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Abstract— This paper describes an algorithm for achieving
robust, global asymptotic stabilization in nonlinear control
systems by supervising the actions of a family of hybrid
controllers. The family is such that the regions over which
they operate cover the state space in an appropriate sense.
Moreover, their behavior is such that they can be scheduled
to move the state of the system toward a desirable region,
whether it be an equilibrium point or a compact set. In
establishing our main result, we use the concept of “events”
for hybrid systems and show that, under mild assumptions,
stability of a system without events is preserved when a
finite number of events are incorporated. The algorithm is
applied to robust, global stabilization problems involving vehicle
orientation, position and orientation of a mobile robot, and the
inverted configuration of a pendulum.

I. I NTRODUCTION

In certain control applications, control design tools thatdi-
vide the problem into subproblems for which several control
laws can be designed independently and then combined to
solve the original problem are prevalent for many reasons.
They reduce design and implementation time as well as add
modularity and flexibility to the control system. They are also
appropriate when a single, continuous stabilizing controllaw
does not exist or when its design is not straightforward.

Such a “divide and conquer” approach to control design is
also ubiquitous in control problems where precise control is
desired nearby particular operating points while less stringent
conditions need to be satisfied at other points. This includes
the problem of uniting local and global controllers, in which
two control laws are used: one that is supposed to work
only locally, perhaps guaranteeing good performance, and
another that is capable of steering the system trajectoriesto a
neighborhood of the operating point, where the local control
law works; see, e.g., [23], [15], and [4]. More recently,
these ideas have been extended in [19] to allow for the
combination of more than two state-feedback laws as well
as open-loop control laws. Another asymptotically stabilizing
control strategy that, rather than insisting on a single control
law, uses multiple ones is patchy feedback control [1] for
asymptotically controllable systems. It involves partitioning
the state space into regions so that a state-feedback law can
be designed to globally asymptotically stabilize the desired
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point. The hybrid patchy feedback control strategy in [16]
provides a hysteresis-based implementation of the patchy
feedback control in [1] that guarantees robust stability of
asymptotically controllable nonlinear systems.

Control systems featuring multiple control laws employ
a mechanism acting as a “supervisor”, which selects the
control law to be applied to the plant. This selection is
typically performed in real time and involves the state, inputs,
and outputs of the plant and controllers. Supervisory control
has been addressed for linear systems in [13], [14], [8] and
for several classes of discrete-time systems in [9], [10], [17].
In this paper, following the ideas outlined in [22], we design
a supervisor for a family of hybrid controllers to achieve
robust, global asymptotic stabilization of general nonlinear
systems. Using hybrid controllers designed to operate in
appropriately designed regions of the state space, which is
a condition that we express in terms of apre-asymptotic
stability property, the supervisor chooses the value of a logic
variable to schedule a hybrid controller so that the state of
the plant is moved toward a desirable region, whether it be an
equilibrium point or, more generally, a compact set. Under
reasonable operating conditions of each hybrid controller
and exploiting properties of certain jumps called “events”,
we show in Section III that such a hybrid supervisor can
be constructed to render the desired compact set robustly,
globally asymptotically stable. In Section IV, we apply this
controller to stabilize the orientation of a vehicle orientation,
the position and orientation of a mobile robot, and the state
of a pendulum to the inverted configuration.

II. PRELIMINARIES

Throughout the paper,Rn denotesn-dimensional Eu-
clidean space;R denotes real numbers;R≥0 denotes non-
negative real numbers, i.e.,R≥0 = [0,∞); Z denotes
integers; andN denotes natural numbers including0, i.e.,
N = {0, 1, . . .}. Given a setS, S denotes its closure.
Given a vectorx ∈ R

n, |x| denotes Euclidean vector norm.
Given a setS ⊂ R

n and a pointx ∈ R
n, |x|S :=

infy∈S |x− y|. Given setsS1, S2 subsets ofRn, S1 + S2 :=
{x1 + x2 | x1 ∈ S1, x2 ∈ S2 }. S1 denotes the unit circle,
that is,S1 :=

{
x ∈ R

2 | |x| = 1
}

. R(θ) denotes the rotation

matrix

[
cos θ − sin θ
sin θ cos θ

]
.

