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Abstract— This paper describes an algorithm for achieving point. The hybrid patchy feedback control strategy in [16]
robust, global asymp_totic stabiliz_ation in nonlir_1ear conrol_ provides a hysteresis-based implementation of the patchy
systems by supervising the actions of a family of hybrid  faaqpack control in [1] that guarantees robust stability of

controllers. The family is such that the regions over which toticall trollabl I ¢
they operate cover the state space in an appropriate sense. asymptoucally controfiable nonlinear systems.

Moreover, their behavior is such that they can be scheduled ~ Control systems featuring multiple control laws employ
to move the state of the system toward a desirable region, a mechanism acting as a “supervisor”, which selects the
whether it be an equilibrium point or a compact set. In  control law to be applied to the plant. This selection is
establishing our main result, we use the concept of “events” typically performed in real time and involves the state pitsp

for hybrid systems and show that, under mild assumptions, .

stability of a system without events is preserved when a and outputs of the plant apd controllers..Superwsory obntr
finite number of events are incorporated. The algorithm is has been addressed for linear systems in [13], [14], [8] and
applied to robust, global stabilization problems involving vehicle  for several classes of discrete-time systems in [9], [104].[
orientation, position and orientation of a mobile robot, ard the  |n this paper, following the ideas outlined in [22], we desig
inverted configuration of a pendulum. a supervisor for a family of hybrid controllers to achieve

|. INTRODUCTION robust, global asymptotic stabilization of general nosdin
In certain control applications, control design tools itiat SYStems. Using hybrid controllers designed to operate in

vide the problem into subproblems for which several Contrcﬂpprozrigtelyhdesigned regiong of the st?te space, Wh.iCh Is
laws can be designed independently and then combined queondition that we express In terms oipse-asymptotic

solve the original problem are prevalent for many reason§'.[abIIIty property, the supervisor chooses the value of a logic

They reduce design and implementation time as well as aéfariable t_o schedule a hybrid c_ontroller SO that the ;tate of
modularity and flexibility to the control system. They arsal the plant is moved toward a desirable region, whether it be an

appropriate when a single, continuous stabilizing coriawl equilibrium point or, more ggnerally, a compact_ set. Under
does not exist or when its design is not straightforward. reasonable operating conditions of each hybrid controller

Such a “divide and conquer” approach to control design ignd exploiting properties of certain jumps called “events”
we show in Section Il that such a hybrid supervisor can

also ubiquitous in control problems where precise consol i )

desired nearby particular operating points while lesagent be constructed tq render the deswed_ compact set robu;tly,

conditions need to be satisfied at other points. This indud@lOba"y asympto_t!cally stat_>|e. In_ Section IV’_ we aPF_"yﬁh'
controller to stabilize the orientation of a vehicle orein,

the problem of uniting local and global controllers, in wic - _ . .
two control laws are used: one that is supposed to wolke position and orientation of a mobile robot, and the state

only locally, perhaps guaranteeing good performance, afj @ Pendulum to the inverted configuration.
another that is capable of steering the system trajecttwias I

neighborhood of the operating point, where the local cdntro . .

law works; see, e.g., [23], [15], and [4]. More recently, _Throughout the paperR™ denotesn-dimensional Eu-
these ideas have been extended in [19] to allow for thglidean spaceR denotes real numberg:, denotes non-
combination of more than two state-feedback laws as weflegative real numbers, ieR-o = [0,00); Z denotes
as open-loop control laws. Another asymptotically stabily  INt€gers; and¥ denotes natural numbers includinig i.e.,
control strategy that, rather than insisting on a singleredn ¥ = {0,1,...}. Given a setS, S denotes its closure.
law, uses multiple ones is patchy feedback control [1] fof?iVen & vector: € R™, |z| denotes Euclidean vector norm.
asymptotically controllable systems. It involves pastiing CGven a setS c R" and a pointz € R, [z[s :=
the state space into regions so that a state-feedback law ¢&fves [= —y[. Given setsSy, S, subsets oRR™, 5y + 55 :=

be designed to globally asymptotically stabilize the dasir {71 + 22 [ 21 € 51,25 € 52 }. S denotes the unit circle,
thatis,S' := {z € R? | |z| = 1}. R(¢) denotes the rotation
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this paper we consider the framework outlined in [5] and (A2) f:C — R™ is continuous.
further investigated in [6] and [21] from a dynamical syseem  (A3) G : D = R" is outer semicontinuous and locally
viewpoint with an emphasis on robustness. A hybrid system bounded! andG(x) is nonempty for ale € D. A

