Asymptotic stability in hybrid systems
via nested Matrosov functions
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Abstract— A theorem on nested Matrosov functions is extended After a brief introduction to hybrid systems and stability i
to time-varying hybrid systems. It provides sufficient condtions  Section II, in Section Il we present the result for time-
for uniform global asymptotic stability of a compact set. An jnyariant systems and apply it to the bouncing ball system.
application to parameter identification with state resets § made In Section IV ive th . it which is for fi
and illustrated on an example. n Section IV, we give the main result, which is for time-

varying systems, and apply it to parameter identificatioti wi
state resets. Its proof is given in Section V.
. INTRODUCTION R"™ denotesn-dimensional Euclidean spac® the real
numbersR>( := [0, 00), Z the integers, anéd, the integers
greater than or equal to the integkr B is the open unit

differential equations. The sufficient condition reporteg P2l in an Euclidean space. Given a &t is its closure.
Matrosov [13] is that, given a continuously differentiab@) Cven:S C R” and a pointr € R", |z[s := infyes |z - y],
function V that establishes uniform global stability of theVneré| - | is Euclidean norm. Giver C R™ and constants
origin, there exists an auxiliarg'’® function with derivative 5’A’Q <O <A, 95(574) ::,{x ER™ [§<|z[s < A} A
that is “definitely nonzero” in the set where the derivativiinctiona : R>o — R is said to belong to classx if it is
of V vanishes. Several alternative versions of Matroso/@@NtinUoUs, zero at zero, strictly increasing, and unbednd
theorem have appeared in the literature; see [8] and the
references therein. Matrosov’s theorem has been applied to
nonlinear control problems, including tracking controir[1 A. Modeling framework and solutions
output feedback [16], and adaptive control [12], amongsthe We follow the presentation in [6] and [7]. Cf. [2], [21], [9].

The most recent versions of Matrosov’s theorem have pridybrid systems are dynamical systems with a state R”
vided extra flexibility by using multiple auxiliary functis that can change continuously during flows, and discontinu-
rather than only one as in the original work of Matrosov. Fasusly at jumps. The state may include physical variabl&s, li
continuous-time systems see [8], where five auxiliary fioms positions and velocities, as well as logic variables takialges
are used in stability analysis for nonholonomic vehicleg] a like “on” and “off”, which are typically identified with intgers
[20], where 3n — 2 auxiliary functions are used for theembedded in Euclidean space. A hybrid systinis defined
interconnection of: subsystems; for discrete-time systems sd®/ four objects comprising itdata
[15] and [11]. These auxiliary functions need to satisgsted « Flow map:A set-valued mapping : R” = R" defining
conditionsspecifying the points where they are negative. A the flows (or continuous evolution).
Matrosov theorem with one auxiliary function but a weaken o Flow set: A set C ¢ R™ specifying the set of points
negativity condition, expressed in terms of persistency of where flows are possible.
excitation, has been proposed for a class of single-valued, Jump mapA set-valued mapping' : R” = R" defining
time-varying hybrid systems in [11] (see also [10]). In [11]  the jumps (or discrete evolution).
and also in [14], these conditions have been shown to fatglit o Jump set:A set D ¢ R™ specifying the set of points
the construction of strictly decreasing Lyapunov funcsion where jumps are possible.

To the best of our knowledge, all instances of Matrosovig hybrid systent := (F, C, G, D) can be written in the form
theorem in the literature have focused on time-varying sys- )
tems. In this note, we emphasize that it can also be used H - { * € F(x) red
for time-invariant systems to assist in applying invarinc et € G() weD
principle-based stability analysis tools; see [9], [4]ddh9]. the solutions for which are now made precise.
In fact, to apply Matrosov's theorem, neither notions of in- pefinition 2.1: (hybrid time domaipA set E CR=ox Z=g
variance nor specific conditions guaranteeing sequertdi@C is 3 compact hybrid time-domaiif - B
pactness of solutions are needed for its application. E— U (Itj,tjs1),5)

Building from the ideas in [18], we develop a nested =0
Matrosov theorem for hybrid systems allowing for set-valuefor some finite sequence of timés= tq < t; < t5 ... < t,.
dynamics, nonuniqueness of solutions, and Zeno solutiolpSset E ¢ R x Z=( is a hybrid time domainif for all
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Il. HYBRID SYSTEMS



eachj € Zx, the functiont — x(¢, j) is locally absolutely can be converted to time-invariant systems by considetiag t

continuous. augmented system with state, 7, k)
A hybrid arc x is a solution to the hybrid systeri if i€ F(x,T,k)
z(0,0) € CUD and: F=1, =0 } (z,7,k) € C,
(S1) For allj € Z>, and almost alt such thatt, j) € dom z, Haug : ot € Gz, 7, k)
x(t,§)€C andi(t, j) € F(x(t, 7). e =kl } (z,7,k) € D.

(S2) For all(¢,j) € domz such that(¢,j + 1) € domu,
x(t,7) € D andz(t,j + 1) € G(z(t,7)).

A solution z is called maximalif there does not exist a
solution z’ such thatz is a truncation ofr’ to some proper
subset ofdom 2.