A. Hybrid systems

Hybrid systems are dynamical systems with both contin-
uous and discrete dynamics. Among several mathematical
models, like those in [12], [11], [24], for the purposes of



this paper we consider the framework outlined in [5] and
further investigated in [6] and [21] from a dynamical systems
viewpoint with an emphasis on robustness. A hybrid system
H is defined by the following objects:

• A set C ⊂ R
n called theflow set.

• A set D ⊂ R
n called thejump set.

• A map f : C → R
n called theflow map.

• A set-valued mapG : D ⇉ R
n called thejump map.

The flow mapf defines the continuous dynamics on the flow
setC, while the jump mapG defines the discrete dynamics
on the jump setD. These objects are referred to as the data
of the hybrid systemH, which at times is explicitly denoted
asH = (f, C, G, D) and written compactly as

H : x ∈ R
n

{
ẋ = f(x) x ∈ C

x+ ∈ G(x) x ∈ D .
(1)

Solutions are given on extended time domains by functions
that satisfy the conditions suggested by (1). More precisely:

Definition 2.1 (hybrid time domain):A setE ⊂ R≥0×N

is a compact hybrid time domainif

E =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times0 = t0 ≤ t1 ≤ t2 ... ≤
tJ . It is a hybrid time domainif for all (T, J) ∈ E, E ∩
([0, T ]× {0, 1, ...J}) is a compact hybrid time domain.△

Definition 2.2 (hybrid arc):A function x : domx → R
n

is a hybrid arc if domx is a hybrid time domain and, for
eachj ∈ N, t 7→ x(t, j) is locally absolutely continuous.△

Definition 2.3 (solution toH): A hybrid arcx : domx 7→
R

n is a solution to the hybrid systemH if x(0, 0) ∈ C ∪D;
(S1) ∀j ∈ N and almost allt such that(t, j) ∈ domx,

x(t, j) ∈ C, ẋ(t, j) = f(x(t, j)); and

(S2) ∀(t, j) ∈ domx such that(t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)) . △

Hybrid arcs, and solutions toH in particular, are
parametrized by pairs(t, j), where t is the ordinary time
component andj is the time component that keeps track of
the number of jumps. A solutionx is said to benontrivial
if domx contains at least one point different from(0, 0),
maximalif there does not exist another solutionx′ such that
x is a truncation ofx′ to some proper subset ofdomx′,
completeif domx is unbounded, andZenoif it is complete
but the projection ofdomx ontoR≥0 is bounded. Solutions
to H may not be unique, not only due to the jump dynamics
being set-valued map, but also because whenC ∩ D 6= ∅,
solutions fromC∩D jump and, depending on the flow map,
may be able to flow as well.

We say that a hybrid systemH = (f, C, G, D) is well-
posedif its data satisfies the following assumption.

Assumption 2.4 (hybrid basic conditions):Given a hy-
brid systemH = (f, C, G, D), its data(f, C, G, D) satisfies:

(A1) C andD are closed subsets ofR
n.

(A2) f : C → R
n is continuous.

(A3) G : D ⇉ R
n is outer semicontinuous and locally

bounded,1 andG(x) is nonempty for allx ∈ D. △

While well-posedness usually refers to the uniqueness of
a solution and its continuous dependence on parameters,
for example, on initial conditions, these properties rarely
hold for hybrid systems. On the other hand, hybrid systems
H satisfying only the mild conditions in Assumption 2.4
have solution sets enjoying several structural and robustness
properties. For example, for given a bounded sequence of
solutions toH there exists a subsequence that converges to
a solution toH [6, Theorem 4.4] and the set of solutions
to H is equal to the set of solutions toH with vanishing
state perturbations [21]. These properties are key in proving
converse Lyapunov theorems [3] and invariance principles
[20], and guarantee that nominal asymptotic stability of
compact sets is robust [6]. Hence, the hybrid controllers
designed here will insist on them so that the induced stability
property is automatically robust.

The stability definitions below are generalizations of the
standard stability concepts to the setting where completeness
or even existence of solutions is not required. It is a natural
stability notion for hybrid systems since often, the setC∪D
does not coverRn and because local existence of solutions
is sometimes not guaranteed. For the problem of supervising
hybrid controllers studied here, it allows to specify the effect
of the individual controllers, which are not expected to
operate on the entire state space.

