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Abstract—We show that for time-invariant hybrid systems
given by a flow map, flow set, jump map, and jump set,
uniform global stability of a compact set plus the existence
of Lyapunov-like functions and continuous functions satifying
a nested condition imply uniform global asymptotic stability
of the compact set (“uniform” in the sense that bounds on
the solutions and on the convergence time depend only on the
distance to the compact set of interest). The required neste
condition is a combination of the conditions in nested Matrsov
theorems for time-varying continuous-time and discrete-ime
systems available in the literature. Our result also showsHhat
Matrosov’s theorem is a reasonable alternative to LaSall&' in-
variance principle for time-invariant hybrid systems to conclude
attractivity to a compact set. We illustrate the application of
our main result by examples.

|. INTRODUCTION

and Andrew R. Teel

subsystems. Extensions of Matrosov’s theorem with matipl
auxiliary functions have also been proposed for discriete-t
systems; see [14]. A Matrosov theorem with one auxiliary
function but a weaken negativity condition, expressed in
terms of persistency of excitation, has been proposed ih [11
for a class of single-valued time-varying hybrid systems.

In this paper, we develop a nested Matrosov theorem
for time-invariant hybrid systems allowing for set-valued
dynamics, nonuniqueness of solutions, multiple jumps at th
same instant, and Zeno solutions. Hybrid systems are given
by a flow map, a flow set, a jump map, and a jump set.
In this context, uniformity of asymptotic stability propies
of compact sets indicates that bounds on the solutions and
on the convergence time depend only on the distance to the
compact set of interest. We show that uniform global stigbili
of a compact set plus the existence of Lyapunov-like func-

Matrosov’s theorem is a powerful tool to establish uniforniions and continuous functions satisfyingrasted condition

global asymptotic stability for time-varying differentiequa-

imply uniform global asymptotic stability of the compact

tions. The result reported by Matrosov in [13] shows that, iget. This result extends the nested Matrosov theorems in
addition to other technical conditions, given a continuypus [14] and [9] to time-invariant hybrid systems. To the best of

differentiable functiori that establishes uniform global sta-our knowledge, all instances of Matrosov’s theorem in the
bility of the origin, the existence of an auxiliary contiru literature have focused on time-varying systems. Cestainl

function with derivative that is “definitely nonzero” in tlset @ Matrosov theorem reaches its full power in the context
of points where the derivative df vanishes is a sufficient of time-varying (not necessarily periodic) systems, where
condition for uniform global asymptotic stability of theior general invariance principles are not available. Here, we
gin. Several extensions of Matrosov’s theorem have apgearémphasize that it can be applied to time-invariant systems

in the literature; see, e.g., [9] and its references. Matrss

where it provides a useful alternative to LaSalle’s invacia

theorem has been applied to solve several nonlinear cont@inciple for concluding attractivity of a compact set. In
problems, including tracking control [16], output feedkac particular, no notions of invariance need to be introduced t

[15], and adaptive control [12], among others.

apply Matrosov’'s theorem. We provide illustrative exansple

The extensions of the classical Matrosov theorem thdfat emphasize this point. A nested Matrosov theorem for
seem to give most flexibility when applied in practice ardime-varying hybrid systems will be reported elsewhere.

those allowing for multiple auxiliary functions rather tha

The rest of the paper is organized as follows. Section I

simply one auxiliary function as in the original result byintroduces the hybrid systems framework as well as

Matrosov. Such extensions are known ressted Matrosov

stability definitions used in this paper. Section Il presen

theoremssince to assert uniform global asymptotic stability? motivational example and states our main result. In
they require some of the auxiliary functions to be negative &ection 1V, we illustrate its applicability by examples.

points where other ones vanish. For continuous-time system _ _ _ _
see [9], where five auxiliary functions are used in stability Notation: R" denotess-dimensional Euclidean spack.

