ such thatx is a truncation of
x′ to some proper subset ofdomx′, completeif domx is
unbounded, andZenoif it is complete but the projection of
domx onto R≥0 is bounded.

Stability, uniform attractivity, and uniform asymptotic sta-
bility of compact sets for hybrid systemsH = (F, C, G, D)
are defined as follows.

Definition 2.4: (UGAS) LetA ⊂ R
n be compact. The set

A is said to be

• uniformly globally stable(UGS) for H if there exists
a class-K∞ function α such that any solutionx to
H satisfies|x(t, j)|A ≤ α(|x(0, 0)|A) for all (t, j) ∈
domx;

• uniformly globally attractive(UGA) for H if for each
ε > 0 andr > 0 there existsT > 0 such that, for any
solution x to H with |x(0, 0)|A ≤ r, (t, j) ∈ domx
and t + j ≥ T imply |x(t, j)|A ≤ ε;

• uniformly globally asymptotically stable(UGAS) forH
if it is both UGS and UGA.

The stability and attractivity notions in Definition 2.4 do
not insist that solutions toH exist from every point inRn.
In fact, by the very definition of solutions in Definition 2.3,
solutions toH can only exist from points inC ∪ D, which
does not necessarily coverR

n. Moreover, maximal solutions
to H are not necessarily complete. For more details about
existence of solutions to hybrid systems, see [7].

The results for hybrid systemsH in [7] give mild condi-
tions on the data(F, C, G, D) to guarantee certain regularity
properties for the set of solutions toH. These conditions
are critical for things like inherent robustness of asymptotic
stability [7], establishing that asymptotic stability implies
uniform asymptotic stability [7], invariance principles [17],
and converse Lyapunov theorems [4]. However, these con-
ditions are not required to establish sufficient conditions
for nominal asymptotic stability of compact sets, like those
proposed in this paper. Therefore, we will not insist on them.

III. N ESTEDMATROSOV THEOREM

A. Motivational example

Consider the so-called bouncing ball system shown in
Figure 1. Letx1 be the vertical position of the ball andx2

x1

x2

Fig. 1. Bouncing ball system.

be its vertical velocity. A model of the bouncing ball system



is as follows. In between bounces, the equations of motion
are given by

ẋ1 = x2,

ẋ2 = −γ ,

whereγ > 0 is the gravity constant. In between bounces, we
have thatx1 > 0. The bouncing condition of the ball can be
modeled by the condition

x1 = 0 andx2 < 0 ,

and after the bounce (or jump), the ball’s state is mapped by

x+
1 = 0,

x+
2 = −̺x2,

where̺ ∈ [0, 1) is the restitution coefficient. This defines a
hybrid system, which we denote byHBB. Let x := [x1 x2]

⊤.
Then,HBB is given by

HBB : x ∈ R
2















ẋ = f(x) :=

[

x2

−γ

]

x ∈ C

x+ = g(x) :=

[

0
−̺x2

]

x ∈ D ,

(2)
where

C :=
{

x ∈ R
2 | x1 > 0

}

,

D :=
{

x ∈ R
2 | x1 = 0, x2 < 0

}

.

To assert thatA = (0, 0) is uniformly globally asymptoti-
cally stable forHBB , one could take the energy of the system
given the continuously differentiable function

V1(x) :=
1

2
x2

2 + γx1 , (3)

evaluate it along solutions toHBB , and try to conclude from
those that the origin is UGS and UGA. It follows that along
flows

〈∇V1(x), f(x)〉 = 0 ∀x ∈ C (4)

and that at jumps

V1(g(x)) − V1(x) ≤ −
1

2
(1 − ̺2)x2

2 ∀x ∈ D . (5)

From (4) and (5), using, for example, the sufficient conditions
for stability of compact sets for hybrid systems in [17],
it follows that A is UGS. However, classical Lyapunov
arguments cannot be used to establish (uniform) attractivity
since the functionV does not decrease along flows when the
state is away from the origin. Instead, one could appeal to
invariance principles, for which certain technical conditions
must be verified and also some rudimentary knowledge of
solutions is needed to compute invariant sets. For invariance
principles for hybrid systems, see [10], [5], and [17]. Instead,
we take the continuously differentiable function