Definition 2.5 (pre-asymptotic stability):Consider a hy-
brid systemH. Let A ⊂ R

n be compact. Then:
• A is pre-stablefor H if for each ε > 0 there exists

δ > 0 such that any solutionx to H with |x(0, 0)|A ≤ δ
satisfies|x(t, j)|A ≤ ε for all (t, j) ∈ domx.

• A is pre-attractivefor H if there existsδ > 0 such that
any solutionx to H with |x(0, 0)|A ≤ δ is bounded and
if it is complete thenx(t, j) → A as t + j → ∞.

• A is pre-asymptotically stableif it is both pre-stable
and pre-attractive.

• A is asymptotically stableif it is pre-asymptotically
stable and there existsδ > 0 such that any maximal
solutionx to H with |x(0, 0)|A ≤ δ is complete.

The set from which all solutions are bounded and the
complete ones converge toA is called thebasin of pre-
attraction of A. A is globally (pre-)asymptotically stable
when the basin of (pre-)attraction is equal toR

n. △

By definition, the basin of pre-attraction contains a neigh-
borhood ofA. Points inR

n \ (C ∪ D) always belong to it
since there are no solutions starting at such points.

B. Hybrid controllers for nonlinear systems

We consider nonlinear control systems of the form

P : ẋp = fp(xp, up), yp = hp(xp), xp ∈ Cp, (2)

1A set-valued mapG defined onS ⊂ R
n is outer semicontinuousif

for each sequencexi ∈ S, xi → x ∈ S and each sequenceyi ∈ G(xi)
converging to a pointy, y ∈ G(x). It is locally boundedif, for each compact
setK ⊂ R

n there existsµ > 0 such thatG(K) := ∪x∈KG(x) ⊂ µB.



where xp ∈ Cp is the state,Cp ⊂ R
np is a closed set

wherexp evolves,up ∈ R
mp is the input, and the functions

fp : Cp × R
mp → R

np , hp : Cp → R
np are continuous. A

well-posed hybrid controllerK = (κc, fc, Cc, Gc, Dc),

K :






yc = κc(uc, xc)
ẋc = fc(uc, xc)

}
(uc, xc) ∈ Cc

x+
c ∈ Gc(uc, xc) (uc, xc) ∈ Dc,

(3)

whereuc ∈ R
mc is the input,yc ∈ R

rc the output,xc ∈ R
nc

the state, is such that the setsCc andDc are closed subsets
of R

mc × R
nc , κc : Cc → R

rc and fc : Cc → R
nc are

continuous, andGc : Dc ⇉ R
nc is outer semicontinuous,

locally bounded, andGc(uc, xc) is a nonempty subset of
R

nc for each(uc, xc) ∈ Dc. WhenP is controlled byK via
the feedback interconnectionuc = yp, up = yc, the resulting
system has statex := [x⊤

p x⊤
c ]⊤ ∈ R

n:
[
ẋp

ẋc

]
= f(x) :=

[
fp(xp, κc(hp(xp), xc))

fc(h(xp), xc)

]
(xp, xc)∈C

[
x+

p

x+
c

]
∈ G(x) :=

[
xp

Gc(hp(xp), xc)

]
(xp, xc)∈D,

(4)
where C := {(xp, xc) | xp ∈ Cp, (hp(xp), xc) ∈ Cc } and
D := {(xp, xc) | xp ∈ Cp, (hp(xp), xc) ∈ Dc }. The hybrid
system (4) is well-posed.

III. H YBRID SUPERVISORS OF HYBRID CONTROLLERS

Problem 1: Given a closed setΘ ⊂ Cp ×R
nc−1, a com-

pact setA ⊂ Θ, a finite setQ := {1, . . . , qM} ⊂ N, and a
family of well-posed hybrid controllersKq, q ∈ Q, with state
spaceRnc−1 and the properties in Assumption 3.1 below, de-
sign a well-posed hybrid supervisorK = (κc, fc, Cc, Gc, Dc)
with statexc ∈ R

nc for the hybrid controllersKq so that the
resulting feedback interconnectionHcl given in (4) satisfies:

1) A× Q is globally pre-asymptotically stable.
2) C ∪ D = Θ × Q.
3) All maximal solutions starting inΘ×Q are complete.
Properties 1)-3) imply thatA× Q is stable and attractive

from every point inC ∪D, which, in turn, implies that it is
globally asymptotically stable forHcl.