H is defined by the following objects: While well-posedness usually refers to the uniqueness of
o AsetC C R” called theflow set a solution and its continuous dependence on parameters,
o AsetD C R” called thejump set for example, on initial conditions, these properties narel
e Amap f:C — R" called theflow map hold for hybrid systems. On the other hand, hybrid systems

o A set-valued magr : D = R" called thejump map ‘H satisfying only the mild conditions in Assumption 2.4
The flow mapf defines the continuous dynamics on the flowhave solution sets enjoying several structural and rolesstn
setC, while the jump mag’ defines the discrete dynamicsproperties. For example, for given a bounded sequence of
on the jump seiD. These objects are referred to as the datgolutions to{ there exists a subsequence that converges to
of the hybrid systent, which at times is explicitly denoted a solution tot [6, Theorem 4.4] and the set of solutions
asH = (f,C,G, D) and written compactly as to H is equal to the set of solutions t with vanishing

. state perturbations [21]. These properties are key in pgpvi
ﬁ = /@) rea (1) converse Lyapunov theorems [3] and invariance principles
v € G z€D. [20], and guarantee that nominal asymptotic stability of
Solutions are given on extended time domains by functiorompact sets is robust [6]. Hence, the hybrid controllers
that satisfy the conditions suggested by (1). More pregiseldesigned here will insist on them so that the induced stgbili

Definition 2.1 (hybrid time domain)A set £ ¢ R>ox N  property is automatically robust.

H: zeR" {

is acompact hybrid time domaiif The stability_definitions below are _generalizations of the
S standard stability concepts to the setting where compésten
. or even existence of solutions is not required. It is a natura
E= U (Itj. i1, )

) stability notion for hybrid systems since often, the et D
for some finite sequerzc?e of timés= t, < t; < t, ... < does not coveR™ and because local existence of solutions

t;. It is a hybrid time domairif for all (T,J) € E, E N is sometimes not guaranteed. For the problem of supervising

([0,T] x {0,1,...7}) is a compact hybrid time domainA hybrid controllers studied here, it allows to specify thizef
Y _ _ of the individual controllers, which are not expected to

is a hybrid arcif dom« is a hybrid time domain and, for

each;j € N, t — a(t, j) is locally absolutely continuous Definition 2.5 (pre-asymptotic stability)Consider a hy-

brid systemH. Let A C R™ be compact. Then:

Definition 2.3 (solution tdH): A hybrid arcz : domz +— « A is pre-stablefor H if for eache > 0 there exists
R™ is asolution to the hybrid syste if x(0,0) € C U D; § > 0 such that any solution to H with |2(0,0)|4 < 6
(S1) Vj € N and almost alk such that(t, j) € domz, satisfies|x(t,j)|4 < e for all (¢,j) € dom .
) o ) o A is pre-attractivefor H if there existsd > 0 such that
o(t,j) €C, it j) = f(a(t.5)); and any solutionz to H with |z(0,0)| 4 < ¢ is bounded and
(S2) Y(t,j) € domx such that(¢,j + 1) € domx, if itis complete th?m(tvj) - jA.aS.t +J — 0.
o A is pre-asymptotically stabléf it is both pre-stable
x(t,j) € D, x(t,j+1)e€Gx(t,j) . A and pre-attractive.
Hybrid arcs, and solutions toX in particular, are o A is asymptotically stabldf it is pre-asymptotically
parametrized by pair$t, j), wheret is the ordinary time stable and there exisis > 0 such that any maximal

component ang is the time component that keeps track of ~ solutionz to H with |2(0,0)|4 < ¢ is complete.