analysis for nonholonomic vehicles, and [19], wha&fe— 2
auxiliary functions are used for the interconnection rof
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denotes the real numbet®;., denotes the nonnegative real
numbers, i.e.R>( := [0, 00). N denotes the natural numbers
including 0, i.e.,, N := {0,1,...}. Z denotes the integers.
Z>j, denotes integers greater than or equal to the integer
k. Given a setS, S denotes its closure. Given a s§tc

R™ and a pointr € R", |z|s := infyecg |z — y|. Given a
setS C R™ and constants, A,0 < 0 < A, Qg(4,A) =

{r eR" | §<|z|]s <A}. Afunctiona : R>p — Rx¢ IS

said to belong to claskr, if it is continuous, zero at zero,
strictly increasing, and unbounded.



Il. HYBRID SYSTEMS A solution x is said to benontrivial if dom« contains
at least one point different frong0,0), maximal if there
a% es not exists a solutior such thatr is a truncation of
to some proper subset aom z’, completeif domz is
unbounded, andenoif it is complete but the projection of

dom z ontoR>( is bounded.

Stability, uniform attractivity, and uniform asymptotitas
bility of compact sets for hybrid systeni¢ = (F,C, G, D)
are defined as follows.

Hybrid systems are dynamical systems with both contin
uous and discrete dynamics. Several frameworks to mo
hybrid systems have been proposed in the literature, mcluﬁ
ing [18], [3], [10], [2], [6], to just list a few. In this paper
we follow the hybrid systems framework introduced in [6],
where a hybrid systerfi{ with state spac&®’™ is given by
four objects defining itslata

o Flow mapgiven by a set-valued map' : R* = R”

defining the flows (or continuous evolution) &f. Definition 2.4: (UGAS) LetA C R" be compact. The set
« Flow setC ¢ R" specifying the points where flows are“A 1S said to be
possible. « uniformly globally stable(UGS) for H if there exists
o Jump mapgiven by a set-valued ma@ : R = R" a classK., function a such that any solution: to
defining the jumps (or discrete evolution) Bf. H satisfies|z(t,j)|a < «a(]z(0,0)|4) for all (¢,5) €
o Jump setD C R"™ specifying the points where jumps dom z;
are possible. « uniformly globally attractive(UGA) for H if for each
A hybrid systemH := (F,C,G, D) can be written in the e > 0andr > 0 there existsl’ > 0 such that, for any
compact form: solution z to H with |2(0,0)|4 < 7, (t,j) € domz

andt +j > T imply |z(t,j)|a < ¢&;
- v ER" r € Fx) =z€C 1) « uniformly globally asymptotically stablg)GAS) for
' xt e G(z) zeD, if it is both UGS and UGA.

where the stater can contain both continuous and dis- The stability and attractivity notions in Definition 2.4 do
crete states. That is, the statecan be given byr := not insist that solutions t@{ exist from every point inR".
(€T ¢]7 where¢ e R™ ! is the continuous state and In fact, by the very definition of solutions in Definition 2.3,

q€{1,2,...,N} C R is the discrete (or logic) state. solutions toH can only exist from points ir’ U D, which
So|utions can evolve Continuous|y (Or f|ow) and/or d,g.does not necessarlly COVRf". Moreover, maximal solutions
cretely (or jump) depending on the continuous and discrete 7 are not necessarily complete. For more details about
dynamics and the sets where those dynamics apply. We tr&xistence of solutions to hybrid systems, see [7].
the number of jumps as an independent varigbnd we  The results for hybrid systeniq in [7] give mild condi-
parametrize the state Ky, j). Solutions to will be given tions on the dat&F, C, G, D) to guarantee certain regularity
by hybrid arcson hybrid time domains properties for the set of solutions . These conditions
Definition 2.1: (hybrid time domain) A subsef C R>(x are (_:_ritical for things I?ke inherent robus’_mess O.f. asyr_tipto
N is acompact hybrid time domaiif = stability [7], establishing that asymptotic stability iligs
uniform asymptotic stability [7], invariance principle$T],
- and converse Lyapunov theorems [4]. However, these con-
= U sl ditions are not required to establish sufficient conditions
for nominal asymptotic stability of compact sets, like thos
for some finite sequence of tim@s= ¢, < t; < t, ... < t;. Proposed in this paper. Therefore, we will not insist on them
A subsetE C R>g x N is a hybrid time domainf for all