Assumption 3.1:There exists a family of well-posed hy-
brid controllersKq = (κc,q, fc,q, Cc,q, Gc,q, Dc,q), q ∈ Q:

Kq :





yc = κc,q(uc, ξc)

ξ̇c = fc,q(uc, ξc)

}
(uc, ξc) ∈ Cc,q ⊂ Θ

ξ+
c ∈ Gc,q(uc, ξc) (uc, ξc) ∈ Dc,q ⊂ Θ,

(5)

where ξc ∈ R
nc−1 is the state. Moreover, there exists a

collection of closed setsΨq ⊂ Cc,q∪Dc,q, q ∈ Q, satisfying:

1) ∪q∈QΨq = Θ.
2) ∀q ∈ Q, Φq :=∪i∈Q,i>qΨi, the feedback interconnec-

tion of (2) with Kq, denotedHq, is such that:

a) The setA is globally pre-asymptotically stable.
b) Each maximal solution is complete or ends in

Hq := Φq ∪ Θ\ (Cc,q ∪ Dc,q ∪ Φq) .

c) No maximal solution starting inΨq reaches

Θ \ (Cc,q ∪ Dc,q ∪ Φq) \ A . △

Remark 3.2:Item 2a is assuming that solutions with con-
stant q are bounded, remain close toA, and the complete
ones converge toA. If (Cc,q ∪ Dc,q) ∩ A = ∅ then item 2a
implies thatHq has no complete solutions. Item 2b implies
that solutions with controllerKq that are not complete end
at a point in aΨ set of some controller with index different
thanq. This property permits a hybrid supervisor to guarantee
that maximal solutions are complete. Item 2c combined with
2b imply that solutions fromΨq end at aΨ set of some
controller with index larger thanq. Moreover, Item 2 forqM

implies that solutions toHqM
from ΨqM

converge toA and
the set in item 2c is empty forq = 1. △

The individual hybrid controllers are combined into a sin-
gle, well-posed hybrid controllerK = (κc, fc, Cc, Gc, Dc) of
the form (3) withxc := [ξ⊤c q]⊤, κc(uc, xc) := κc,q(uc, ξc),

fc(uc, xc) :=

[
fc,q(uc, ξc)

0

]
, Cc :=∪q∈Q(Cc,q × {q})

Gc(uc, xc) :=

[
Gc,q(uc, ξc)

q

]
∪ Jq(uc, ξc)

Dc := ∪q∈Q((Dc,q ∪ Hq) × {q}),

(6)

where

Jq(uc, ξc) :=






[
{uc}

{i ∈ Q | (uc, ξc) ∈ Ψi }

]

if (uc, ξc) ∈ Θ \ (Cc,q ∪ Dc,q ∪ Φq),[
{uc}

{i ∈ Q | i > q, (uc, ξc) ∈ Ψi }

]

if (uc, ξc) ∈ Hq \ (Θ \ (Cc,q ∪ Dc,q ∪ Φq)).
(7)

The feedback interconnection ofK with P results in a
hybrid system as in (4) with statex, which we denoteHcl.

Theorem 3.3: Under Assumption 3.1, the hybrid con-
troller K = (κc, fc, Cc, Gc, Dc) defined in(6)-(7) is well
posed and solves Problem 1.

The well-posedness property of the hybrid supervisorK
in Theorem 3.3 combined with results in [6] imply that the
nominal asymptotic stability induced byK is robust.