the number of jumps. A solutiom is said to benontrivial The set from which all solutions are bounded and the
if doma contains at least one point different frof,0), complete ones converge td is called thebasin of pre-
maximalif there does not exist another solutishsuch that attraction of A. A is globally (pre-)asymptotically stable
x is a truncation ofz’ to some proper subset efoma’, when the basin of (pre-)attraction is equalRo. A

completeif doma is unbounded, andenoif it is complete gy definition, the basin of pre-attraction contains a neigh-
but the projection oflom = ontoR> is bounded. Solut|ons_ borhood of A. Points inR™ \ (C U D) always belong to it

to H may not be unique, not only due to the jump dynamicgjnce there are no solutions starting at such points.
being set-valued map, but also because wbhen D # (),

solutions fromC'N D jump and, depending on the flow map,B- Hybrid controllers for nonlinear systems

may be able to flow as well. We consider nonlinear control systems of the form
We say that a hybrid syste = (f,C,G, D) is well- . _ »

posedif its data satisfies the following assumption. Py = fplap,up), yp = hp(p), et ()
Assumption 2.4 (hybrid basic conditiongkiven a hy- A set-valued mapG defined onS C R™ is outer semicontinuousf

: o : iofina. fOr each sequence; € S, z; — x € S and each sequenag € G(z;)
brid systent = (f’ ¢,G, D)’ Its data(f’ C.G, D) satisfies: converging to a poing, y € G(z). Itis locally boundedf, for each compact

(A1) C and D are closed subsets &". set K C R™ there existsu > 0 such thatG(K) := Uy g G(z) C uB.



where z, € CP is the state,C” C R" is a closed set ¢) No maximal solution starting i, reaches
wherez, evolves,u, € R™» is the input, and the functions

fp: CP x R™ — R"™, h, : C? — R™ are continuous. A O\ (CegUDe,g UPg) \ A =
well-posed hybrid controlle = (k, f.,Ce, G., D.), Remark 3.2:Item 2a is assuming that solutions with con-
Yo = Kelte, o) stantg are bounded, remain close t#, and the c_omplete
K - (jjc = e, zo) } (e, ) € Ce (3) Ones converge tol. If (CeqUD.q) N A = () then item 2&}
zt € Golue,z.) (e, ) € Do, implies that#, has no complete solutions. Item 2b implies

that solutions with controlleiC, that are not complete end

whereu, € R™« is the input,y. € R" the outputz. € R™  at a point in al set of some controller with index different
the state, is such that the séts and D, are closed subsets thang. This property permits a hybrid supervisor to guarantee
of R™e x R, k. : C. — R™ and f. : C. — R" are that maximal solutions are complete. Item 2c combined with
continuous, ands. : D. = R"¢ is outer semicontinuous, 2p imply that solutions from¥, end at a¥ set of some
locally bounded, and.(u.,.) is a nonempty subset of controller with index larger than. Moreover, Item 2 foiy,

R for each(uc, zc) € D.. WhenP is controlled byK’ via  implies that solutions t¢4,,, from ¥,,, converge ta4 and

the feedback interconnection = y,, u, = y., the resulting  the set in item 2c is empty fay = 1. A
system has state := [z, z/]" € R™ The individual hybrid controllers are combined into a sin-
. le, well-posed hybrid controllé€ = (s, f.,C.,G., D.) of
FP] = f(z) := [fp(%’“(hp(x”);%))} (Tp, ) €C tghe form IC()3) With};c =[] ¢, ﬁc(ic,xc) = nc,q(uc,%c),

Le fe(h(zp), x.
7 <60 =60 .0) (#r2)€D. flues) = | T4 CoimUpeq(Cag x o)

(4) Gc,q(um EC) (6)
q

where C' = {(zp,z.) | z, € C?, (hy(z}),z.) € C.} and Ge(ue, xc) = } U Jq(ue, &)

D = {(zp,xc) | xp € CP, (hp(ap), wc) € Dc}. The hybrid D, .= U, ((D.., U Hy) x {q}),
system (4) is well-posed.