(T,J) € E, E n ([0,T] x {0,1,...]}) is a compact hybrid . NESTEDMATROSOV THEOREM
time domain. B A. Motivational example
Definition 2.2: (hybrid arc) A functionz : domz — R" Consider the so-called bouncing ball system shown in

is ahybrid arcif domz is a hybrid time domain and if for Figure 1. Letz; be the vertical position of the ball and
eachj € N, the functiont — z(t, ) is locally absolutely

continuous | Q
Definition 2.3: (solution to?{) A hybrid arcz is asolution £
to the hybrid systerft{ if 2:(0,0) € C U D and: 1
(S1) Forallj € N and almost alt such that¢, j) € dom z,
x(t,j) € C, @(t,j) € F(xz(t, 7)) .
(S2) For all(t,j) € domaz such that(¢, j + 1) € domz,

z(t,j) € D, z(t,j+1) € G(x(t,j)) .

Fig. 1. Bouncing ball system.

B be its vertical velocity. A model of the bouncing ball system



is as follows. In between bounces, the equations of motian particular, for each pointz in C such that
are given by (VVi(x), f(z)) = 0. We show that (4), (5), and (7)
imply that the pairVi, V; establishes uniform asymptotic
stability of A for Hgp via a nested Matrosov theorem
T2 = -7, This result parallels the original one proposed by Matrosov

wherey > 0 is the gravity constant. In between bounces, wé! [13]- While asymptotic stability of the origin for the
have thatr; > 0. The bouncing condition of the ball can bePouncing ball has been established by other means in the
modeled by the condition literature (see, for example, [1], [17], and [4]), the adpea
of Matrosov’s theorem is that it is expressed in terms of
r1=0andxy <0, less stringent Lyapunov-like conditions and requires no
ngowledge about the solutions of the hybrid system.

xry = X2,

and after the bounce (or jump), the ball’s state is mapped

o = 0 B. Main result
wf = —om, Since our main theorem assumes UGS, we start by estab-

lishing a UGS result for closed sets of hybrid systems.
Theorem 3.1: YGS conditiony The closed setl C R" is

UGS for the hybrid syste = (F,C, G, D) if there exists

a functionV : R™ — Rx, continuously differentiable on an

wherep € [0, 1) is the restitution coefficient. This defines a
hybrid system, which we denote Bypp. Letx := [z1 2] .
Then, Hgp is given by

i o= f(a) = T2 v eC open set containing’, and classk ., functionsay, a2 such
Hnn e R N =y that a1 (|z|4) <V (z) <aa(|z|4) for all z € CUDUG(D)
BB - L lo and
zt = gx):= o xeD,
(2) (VV(x),f) < 0 VzeC, feF(x)
where Vig)—V(z) < 0 VeeD, geGx) .
C = {zeR® |z >0}, We are now ready to state our main result.
D = {x ER? |z, = 0,25 < 0} _ Theorem 3.2: (hybrid nested Matrosov) L&tC R™ be a

. _ ~ compact, UGS set for the hybrid systéi= (F,C, G, D).
To assert thatd = (0,0) is uniformly globally asymptoti- Then, 4 is UGAS if there existn € Z-; and, for each
cally stable forH z 5, one could take the energy of the systemy 5 < A, -

given the continuously differentiable function « a numbery > 0,

_ 1, « continuous functions..; : C N QA(5,A) — R, ug,; :
Vilz) = goatym, ®) DNQAG,A) =R, i€ {l,...,m},
evaluate it along solutions t 33, and try to conclude from  « functionsV; : R"\ A — R, i € {1,...,m}, C' on an
those that the origin is UGS and UGA. It follows that along ~ open set containing’ N Q4(d, A),
flows such that, for eachi € {1,...,m},
(VVi(z), f(z)) =0  Vz el @) Vi) < p Vz e (CUDUG(D)) NQa(8,A) (8)
and that at jumps (VVi(x), f) < uei(x) Ve CNQa(d,A),