The argument in a proof of Theorem 3.3 is as follows.
By construction, for every solution toHcl starting fromΘ,
the number of jumps at whichq changes value before the
solution reachesA×Q is finite. We call these jumps “events”
to distinguish them from the jumps of the hybrid controllers
Hq, which do not alterq, and from any other jumps atA×
Q. Note that the hybrid system resulting from removing the
(finite number of) events, which we denote byH0

cl, is such
thatA×Q is globally pre-asymptotically stable. This follows
from the fact that, away fromA×Q, q remains constant for
each solution toH0

cl and that each of the hybrid controllers
Hq guarantees global pre-asymptotic stability ofA× Q for
its interconnection with (2). Then, Theorem 3.3 follows from
the fact that global pre-asymptotic stability ofA×Q for H0

cl

is preserved when the events are re-incorporated and that
the construction ofK guarantees completeness of maximal



solutions fromΘ × Q. In fact, the following general fact is
true for general hybrid systems with finite number of events.
To detect the events, we define an event counter to be an
outer semicontinuous set-valued mapE : R

n×R
n

⇉ {0, 1},
nonempty on∪x∈D(G(x) × {x}), such that, at every event,
is equal to one. ForHcl, E can be defined so that at points
(x′, x) ∈ ∪x∈D(G(x) × {x}): if x ∈ A× Q or q′ = q then
0 ∈ E(x′, x), otherwise,E(x′, x) = 1.

Theorem 3.4: GivenH = (f, C, G, D), let A ⊂ R
n,

G(D ∩ A) ⊂ A, be compact and such that is globally pre-
asymptotically stable forH0 = (f, C, G0, D0), where

G0(x) := G(x) ∩ {x′ ∈ R
n | 0 ∈ E(x, x′)} ,

D0 := D ∩
{
x ∈ D

∣∣ G0(x) 6= ∅
}

,

and E : R
n × R ⇉ {0, 1} is an outer semicontinuous

set-valued map. Suppose that for each compact setX ⊂
R

n there existsN > 0 such that each solution toH =
(f, C, G, D) starting fromX has no more thanN events.
Then,A is globally pre-asymptotically stable forH.

Note that by construction,H0 in Theorem 3.4 is well posed
and the solutions toH0 experience no events.

IV. A PPLICATIONS

A. Stabilization and tracking on the unit circle

We consider the problem of robustly globally stabilizing
the pointξ = 1 := [1 0]⊤ for the constrained system

ξ̇ = ωR(−π/2)ξ , ξ ∈ Cp := S1, (8)

whereω ∈ R. This model describes the evolution of a point
on a circle as a function of the angular velocity, which is the
control variableω. We note that the (classical) feedback con-
trol ω = ξ2 would almost solve this problem. We would have
ξ̇1 = ξ2

2 = 1− ξ2
1 and the derivative of the functionV (ξ) :=

1−ξ1 would satisfy〈∇V (ξ), ξ2R(−π/2)ξ〉 = −(1−ξ2
1). We

note that the energy will remain constant ifξ starts at±1.
Instead, one could also consider the discontinuous feedback
ω = sgn(ξ2) where the function “sgn” is defined arbitrarily
in the set{−1, 1} when its argument is zero. This feedback
is not robust to arbitrarily small measurement noise. From
points inCp nearby−1 with ξ2 < 0, it steers the solutions
towards1 counterclockwise while from points withξ2 > 0,
it steers the solutions towards1 clockwise. Then, from points
in Cp arbitrarily close to−1, there exists arbitrarily small
measurement noisee appropriately changing sign so that
sgn(ξ2 + e) is always pushing solutions towards−1.

To achieve a robust, global asymptotic stability result, fol-
lowing Section III, we design a well-posed hybrid supervisor
for the point1. It uses the continuous-time controllerω = ξ2

when the state is not near−1 and the continuous-time
controllerω = ξ1, which drives the system away from−1,
when the state is near that point (it actually almost globally
asymptotically stabilize the point[0 − 1]⊤ on Cp, with the
only point not in the basin of attraction being[0 1]⊤). Let
the domain of applicability for the controllerω = ξ1 =:
κc,1(ξ) be Cc,1 := {ξ ∈ Cp | ξ1 ≤ −1/3} and domain of
applicability for the controllerω = ξ2 =: κc,2(ξ) beCc,2 :=

{ξ ∈ Cp | ξ1 ≥ −2/3}. Notice thatCc,1∪Cc,2 = Cp =: Θ.
Since these are continuous-time controllers,Dc,q and Gc,q

are empty for eachq ∈ Q. Let us take

Ψ1 := Cc,1, Ψ2 := Cp\Cc,1.