V2(x) := gx2 (6)

and note that

〈∇V2(x), f(x)〉 = −γ2 ∀x ∈ C , (7)

in particular, for each point x in C such that
〈∇V1(x), f(x)〉 = 0. We show that (4), (5), and (7)
imply that the pairV1, V2 establishes uniform asymptotic
stability of A for HBB via a nested Matrosov theorem.
This result parallels the original one proposed by Matrosov
in [13]. While asymptotic stability of the origin for the
bouncing ball has been established by other means in the
literature (see, for example, [1], [17], and [4]), the appeal
of Matrosov’s theorem is that it is expressed in terms of
less stringent Lyapunov-like conditions and requires no
knowledge about the solutions of the hybrid system.

B. Main result

Since our main theorem assumes UGS, we start by estab-
lishing a UGS result for closed sets of hybrid systems.

Theorem 3.1: (UGS conditions) The closed setA ⊂ R
n is

UGS for the hybrid systemH = (F, C, G, D) if there exists
a functionV : R

n → R≥0, continuously differentiable on an
open set containingC, and class-K∞ functionsα1, α2 such
that α1(|x|A)≤V (x)≤α2(|x|A) for all x ∈ C ∪D ∪G(D)
and

〈∇V (x), f〉 ≤ 0 ∀x ∈ C , f ∈ F (x)

V (g) − V (x) ≤ 0 ∀x ∈ D , g ∈ G(x) .

We are now ready to state our main result.

Theorem 3.2: (hybrid nested Matrosov) LetA ⊂ R
n be a

compact, UGS set for the hybrid systemH = (F, C, G, D).
Then,A is UGAS if there existm ∈ Z≥1 and, for each
0 < δ < ∆,

• a numberµ > 0,
• continuous functionsuc,i : C ∩ ΩA(δ, ∆) → R, ud,i :

D ∩ ΩA(δ, ∆) → R, i ∈ {1, . . . , m},
• functionsVi : R

n\A → R, i ∈ {1, . . . , m}, C1 on an
open set containingC ∩ ΩA(δ, ∆),

such that, for eachi ∈ {1, . . . , m},

|Vi(x)| ≤ µ ∀x ∈ (C ∪ D ∪ G(D)) ∩ ΩA(δ, ∆) (8)

〈∇Vi(x), f〉 ≤ uc,i(x) ∀x ∈ C ∩ ΩA(δ, ∆) ,
∀f ∈ F (x)

(9)

Vi(g) − Vi(x) ≤ ud,i(x) ∀x ∈ D ∩ ΩA(δ, ∆) ,
∀g ∈ G(x) ∩ ΩA(δ, ∆)

(10)
and, with the definitionsuc,0, ud,0 : R

n → {0} and
uc,m+1, ud,m+1 : R

n → {1}, we have, for eachj ∈
{0, . . . , m},

1) if x ∈ C ∩ ΩA(δ, ∆) and uc,i(x) = 0 for all i ∈
{0, . . . , j} thenuc,j+1(x) ≤ 0,

2) if x ∈ D ∩ ΩA(δ, ∆) and ud,i(x) = 0 for all i ∈
{0, . . . , j} thenud,j+1(x) ≤ 0.

The theorem imposes a nested negative semi-definite con-
dition on the functionsuc,i andud,i, which bound the change
in Vi along flows and jumps, respectively. Through the
definition ofuc,0 andud,0, the nested condition requires that
uc,1 andud,1 are never positive. The functionuc,2 (respec-
tively, ud,2) can be positive only whereuc,1 (respectively,



ud,1) is negative. In other words, whenuc,1 is zero, uc,2

should be nonpositive. Similarly forud,2. Continuing,uc,3

should be nonpositive whenuc,1 anduc,2 are zero, butuc,3

can be positive elsewhere. And so on. Finally, through the
definitions of uc,m+1 and ud,m+1, there are no points in
ΩA(δ, ∆) where all of theuc,i (respectively,ud,i) are zero.