where
{uc}

I1l. HYBRID SUPERVISORS OF HYBRID CONTROLLERS {ieQ | (u.&) e}

Problem 1: Given a closed se® C C? x R"~1, a com- (e, £.) if (e, &) €O\ (CeqUDegUdy),
pact setA C O, a finite setQ :={1,...,qn} C N, and a €r5e {uc}
family of well-posed hybrid controller&,, ¢ € @, with state {ieQ |i>q, (u,&)€V;}
spaceR”<~! and the properties in Assumption 3.1 below, de- if (uc,&) € Ho\ (©\ (Ce,qUDcqU D).
sign a well-posed hybrid supervisbr= (k., f., C¢, G., D.) (7

with statez. € R" for the hybrid controllerdC, so that the The feedback interconnection @& with P results in a
resulting feedback interconnectiéti.; given in (4) satisfies: hybrid system as in (4) with state, which we denoté+,;.

1) A x Q is globally pre-asymptotically stable. Theorem 3.3: Under Assumption 3.1, the hybrid con-

2) CUD =060 xQ. troller X = (ke, fe, Ce, Ge, D) defined in(6)-(7) is well

3) All maximal solutions starting i® x ¢ are complete. posed and solves Problem 1.

Properties 1)-3) imply thatl x @) is stable and attractive  The well-posedness property of the hybrid supervisor
from every point inC'U D, which, in turn, implies that it is j5 Theorem 3.3 combined with results in [6] imply that the

globally asymptotically stable fok.;. nominal asymptotic stability induced b is robust.
Assumption 3.1There exists a family of well-posed hy- The argument in a proof of Theorem 3.3 is as follows.
brid controllersiCy = (ke,q; fe,q: Ce,q> Ge.q Deyg)r ¢ € Q: By construction, for every solution t#(.; starting from®o,
the number of jumps at which changes value before the
Yo = tieg(te ) } (e, &) € Coy CO solution reachesl x @ is finite. We call these jumps “events”
1y & = fealue &) ’ ®) to distinguish them from the jumps of the hybrid controllers
& e Geglue, &) (ue, &) € Doy C O,

H,, which do not alter, and from any other jumps at x

where ¢, € R™~1 is the state. Moreover, there exists a@- Note that the hybrid system resulting from removing the
collection of closed set¥, c C..,UD,.,, q € Q, satisfying: (finite number of) events, which we denote B4, is such

1) Uyeq¥, = O that A x @ is globally pre-asymptotically stable. This follows
q - . H
2) Vg € Q, D,:=Usen.>, Vs, the feedback interconnec- from the cht that,oaway froml x @, ¢ remains f:onstant for
tion of (2) with K 'denotedH. . is such that: each solution td,, and that each of the hybrid controllers
q1 q1 .

'H, guarantees global pre-asymptotic stability.4fx () for

its interconnection with (2). Then, Theorem 3.3 followsrfro

the fact that global pre-asymptotic stability .dfx @ for H?,
H,:=®,U6\(C.,UD.,Ud,) . is preserved when the events are re-incorporated and that
the construction ofC guarantees completeness of maximal

a) The setA is globally pre-asymptotically stable.
b) Each maximal solution is complete or ends in




solutions from® x Q. In fact, the following general fact is {{ € C? | & > —2/3}. Notice thatC,. ; UC. 2 = C? =: O.
true for general hybrid systems with finite number of eventsSince these are continuous-time controllebs,, and G ,
To detect the events, we define an event counter to be are empty for eacly € . Let us take
outer semicontinuous set-valued m@pR"™ x R" = {0, 1}, Ty e O T O
nonempty onJ,cp(G(x) x {x}), such that, at every event, 1= el 2= CM\Cey.
is equal to one. Fot.;, £ can be defined so that at pointsNext, we check Assumption 3.1. (There is no statein
(2/,2) € Upen(G(x) x {x}):if z € Ax Q or¢ =qthen the controllers we are working with here.) By definition,
0 € &(a’,x), otherwise £(a’, z) = 1. U, UV, = 0. For eachq € Q := {1,2}, the solutions of
Theorem 3.4: Giver{ = (f,C,G,D), let A ¢ R*, H, (the system we get by using= . ,(§) and restricting
G(DnNA) C A, be compact and such that is globally pre-the flow toC. ,), are such that the poirtt is globally pre-
asymptotically stable fot° = (f,C, G°, D°), where asymptotically stable. Fog = 1, this is because there are
0 , N , no complete solutions antl does not belong t@. ;. For
G(z) = G@)n{a"eR" [0e&(x,2")}, q = 2, this is becaus&. , is a subset of the basin of
D’ = Dn{zeD |G%)#0}, attraction for1. We note that every maximal solution to
‘H, ends inU,. Every maximal solution td4, is complete
and every maximal solution td{, starting in ¥, does
not reachC?\C. 2. Thus, Assumption 3.1 holds. Then, the
hybrid supervisorK = (ke, fe, Ce, Ge, D) given in (6)-