9)

v F(x

(o) ~ Vi) < —2(1- a3 VaeD. (9 e
. . » Vi(g) = Vi(x) S wuai(z) Ve e DNQa(S,A),
From (4) and (5), using, for example, the sufficient condiio ’ Vg € G(z) N Q5. A)

for stability of compact sets for hybrid systems in [17], (10)

it follows that A is UGS. However, classical Lyapunovand, with the definitionsu, o, uqo : R — {0} and

arguments cannot be used to establish (uniform) attr&;ctiviucﬂnJrl,uderl . R* — {1}, we have, for eachj e

since the functio’” does not decrease along flows when the{o, ...,m},

state is away from the origin. Instead, one could appeal to 1) if 2 € CNQad,A) and uei(z) = 0 for all i e
invariance principles, for which certain technical coiadis { L) thenucv-ﬂ(x) < 0"’

must be verified and also some rudimentary knowledge of 2) if ;C 6’5 A QA(é"JA) and wai(x) = 0 for all i €
solutions is needed to compute invariant sets. For inveeian {0,...,7) then Ud’j+1(x) <0.

principles for hybrid systems, see [10], [5], and [17]. &ad,

we take the continuously differentiable function The theorem imposes a nested negative semi-definite con-

dition on the functions.. ; andu, ;, which bound the change

Vo(z) = gao (6) in V; along flows and jumps, respectively. Through the
definition ofu. o andug,0, the nested condition requires that
uc,1 andug,; are never positive. The functiomn. » (respec-

(VVa(x), f(z)) = =2 Ve e O, (7) tively, uq2) can be positive only where. ; (respectively,

and note that



ug,1) iS negative. In other words, whem.; is zero,u.» For everyx € C'\ A such thatu. ;(z) = 0, i = 0,1, then
should be nonpositive. Similarly for,». Continuing,u.s  wu.2(z) < 0; and for everyr € D\ A such thatug ;(z) = 0,
should be nonpositive whem. ; andu. . are zero, buti.s ¢ = 0,1, thenugs(x) < 0. Then, items 1 and 2 hold for
can be positive elsewhere. And so on. Finally, through th¢= 1, 2. Moreover, UGAS ofA follows from Theorem 3.2
definitions of u; y,+1 and ug,, 11, there are no points in with m = 2.

04(5, A) where all of theu.; (respectivelyu, ;) are zero.
The existence of: satisfying (8) is guaranteed whéf is
continuous o2 4 (4, A). However, continuity is not required
in general. The theorem is stated for functidristhat are

continuously differentiable at each point @ N Q.4(5, A),
but a similar result holds for functions locally Lipschitn o

Example 4.2:(Non-Zeno bouncing ball) The previous
bouncing ball model exhibits Zeno solutions. See, for exam-
ple, [8]. Moreover, if the flow and jump sets are extended to
their closures, the model exhibits purely discrete (jurgpin
solutions. In the current example, an alternative model for
this set. Such a result requires working with a generalizetge t_)ouncmg ball is developed tha_t _does not exh|b_|_t Zeno
notion of derivative. solutions. It is related to a model arising from regulaiizat

Note that when the first function in Matrosov's theorem jg’¢€dures in [8]'. The T"Ode' 'S develo!aed 1o preserve
positive definite and radially unbounded as in Theorem S.EGAS of the origin, relying on _Ma}trosovs theorem. As
it can be used to establish UGS for the given compact se 'efore, lety represent the gray|tat|onal_ qonstant ahd let