The existence ofµ satisfying (8) is guaranteed whenVi is
continuous onΩA(δ, ∆). However, continuity is not required
in general. The theorem is stated for functionsVi that are
continuously differentiable at each point inC ∩ ΩA(δ, ∆),
but a similar result holds for functions locally Lipschitz on
this set. Such a result requires working with a generalized
notion of derivative.

Note that when the first function in Matrosov’s theorem is
positive definite and radially unbounded as in Theorem 3.1,
it can be used to establish UGS for the given compact set.

Under mild regularity assumptions, hybrid systems with
UGAS compact sets admit smooth, strict Lyapunov functions
[4]. However, such functions can be difficult to construct.
As highlighted above, the Matrosov theorem relaxes the
requirements on the functions that need to be constructed.

The proof of Theorem 3.2 follows the proofs of both the
continuous-time and discrete-time nested Matrosov theorems
in [14], [9]. In fact, the main argument of the proof is to
recursively exploit the negativity guaranteed in the nested
conditions in 1) and 2) of the(i + 1)-th Matrosov func-
tions uc,i+1, ud,i+1 at points where thei previous Matrosov
functions vanish for eachi < m. Then, UGA follows from
the construction of a functionV , which is obtained from a
linear combination of theVi functions, with the property that
it has a strictly negative decrease along flows and jumps on
ΩA(δ, ∆). The details of the proof are omitted due to space
constraints. Finally, note that Theorem 3.2 when specialized
to the continuous-time case, i.e., takingG, D = ∅, recovers
the result in [9] for the time-invariant case, while when
specialized to the discrete-time case, i.e., takingF, C = ∅,
recovers the result in [14] for the time-invariant case.

IV. EXAMPLES

We now apply our main result to the following hybrid
systems.

Example 4.1:(Bouncing ball revisited) Consider the
bouncing ball system in Section III-A given byHBB. Let
A = (0, 0) and V1 : R

2 \ A → R be the continuously
differentiable function in (3). It follows that conditions(9)
and (10) in Theorem 3.2 hold fori = 1 with

uc,1(x) := 0 for eachx ∈ C \ A ,
ud,1(x) := − 1

2 (1 − ̺2)x2
2 for eachx ∈ D \ A .

Moreover, withuc,0(x) := 0 for all C \ A andud,0(x) := 0
for all D \ A, uc,1(x) and ud,1(x) establish items 1 and 2
in Theorem 3.2 forj = 0.

Let V2 : R
2 \ A → R be the continuously differentiable

function given in (6). Conditions (9) and (10) hold fori = 2
with

uc,2(x) := −g2 for eachx ∈ C \ A ,
ud,2(x) := −gγx2 for eachx ∈ D \ A .

For everyx ∈ C \ A such thatuc,i(x) = 0, i = 0, 1, then
uc,2(x) < 0; and for everyx ∈ D \A such thatud,i(x) = 0,
i = 0, 1, then ud,2(x) < 0. Then, items 1 and 2 hold for
j = 1, 2. Moreover, UGAS ofA follows from Theorem 3.2
with m = 2.

Example 4.2:(Non-Zeno bouncing ball) The previous
bouncing ball model exhibits Zeno solutions. See, for exam-
ple, [8]. Moreover, if the flow and jump sets are extended to
their closures, the model exhibits purely discrete (jumping)
solutions. In the current example, an alternative model for
the bouncing ball is developed that does not exhibit Zeno
solutions. It is related to a model arising from regularization
procedures in [8]. The model is developed to preserve
UGAS of the origin, relying on Matrosov’s theorem. As
before, let γ represent the gravitational constant and let
̺ ∈ [0, 1) represent the restitution coefficient. Consider a
model parametrized by the positive constantsεi, i = 1, 2, 3,
with data

f(x) :=

[

x2

−M(x1) − N(x1)x2

]

, g(x) :=

[

0
−̺x2

]

,

C :=
{

x ∈ R
2 | x1 ≥ 0 or(x2 ≥ −ε2 andx1 ≥ −ε1)

}

,

D :=
{

x ∈ R
2 | x1 = 0 , x2 ≤ −ε2

}

,

where

• M : R → R is continuous withM(x1) = γ for x1 ≥ ε3

andx1M(x1) > 0 for all x1 6= 0;
• N : R → R≥0 is continuous withN(x1) = 0 for x1 ≥

ε3, andN(x1) > 0 for x1 < 0.