Next, we check Assumption 3.1. (There is no stateξc in
the controllers we are working with here.) By definition,
Ψ1 ∪ Ψ2 = Θ. For eachq ∈ Q := {1, 2}, the solutions of
Hq (the system we get by usingω = κc,q(ξ) and restricting
the flow toCc,q), are such that the point1 is globally pre-
asymptotically stable. Forq = 1, this is because there are
no complete solutions and1 does not belong toCc,1. For
q = 2, this is becauseCc,2 is a subset of the basin of
attraction for1. We note that every maximal solution to
H1 ends inΨ2. Every maximal solution toH2 is complete
and every maximal solution toH2 starting in Ψ2 does
not reachCp\Cc,2. Thus, Assumption 3.1 holds. Then, the
hybrid supervisorK = (κc, fc, Cc, Gc, Dc) given in (6)-
(7) is completely determined using the above definitions.
The proposed construction yieldsH1 = Ψ2 = Cp \ Cc,1,
H2 = Cp \ Cc,2, andGc(uc, xc) = 3 − q.

Let us consider the problem of designing a controller
so that the state of (8) robustly tracks the continuously
differentiable signalζ : R≥0 → S1. This problem can be
recast as the point stabilization problem above via the change

of coordinatesξ =

[
z1ζ1 − z2ζ2

z2ζ1 + z1ζ2

]
, z ∈ S1. It can be shown

that ξ = ζ ⇐⇒ z = 1 and that the derivative ofz satisfies
ż = ω̃R(−π/2)z whenω = ζ2ζ̇1 − ζ1ζ̇2 − ω̃, whereω̃ ∈ R;
see [22]. Then, tracking ofζ is accomplished whenz is
stabilized to1. To achieve robust, global tracking ofζ, we
apply the hybrid supervisor designed above to controlω̃.

B. Stabilization of a mobile robot

Consider the model of a unicycle or mobile robot

ẋ = ξϑ, ξ̇ = ωR(−π/2)ξ , (x, ξ) ∈ Cp := R
2 × S1, (9)

where x denotes planar position from a reference point
(in meters), ξ denotes orientation,ϑ ∈ V := [−3, 30]
denotes velocity (in meters per second), andω ∈ [−4, 4]
denotes angular velocity (in radians per second). Bothϑ
and ω are control inputs. Due to the specification of the
set V , the vehicle is able to move more rapidly in the
forward direction than in the backward direction. Our goal
is to design a robust, global stabilizer for the pointA0

given by (x, ξ) = (0,1). It is well known that (9) fails
Brockett’s condition for robust local asymptotic stabilization
by classical (even discontinuous) time-invariant feedback [2],
[18], [7]. Nevertheless, a hybrid feedback stabilizer can be
designed to accomplish the goal. We build three well-posed
hybrid controllers and then combine them with the well-
posed hybrid supervisor in Section III. The three controllers
use a discrete statep ∈ P := {−1, 1} and are as follows:

• The first hybrid controller,K1, usesϑ = ProjV(k1ξ
T x),

where k1 < 0 and ProjV denotes the projection onto
V , while the feedback forω is given by the hybrid
controller in Section IV-A for tracking on the unit



circle with reference signal forξ given by−x/|x|. The
two different values forq in that controller should be
associated with the two values inP . The particular
association does not matter. The controller flow and
jump sets are such that

Cc,1 ∪ Dc,1 =
{
x ∈ R

2 | |x| ≥ ε11

}
× S1 × P

whereε11 > 0, andCc,1, Dc,1 are constructed from the
hybrid controller in Section IV-A for tracking on the
unit circle.

• The second hybrid controller,K2, uses ϑ =
ProjV(k2ξ

T x), k2 ≤ 0, while the feedback forω is
given as in Section IV-A for stabilization of the point1

on the unit circle. Again, theq values of that controller
should be associated with the values inP and the
particular association does not matter. The controller
flow and jump sets are such that

Cc,2 ∪ Dc,2 = (
({

x ∈ R
2 | |x| ≤ ε21

}
× S1

)

∩
{
(x, ξ) ∈ R

2 × S1
∣∣ 1 − ξ1 ≥ ε22|x|2

}
) × P ,

where ε21 > ε11, ε22 > 0, and Cc,2, Dc,2 are con-
structed from the hybrid controller in Section IV-A for
stabilization of the point1 on the unit circle.