,C,G, D) starting from X has no more thanV events. . . ; T
'(I'ch‘len Ais )globalIygpre-asymptotically stable fdi (7) is completely determined using the above definitions.
' ' The proposed construction yieldd; = Uy, = CP\ C. 1,

0 .
Note that by constructior¥{” in Theorem 3.4 is well posed Hy=CP\ Cua, andGe(ue, z.) = 3 — q.
and the solutions t3{" experience no events.

and & : R" x R = {0,1} is an outer semicontinuous
set-valued map. Suppose that for each compactitset
R™ there existsN > 0 such that each solution t¢{ =

Let us consider the problem of designing a controller
IV. APPLICATIONS so that the state of (8) robustly tracks the continuously
differentiable signak : R>o — S'. This problem can be

i ~ recast as the point stabilization problem above via theghan
We consider the problem of robustly globally stabilizing 2161 — 22Co

the point¢ =1 :=[1 0] for the constrained system of coordinates, = 20(1 + 21(a
: thaté = ( <= z =1 and that the derivative of satisfies
{=wR(=7/2)¢, (e =5, ® - GR(—7/2)z whenw = (3¢ — (1¢ — @, whered € R;

wherew € R. This model describes the evolution of a poinisee [22]. Then, tracking of is accomplished when is

on a circle as a function of the angular velocity, which is thétabilized tol. To achieve robust, global tracking of we
control variables. We note that the (classical) feedback conapply the hybrid supervisor designed above to conirol
trol w = & would almost solve this problem. We would have,

&1 =& =1—¢2 and the derivative of the functiobi (¢) := . _ _

1—¢&; would satisfy(VV (€), & R(—/2)€) = —(1-£7). We Consider the model of a unicycle or mobile robot

note that the energy will rem_ain constgntgifs_tarts attl. . _ €9, € =wR(—7/2)¢, (x,6) € CP :=R2x S, (9)

Instead, one could also consider the discontinuous fe&dbac

w = sgr(&;) where the function “sgn” is defined arbitrarily Where = denotes planar position from a reference point

in the set{—1, 1} when its argument is zero. This feedbackin meters),¢ denotes orientationy € V := [-3,30]

is not robust to arbitrarily small measurement noise. Frorieénotes velocity (in meters per second), ands [—4,4]

points in C? nearby—1 with & < 0, it steers the solutions denotes angular velocity (in radians per second). Bdth

towards1 counterclockwise while from points with, > 0, andw are control inputs. Due to the specification of the
it steers the solutions towardsclockwise. Then, from points Set V, the vehicle is able to move more rapidly in the
in CP arbitrar"y close to—1, there exists arbitrar”y small forward direction than in the backward direction. Our goal
measurement noise appropriately changing sign so thatis to design a robust, global stabilizer for the poiAp
sgné; + e) is always pushing solutions towardsl . given by (z,£) = (0,1). It is well known that (9) fails
To achieve a robust, global asymptotic stability resulk, fo Brockett’s condition for robust local asymptotic statalion
lowing Section IIl, we design a well-posed hybrid supervisoby classical (even discontinuous) time-invariant feeéjag;

for the pointl. It uses the continuous-time controller= ¢, [18], [7]. Nevertheless, a hybrid feedback stabilizer can b

when the state is not nearl and the continuous-time designed to accomplish the goal. We build three well-posed