The jump map takes points in the jump set, which is already
closed, to points outside of the jump set. Thus, there are
no Zeno solutions (see [7, Corollary 4.9]). Indeed, after a
finite number of jumps, the ball’s trajectory asymptotically
converges to the origin by flowing only. Figure 2 depicts
trajectories evolving on the flow and jump sets using the
functionsM and N shown in Figure 3, which satisfy the
conditions above. Whenx1 ≥ ε3, the flow map here matches
the flow map of the previous bouncing ball model. When
x1 ≤ ε3, the modifications to the model are aimed at
generating forces corresponding to compression of the ball
and energy dissipation. Ideally, the functionsM andN and
the valuesε1 and ε2 would be such that the solution of
ẋ = f(x) starting at(x1, x2) = (0,−ε2) would satisfy:

• x1(t) ≥ −ε1 for all t ≥ 0, in order to guarantee
complete solutions for the hybrid system from the set
wherex1 ≥ 0,

• x2(t) = ̺ε2 for the first t > 0 such thatx1(t) = 0,
in order to replicate the dissipation caused by jumping
from (x1, x2) = (0, ε2).

However, neither of these conditions is required for the
derivation that follows.

Let A denote the origin and letV1 : R
2 → R≥0 be the

C1 function given byV1(x) := 1
2x2

2 +
∫ x1

0
M(s)ds. We find

that the conditions of Theorem 3.1 hold, so that the origin is
UGS, and conditions (9) and (10) in Theorem 3.2 hold for
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Fig. 2. Phase plot of a trajectory to the non-Zeno bouncing ball starting
from x(0, 0) = [10 , 0]⊤. Parameters:γ = 9.8m/s2, ̺ = 0.8, ε1 = ε3 =
0.3, ε2 = 0.6. FunctionsM andN as given in Figure 3.

i = 1 with

uc,1(x) := −N(x1)x
2
2 ∀x ∈ C ,

ud,1(x) := − 1
2

(

1 − ̺2
)

ε2 ∀x ∈ D .

Since these functions are never positive, items 1 and 2 in
Theorem 3.2 hold forj = 0. In fact, since there are no
points whereud,1 is zero, item 2 in Theorem 3.2 will hold
for all j no matter whatud,i is for i > 1. Also note that
uc,1(x) < 0 for all x ∈

{

x ∈ R
2 | x2 > 0 , x1 < 0

}

.
To define V2, we let N denote the open cone in

{

x ∈ R
2 | x2 > 0 , x1 < 0

}

given by

N :=
{

x ∈ R
2

∣

∣

∣
x = r

[

λ − 2
λ + 1

]

, r > 0, λ ∈ (0, 1)
}

,

and let σ : R → [−2π, 2π] be a continuously differ-
entiable,2π-periodic function such thatdσ(s)

ds
= 1 when

s = ∠ (x/|x|) andx ∈ R
2\(N∪A), where∠ : S1 → [0, 2π)

is such that∠z denotes the angle, positive in the counter-
clockwise direction, betweenz and the positive horizontal
axis andS1 denotes the unit circle. See, for example, the
function plotted in Figure 4(b). Then, for allx ∈ R

2 \ A,

x1ε3

M(x1)

γ

(a) Gravity force functionM .

x1

ε3

ε3

N(x1)

(b) Friction force functionN .