Under mild regularity assumptions, hybrid systems witH € [0,1) represent the restitution coefﬁmenp Consider a
UGAS compact sets admit smooth, strict Lyapunov function'g]_OdeI parametrized by the positive constantsi = 1,2,3,

[4]. However, such functions can be difficult to constructWIth data
As highlighted above, the Matrosov theorem relaxes the _ o _ 0
requirements on the functions that need to be constructed! (#) = { —M(z1) — N(z1)z2 } » 9() [—sz] ’

The proof of Theorem 3.2 follows the proofs of both the o { R2 >0 or > e andr > —
continuous-time and discrete-time nested Matrosov timesre ={z€R® |21 20 0r(zz 2 ~e2 ande, > —e1) },
in [14], [9]. In fact, the main argument of the proof is to D :={z€R® |21 =0, 22 < &2} ,
recursively exploit the negativity guaranteed in the reste
conditions in 1) and 2) of théi + 1)-th Matrosov func- Where
tions . i+1, uq,;+1 at points where the previous Matrosov e M : R — R is continuous with\/ (z1) = ~ for z; > &3

functions vanish for each < m. Then, UGA follows from andxzy M (z1) > 0 for all 21 # 0;
the construction of a functiof, which is obtained froma e N :R — Rx( is continuous withN (z;) = 0 for z; >
linear combination of thé&; functions, with the property that es, and N (z1) > 0 for z; < 0.

it has a strictly neg_ative decrease along f!ows and jumps 6, jump map takes points in the jump set, which is already
©4(6, A). The details of the proof are omitted due t0 SpPacg|sed, to points outside of the jump set. Thus, there are

constraintsj Finally,_ note that _Theorer_n 3.2 when spe@dliz ,; 7eno solutions (see [7, Corollary 4.9]). Indeed, after a
to the continuous-time case, i.e., takibg D = (), recovers fiite number of jumps, the ball’s trajectory asymptotigall
the result in [9] for the time-invariant case, while wheng,nerges to the origin by flowing only. Figure 2 depicts
specialized to the discrete-time case, i.e., takiig’ = 0, rajectories evolving on the flow and jump sets using the
recovers the result in [14] for the time-invariant case. functions M and N shown in Figure 3, which satisfy the
IV. EXAMPLES conditions above. When; > 3, the flow map here matches
dthe flow map of the previous bouncing ball model. When
r1 < &3, the modifications to the model are aimed at
generating forces corresponding to compression of the ball
and energy dissipation. Ideally, the functiohs and N and
the valuese; and s> would be such that the solution of
& = f(x) starting at(z1, z2) = (0, —£2) would satisfy:

We now apply our main result to the following hybri
systems.

Example 4.1:(Bouncing ball revisited) Consider the
bouncing ball system in Section IlI-A given k5. Let
A = (0,0) andV; : R? \ A — R be the continuously
differentiable function in (3). It follows that condition®)

and (10) in Theorem 3.2 hold far= 1 with « 21(f) > —e; forall ¢ > 0, in order to guarantee
complete solutions for the hybrid system from the set

uca(z) = 0 for eachz € C\ A, wherez; > 0,

uan(r) = —5(1—¢%)zj foreachreD\A. « 25(t) = oz, for the first¢t > 0 such thatz;(t) = 0,
Moreover, withu, o(z) := 0 for all C'\ A andugo(z) :=0 in order to replicate the dissipation caused by jumping
for all D\ A, u.(z) andug(z) establish items 1 and 2 from (z1,22) = (0,e2).

in Theorem 3.2 forj = 0. However, neither of these conditions is required for the

Let V5 : R?\ A — R be the continuously differentiable derivation that follows.
function given in (6). Conditions (9) and (10) hold for= 2 Let A denote the origin and let; : R2 — R~ be the
with C' function given byV; (z) := 13+ [ M (s)ds. We find
uco(z) = —g? for eachz € C'\ A, that the conditions of Theorem 3.1 hold, so that the origin is
uga(r) = —gyrs foreachre D\ A. UGS, and conditions (9) and (10) in Theorem 3.2 hold for
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sl : ; i Fig. 3. Functions used in Non-Zeno bouncing ball model. Thgyee

with the Zeno bouncing ball model in Example 4.1 when > e3 > 0.