controllerw = &, which drives the system away from1, hybrid controllers and then combine them with the well-
when the state is near that point (it actually almost glgballPosed hybrid supervisor in Section Ill. The three contrslle
asymptotically stabilize the poiril6 — 1]T on C?, with the use a discrete stajee P := {—1,1} and are as follows:

only point not in the basin of attraction beirg 1]7). Let e The first hybrid controlleriC;, usesd = Proj, (k:1£7 ),

the domain of applicability for the controller = & =: wherek; < 0 and Proj, denotes the projection onto

kea(§) be Ceq = {£€CP | & < —1/3} and domain of V, while the feedback fow is given by the hybrid

applicability for the controllet = & =: k¢ 2(§) be Ce s := controller in Section IV-A for tracking on the unit

A. Stabilization and tracking on the unit circle

, z € S1. It can be shown

B. Stabilization of a mobile robot



circle with reference signal fof given by —z/|z|. The
two different values forg in that controller should be
associated with the two values iR. The particular

association does not matter. The controller flow an =z

jump sets are such that
Cc,l UDCJ = {,TERQ | |$| 2811} x Sl x P

whereeq; > 0, andC, 1, D1 are constructed from the
hybrid controller in Section IV-A for tracking on the
unit circle.

The second hybrid controller,Cy, uses ¢
PrOjV(kng,T), ko < 0, while the feedback for is
given as in Section IV-A for stabilization of the poiht
on the unit circle. Again, the values of that controller
should be associated with the values 7 and the
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Fig. 1. Global stabilization of a mobile robot to the origirtlworientation

& = 1. Vehicle starts atz(0,0) = (10,10) (in meters) and¢(0,0)
corresponding to an angle &f radians. (a) The vehicle is initially steered to
a neighborhood of the origin with orientatieaz /|z|. At about1/5 meters
away from it, controllerCs is enabled to accomplish the stabilization task.
(b) Zoomed version of the solution in (a) around the origiontoller K3
steers the vehicle ta = (0,0) and¢ = 1 by a sequence of “parking”
maneuvers.

“:L‘lé
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particular association does not matter. The controller

flow and jump sets are such that

CeoUDes = (({z€R? | |z] <ean} xS
N{(z,§) eR* x S* | 1—¢& > eplz*}) x P,

wherees; > €11, €22 > 0, and C. 2, D. 2 are con-

structed from the hybrid controller in Section IV-A for

stabilization of the pointt on the unit circle.
The third hybrid controller, K3, uses ¥
Proj,(kséTz), ks < 0, while the feedback forw

is hybrid as defined below. The controller flow and

jump sets are designed so that

Cc,3 UDC73 = ({,T € R? | |$| < 631} X Sl)
N{(z,6) eER?x S | 1 =& <emlz[?} x P = As,

wherees; > €91 andess > €90, The control law forw

is given byw = pk, wherek > 0 and the discrete state
p has dynamics given by = 0,p™ = —p. The flow
and jump sets are given by

Cez = Asn({(z,&p) | o(p)é2 <0}
U{(Iagvp) | U(p)§2 2071_61 §€22|.§C|2})
Dc,3 = A3\Cc,3 .

This design accomplishes the following: controller makes
¢ track —xz/|x| as long as|z| is not too small, and thus
the vehicle drives towards = 0 eventually using only
positive velocity; controlleiC, drives¢ towardsl to get the
orientation of the vehicle correct; and controliés stabilizes
£ to 1 in a persistently exciting manner so thtatan be used
to drive the vehicle to the origin.

Let © := R? x St x P andQ := {1,2,3}. The control
strategy above is coordinated by a hybrid supervisor with

Uy = 0071 U Dc71, Uy = (@\\111) N (Cc,g U Dc,g)

Vs = (({z €R® | |a] <ea } xS
N{(z,6) eR*x SV | 1 —¢&; <emla|?}) x P.

robot with the hybrid controller proposed above for global
asymptotic stabilization ofd x Q.