Fig. 3. Functions used in Non-Zeno bouncing ball model. Theyagree
with the Zeno bouncing ball model in Example 4.1 whenx1 > ε3 > 0.
Otherwise, these functions capture compression of the ballat impacts with
the floor.

define

V2(x) := σ

(

∠

(

x

|x|

))

, uc,2(x) := 〈∇V2(x), f(x)〉 .

If uc,1(x) = 0 then x ∈ R
2 \ (N ∪ A), ∇V2(x) =

[−x2 x1]
T

/|x|2, andN(x1)x2 = 0. Therefore,

uc,1(x) = 0 =⇒ uc,2(x) =
−x2

2 − x1M(x1)

|x|2
.

SinceM(x1)x1 > 0 for all x1 6= 0, it follows that item 1
of Theorem 3.2 is satisfied forj = 1, 2. Hence, the origin is
UGAS. △

Remark 4.3:In Example 4.1, using Theorem 3.2, we
establish that the origin of the bouncing ball is globally
asymptotically stable. This fact can be also established using
invariance principles in [17], or using a strict Lyapunov
function as shown in [4]. The model in Example 4.2 is an
alternative, which is realistic to some extent, to the bouncing
ball model in Example 4.1. It has the property that every
solution to it is non-Zeno. Note that away from the origin,
both models behave similarly.

V. CONCLUSIONS

For hybrid systems allowing for set-valued dynamics,
nonuniqueness of solutions, multiple jumps at the same
instant, and Zeno solutions we introduced a nested Matrosov
theorem as a tool to establish uniform global asymptotic
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Fig. 4. FunctionV2 for the application of Theorem 3.2 to the non-Zeno
bouncing ball system.

stability of compact sets. The required nested condition isa
combination of the conditions in nested Matrosov theorems
for time-varying continuous-time and discrete-time systems
available in the literature. The conditions constitute a relax-
ation of classical Lyapunov conditions. Moreover, in contrast
to invariance principles, no knowledge about solutions of the
hybrid system are required. Indeed, like Lyapunov theorems,
only bounds on derivatives and differences must be estab-
lished. Our result was demonstrated on two examples: the
classical bouncing ball system and a non-Zeno version of it.

REFERENCES

[1] A. D. Ames, P. Tabuada, and S. Sastry. On the stability of Zeno
equilibria. In Hybrid Systems: Computation and Control, pages 34–
48. Springer, 2006.

[2] J.-P. Aubin, J. Lygeros, M. Quincampoix, S. S. Sastry, and N. Seube.
Impulse differential inclusions: a viability approach to hybrid systems.
IEEE Trans. Aut. Control, 47(1):2–20, 2002.

[3] M.S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework
for hybrid control: Model and optimal control theory.IEEE Trans.
Aut. Control, 43(1):31–45, 1998.

[4] C. Cai, A. R. Teel, and R. Goebel. Smooth Lyapunov functions for
hybrid systems – Part II: Pre-asymptotically stable compact sets. To
appear in IEEE Trans. Aut. Cont., 2008.

[5] V. Chellaboina, S.P. Bhat, and W.H. Haddad. An invariance principle
for nonlinear hybrid and impulsive dynamical systems.Nonlin. Anal.,
53:527–550, 2003.

[6] R. Goebel, J.P. Hespanha, A.R. Teel, C. Cai, and R.G. Sanfelice.
Hybrid systems: generalized solutions and robust stability. In Proc.
6th IFAC Symposium in Nonlinear Control Systems, pages 1–12, 2004.

[7] R. Goebel and A.R. Teel. Solutions to hybrid inclusions via set and
graphical convergence with stability theory applications. Automatica,
42(4):573–587, 2006.

[8] K.H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry.On the
regularization of Zeno hybrid automata.Systems & Control Letters,
38(3):141–150, 1999.

[9] A. Loria, E. Panteley, D. Popovic, and A. R. Teel. A nestedMatrosov
theorem and persistency of excitation for uniform convergence in
stable nonautonomous systems.IEEE Trans. Aut. Control, 50(2):183–
198, 2005.

[10] J. Lygeros, K.H. Johansson, S.N. Simić, J. Zhang, and S. S. Sastry.
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