S I —r . o5 L 5 s Otherwise, these functions capture compression of theabathpacts with
T2 the floor.

(b) After a finite number of jumps, the ball’s trajectory reéng
in the flow set and asymptotically converges tbby only define
flowing.
T
Fig. 2. Phase plot of a trajectory to the non-Zeno bounciny dtarting VQ(I) =0 <Z (—)> , Uc.,Q(I) = <VV2(55)7 f(x)> .
from 2(0,0) = [10, 0] 7. Parametersy = 9.8m/s?, p = 0.8, €1 = £3 = ||
0.3, e2 = 0.6. FunctionsM and N as given in Figure 3. If wer(x) = 0 thenz e R2 \ (N U A), VW) =
c, - ’ -

[—z5 21])" /|z|2, and N (z1)zy = 0. Therefore,

; = 1 with o
Z rol Uca(z) =0 = Ueo(z) = M
Uer(z) = —N(z1)23 Vo e, a
uga(z) = —% (1 — 92) g2 VreD. Since M (z1 ), > 0 for all 1 % 0, it follows that item 1
Since these functions are never positive, items 1 and 2 E{GT:gorem 3.2is satisfied fgr=1,2. Hence, the 0“9"1A|S

Theorem 3.2 hold forj = 0. In fact, since there are no
points whereu, ; is zero, item 2 in Theorem 3.2 will hold ~ Remark 4.3:In Example 4.1, using Theorem 3.2, we
for all j no matter whatu, ; is for i > 1. Also note that establish that the origin of the bouncing ball is globally

uci(z) <Oforallze {zreR? |22 >0, 21 <0}. asymptotically stable. This fact can be also establish@wus
To define V2, we let N/ denote the open cone in invariance principles in [17], or using a strict Lyapunov
{zeR? | 2>0, 21 <0} given by function as shown in [4]. The model in Example 4.2 is an
A_ 9 alternative, which is realistic to some extent, to the baugc
N = {x € R? ‘ T=r { N1 } , r>0,X€ (0, 1)} ; ball model in Example 4.1. It has the property that every

) ) solution to it is non-Zeno. Note that away from the origin,
and leto : R — [-2m, 27| be a continuously differ- poth models behave similarly.

entiable, 2-periodic function such tha&(S = 1 when

s = Z(z/|z|) andz € R\ (NUA), where/ : §1 — — [0,27) V. CONCLUSIONS

is such that/z denotes the angle, positive in the counter- For hybrid systems allowing for set-valued dynamics,

clockwise direction, between and the positive horizontal nonuniqueness of solutions, multiple jumps at the same
axis andS' denotes the unit circle. See, for example, thénstant, and Zeno solutions we introduced a nested Matrosov
function plotted in Figure 4(b). Then, for all € R? \ A, theorem as a tool to establish uniform global asymptotic
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Fig. 4. FunctionVs for the application of Theorem 3.2 to the non-Zeno [14]
bouncing ball system.
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stability of compact sets. The required nested conditica is 16]
combination of the conditions in nested Matrosov theorems
for time-varying continuous-time and discrete-time syste
available in the literature. The conditions constitute laxe

ation of classical Lyapunov conditions. Moreover, in castr
to invariance principles, no knowledge about solutionshef t
hybrid system are required. Indeed, like Lyapunov theorem&®!
only bounds on derivatives and differences must be estafig;
lished. Our result was demonstrated on two examples: the
classical bouncing ball system and a non-Zeno version of it.

[17]
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