• The third hybrid controller, K3, uses ϑ =
ProjV(k3ξ

T x), k3 < 0, while the feedback forω
is hybrid as defined below. The controller flow and
jump sets are designed so that

Cc,3 ∪ Dc,3 =
({

x ∈ R
2 | |x| ≤ ε31

}
× S1

)

∩
{
(x, ξ) ∈ R

2 × S1
∣∣ 1 − ξ1 ≤ ε32|x|2

}
× P =: Λ3,

whereε31 > ε21 andε32 > ε22. The control law forω
is given byω = pk, wherek > 0 and the discrete state
p has dynamics given bẏp = 0, p+ = −p. The flow
and jump sets are given by

Cc,3 := Λ3 ∩ ({(x, ξ, p) | σ(p)ξ2 ≤ 0}

∪
{
(x, ξ, p) | σ(p)ξ2 ≥ 0, 1 − ξ1 ≤ ε22|x|

2
}
)

Dc,3 := Λ3\Cc,3 .

This design accomplishes the following: controllerK1 makes
ξ track −x/|x| as long as|x| is not too small, and thus
the vehicle drives towardsx = 0 eventually using only
positive velocity; controllerK2 drivesξ towards1 to get the
orientation of the vehicle correct; and controllerK3 stabilizes
ξ to 1 in a persistently exciting manner so thatϑ can be used
to drive the vehicle to the origin.

Let Θ := R
2 × S1 × P and Q := {1, 2, 3}. The control

strategy above is coordinated by a hybrid supervisor with

Ψ1 := Cc,1 ∪ Dc,1, Ψ2 :=
(
Θ\Ψ1

)
∩ (Cc,2 ∪ Dc,2)

Ψ3 := (
({

x ∈ R
2 | |x| ≤ ε21

}
× S1

)

∩
{
(x, ξ) ∈ R

2 × S1
∣∣ 1 − ξ1 ≤ ε22|x|

2
}
) × P .

Proceeding as in Section IV-A, it can be verified that
∪q∈QΨq = Θ and that Assumption 3.1 holds. By Theo-
rem 3.3, the setA := A0 × P is globally asymptotically
stable. Figure 1 depicts simulation results of the mobile
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Fig. 1. Global stabilization of a mobile robot to the origin with orientation
ξ = 1. Vehicle starts atx(0, 0) = (10, 10) (in meters) andξ(0, 0)
corresponding to an angle ofπ

4
radians. (a) The vehicle is initially steered to

a neighborhood of the origin with orientation−x/|x|. At about1/5 meters
away from it, controllerK3 is enabled to accomplish the stabilization task.
(b) Zoomed version of the solution in (a) around the origin. Controller K3

steers the vehicle tox = (0, 0) and ξ = 1 by a sequence of “parking”
maneuvers.

robot with the hybrid controller proposed above for global
asymptotic stabilization ofA× Q.

C. Swing up of a pendulum

Consider the task of robustly, globally asymptotically
stabilizing the pointx∗ := [0 1 0]⊤ for the pendulum system
with statex := [ξ⊤ z]⊤ ∈ R

3 given by
[
ξ̇
ż

]
= f(x, u) :=

[
zR(−π/2)ξ

ξ1 + ξ2u

]
(ξ, z) ∈ Cp := S1 × R,

whereξ denotes the angle of the pendulum andz corresponds
to the angular velocity, with positive velocity in the clockwise
direction. The pointξ = [0 1]⊤ corresponds to the upright
position whileξ = [0 −1]⊤ corresponds to the down position
of the pendulum. This model was obtained after an input
transformation from force to accelerationu and with ratio
between the gravitational constant and the pendulum length
equal to one. The cart dynamics are ignored to simplify the
presentation; however, global asymptotic stabilization of the
full cart/pendulum system can be addressed with the same
tools used below. To accomplish the stabilization task, we
combine three well-posed hybrid controllers with the hybrid
supervisor in Section III. The first controller moves the
system out of a neighborhood of the point−x∗. The second
controller moves the system to a neighborhood of the point
x∗. The third controller locally asymptotically stabilizes the
point x∗. These are designed as follows:

• The third controller,K3, can be designed using the idea
of partial feedback linearization with “output”ξ1. This
is possible sinceξ2 is positive and bounded away from
zero in a neighborhood ofx∗. Let κc,3 : Cp → R

denote this local asymptotic stabilizer, letCc,3 be a
compact neighborhood of the pointx∗ that is also a
subset of the basin of attraction forx∗ for the system
ẋ = f(x, κc,3(x)), x ∈ Cp, and letΨ3 be a compact
neighborhood of the pointx∗ with the property that
solutions of ẋ = f(x, κc,3(x)) starting in Ψ3 do not
reach the boundary ofCc,3. Then, redefineCc,3 and
Ψ3 by intersecting the original choices withS1 × R.
The setΨ3 is indicated in green in Figure 2(d) while



the setCc,3 is the union of the green and yellow regions
in the same figure.

• For the second controller,K2, let 0 < δ < ε < 1 and

W (x) := 1

2
z2 + 1 + ξ2,

Ψ2 := {(ξ, z) ∈ S1 × R | W (x) ≥ ε} \ Ψ3,

Cc,2 := {(ξ, z) ∈ S1 × R | W (x) ≥ δ } \ Ψ3,
κ2(x) := −zξ2(W (x) − 2) ∀x ∈ Cc,2.

The setΨ2 is indicated in green in Figure 2(b) or,
alternatively, in Figure 2(c). The setCc,2 is the union
of the green and yellow regions in the same figures.

• For the first controller, define Cc,1 :=
(S1 × R) \ (Ψ2 ∪ Ψ3), Ψ1 := Cc,1, and κ1(x) := k
for all x ∈ Cc,1, wherek >

√
δ(2 − δ)/(1 − δ). The

setΨ1 is indicated in green in Figure 2(a).
Since each of the controllers is purely continuous,Dc,q and
Gc,q are empty for eachq ∈ Q.

It can be verified that the hybrid controllers above are
well posed and that Assumption 3.1 is satisfies forA :=
{x∗}, Q := {1, 2, 3}, and Θ := S1 × R. In turn, the
hybrid supervisory control algorithm given in Section III
robustly, globally asymptotically stabilizes the pointx∗ for
the pendulum system.
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Fig. 2. Sets of the hybrid supervisor for the problem of swinging up a
pendulum. The statex = [ξ⊤, z⊤]⊤ evolves on the cylinderS1×R ⊂ R

3,
while q ∈ Q = {1, 2, 3}. The inverted position(ξ, z) = ((0, 1), 0) is
indicated by a blackx. The black curve represents the set of points where
W (x) := 0.5z2 + 1+ ξ2 = 2. Sets forq = 1, q = 2, andq = 3 are show
in (a), (b), and (d), respectively. In (c), the sets forq = 2 are depicted with
perspective rotated by 180 degrees.

V. CONCLUSION

We proposed a well-posed construction of general hy-
brid supervisors for robust, global asymptotic stabilization

in nonlinear systems. The hybrid supervisor schedules an
appropriate hybrid controller for every point in the regionof
operation to accomplish the desired task. We provided con-
trol applications that not only illustrate the design procedure
of hybrid supervisory control but also provide motivation for
the need of robust hybrid supervisors of hybrid controllers.

REFERENCES

[1] F. Ancona and A. Bressan. Patchy vector fields and asymptotic
stabilization. ESAIM-COCV, 4:445–471, 1999.

[2] R. W. Brockett. Differential Geometric Control Theory, chap-
ter Asymptotic stability and feedback stabilization, pages 181–191.
Birkhauser, Boston, MA, 1983.

[3] C. Cai, A. R. Teel, and R. Goebel. Smooth Lyapunov functions for
hybrid systems - Part I: Existence is equivalent to robustness. IEEE
Trans. Aut. Control, 52(7):1264–1277, July 2007.

[4] D. V. Efimov. Uniting global and local controllers under acting
disturbances.Automatica, 42:489–495, 2006.

[5] R. Goebel, J.P. Hespanha, A.R. Teel, C. Cai, and R.G. Sanfelice.
Hybrid systems: generalized solutions and robust stability. In Proc.
6th IFAC Symposium in Nonlinear Control Systems, pages 1–12, 2004.

[6] R. Goebel and A.R. Teel. Solutions to hybrid inclusions via set and
graphical convergence with stability theory applications. Automatica,
42(4):573–587, 2006.
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