C. Swing up of a pendulum

Consider the task of robustly, globally asymptotically
stabilizing the point:* := [0 1 0] for the pendulum system
with statex := [¢T 2]T € R3 given by

¢ _ _ |#R(=7/2)¢ p._ gl
L}—f(:c,u) .—[ € + Eou ] (&,2) e CP =5 xR,
where¢ denotes the angle of the pendulum armzbrresponds

to the angular velocity, with positive velocity in the clatgise
direction. The point = [0 1]T corresponds to the upright
position while¢ = [0 —1] T corresponds to the down position

of the pendulum. This model was obtained after an input
transformation from force to acceleratianand with ratio
between the gravitational constant and the pendulum length
equal to one. The cart dynamics are ignored to simplify the
presentation; however, global asymptotic stabilizatibthe

full cart/pendulum system can be addressed with the same
tools used below. To accomplish the stabilization task, we
combine three well-posed hybrid controllers with the hgbri
supervisor in Section Ill. The first controller moves the
system out of a neighborhood of the point*. The second
controller moves the system to a neighborhood of the point
x*. The third controller locally asymptotically stabilizeset
point *. These are designed as follows:

o The third controller/C3, can be designed using the idea
of partial feedback linearization with “output’. This
is possible sincé&; is positive and bounded away from
zero in a neighborhood of*. Let k.3 : C? — R
denote this local asymptotic stabilizer, 1€, 5 be a
compact neighborhood of the point* that is also a
subset of the basin of attraction fai for the system
& = f(z,kes(x)), z € CP, and let¥; be a compact
neighborhood of the poing* with the property that

Proceeding as in Section IV-A, it can be verified that
Uge@¥y = O and that Assumption 3.1 holds. By Theo-
rem 3.3, the setd := Ay x P is globally asymptotically

stable. Figure 1 depicts simulation results of the mobile

solutions ofé = f(x, k. 3(x)) starting in s do not
reach the boundary of’. ;. Then, redefineC. 3 and
U4 by intersecting the original choices with' x R.
The setV; is indicated in green in Figure 2(d) while



the setC. 5 is the union of the green and yellow regionsin nonlinear systems. The hybrid supervisor schedules an

in the same figure.
o For the second controllek;s, let0 < § < e < 1 and

W (z) %zg—i—l—i—&,
Uy = {(£&2) €SI xR | W(x)>e}\ Us,
Ceo = {(§2)eSTXR | W(z)>6d}\ Us,
ko(z) = —2&(W(x)—2) Vo € Ceo.

The set¥, is indicated in green in Figure 2(b) or,

alternatively, in Figure 2(c). The séf, » is the union
of the green and yellow regions in the same figures.
o For the first controller, define C.;
(Sl X R) \ (\IJQ U \113), v, = c,1s and Iil(ZC) =k
for all x € C.1, wherek > /(2 —-6)/(1 —¢). The
setW, is indicated in green in Figure 2(a).
Since each of the controllers is purely continuolis,, and
G.,q are empty for eacly € Q.

It can be verified that the hybrid controllers above are

well posed and that Assumption 3.1 is satisfies for.=
{z*}, Q = {1,2,3}, and © := S! x R. In turn, the

hybrid supervisory control algorithm given in Section HlI [7]

robustly, globally asymptotically stabilizes the poirt for
the pendulum system.

Fig. 2.

Sets of the hybrid supervisor for the problem of swiggup a
pendulum. The state = [¢ T,z T] T evolves on the cylindes' x R C R3,
while ¢ € Q = {1,2,3}. The inverted position¢, z) = ((0,1),0) is
indicated by a blackk. The black curve represents the set of points where
W(z) :=0.522 + 1+ &3 = 2. Sets forg = 1,q = 2, andg = 3 are show
in (a), (b), and (d), respectively. In (c), the sets for 2 are depicted with
perspective rotated by 180 degrees.

V. CONCLUSION

We proposed a well-posed construction of general hy-

brid supervisors for robust, global asymptotic stabilaat

appropriate hybrid controller for every point in the regiah
operation to accomplish the desired task. We provided con-
trol applications that not only illustrate the design prahoe

of hybrid supervisory control but also provide motivatiam f
the need of robust hybrid supervisors of hybrid controllers
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