The results in [7] give mild conditions on the dat : - . . .
(F,C,G, D) to guarantee certain regularity properties for the When_Ht” IS per|0d|_c, with periodl” > 0 with respect tor
set of solutions to a hybrid system. These conditions a%'d penodN € Z>, with respect ok, the augmented system
critical for sequential compactness of solutions and ieher can be wntte.n as
robustness of asymptotic stability [7], invariance pries & € F(x, 2z, k) (z,Z2,k) € C,

Then UGAS of a compact setl for the statex in H;, is
identified with UGAS of the closed (not compact) sétx
R>¢ X Z>( for the augmented systefH,,,. This requires
giving special attention to the possibly unbounded states
(,fmd k. See Section IV.

[19], and converse Lyapunov theorems [3]. However, these 2= — { _ZTQ } ze St

conditions are not critical in sufficient conditions for nioral H . b= (2)7TT ke{l,...,N},

asymptotic stability, like those in this paper. o ot € Gz, L2, k) (z, /2, k) € D,
2t ==z z e S

B. Globally asymptotically stable sets kT =(kmodN)+1 ke{l,...,N},

To establish sufficient conditions for uniform global asympyhere 5! denotes the unit circle and : 5* — [0, 27) is such
totic stability for hybrid systems, we consider closed, nqhat /> denotes the angle, positive in the counterclockwise

necessarily compact, sets. direction, betweenr and the positive horizontal axis. In this
Definition 2.3: (UGS, UGA & UGAS) The closed seftc case, UGAS of a compact set for the stater in H;, is
R™ for the systent{ is said to be identified with UGAS of the compact setx S x {1,..., N}

« uniformly globally stable(UGS) if there existsaw € for Hy, . Thus, the time-invariant result in Section Il can be
K+ such that any solution: satisfies |z(t,7)|4 < @applied directly to periodic time-varying hybrid systems.
a(|z(0,0)|.4) for all (¢, ) € dom;

« uniformly globally attractive(UGA) if for eache > 0 I1l. NESTEDMATROSOV FUNCTIONS THE
andr > 0 there existsI’ > 0 such that, for any solution TIME-INVARIANT CASE
x, |2(0,0)|4 <1, (t,j) € domz, andt + j > T imply We first state a Matrosov theorem for time-invariant hy-
|x(t, j)|a < & brid systems. It provides sufficient conditions for UGAS of
« uniformly globally asymptotically stabl@JGAS) if it is compact sets that relax classical Lyapunov conditionss It i
both UGS and UGA. a convenient alternative to LaSalle’s invariance prireifgr

UGAS does not imply that solutions exist from every point i§Stablishing attractivity of a stable compact set. In aasitr
R™ nor that maximal solutions have unbounded time domairg. invariance principles, no knowledge about solutions is
A sufficient condition for UGS of a closed sgtis given next. requwgd. Like Lyapunov theorems, only bounds on deriestiv
Theorem 2.4: The closed sdtC R™ is UGS for the hybrid and differences must _be esfabhshed.
systemH = (F,C, G, D) if there exists a functio®’ : R — Theorem 3.1: Time-invariant nested Matrosp\Let A C
R0, C! on an open set containing, and classk., functions R" be a compact, UGS set for the hybrid systém =
a1,z such thatay (Jz]4) < V(z) < as(|z|4) for all z € (F,C,G, D). Ais UGAS if there existn € Z>; and, for
CUDUG(D), supep(o)(VV(2), f) <Oforall z € C,and €ach0 <o <A,

SUPgeg(x) V(9) = V(z) <0forall z € D. « @ numbery > 0, -
« continuous functionsi.; : C'N Q4(0,A) — R, ug; :
C. Time-varying systems DNQa,A) =R, ie€{l,2,...,m},

o functionsV; : R — R, i € {1,2,...,m}, C' on an
open set containing’ N Q.4(d, A),
such that, for each € {1,2,...,m},

Time-varying hybrid systems with state € R™ have the
form

. {x € F(z,7,k) (z,7,k) € C,
Hyp

o € Gk (nrkep, @ Viz) < Vo € (CUD) N6, A), (2)
wherer increments with ordinary time andincrements with

jumps, andC, D C R™ x R X Zso. Time-varying systems sup (VVi(x), f) < uei(z) Yo e CNQAG,A), ()

feF (z)
Iwhen UGAS holds for the solution concept that uses (S1),si &lolds }
for the more restrictive solution concept wheré, j) € C for all t except _sup Vilg) = Vi(z) < wua(z)
possibly at the beginning and end of intervals of non-zengtle. WhenC' is g€G(z)N(CUD)NQA(S,A) 4)

closed, these two solution concepts are equivalent. Ve e DNQAS,A),



and, with the constant functions. o, uq,0 : R — {0} and To show UGAS of the origin of the system in Example 3.2

Ue,m+1, Udm+1 : R — {1}, for eachj € {0,1,...,m}, via invariance principles, it is required to define a notidn o
1) if 2 € CNQu6,A) and u.;(z) = 0 for all i € invariance, verify certain regularity conditions underigththe
{0,1,...,5} thenu, j41(z) <0, invariance principle is applicable, as well as have ruditagn
2) if 2 € DN Q5,A) and ugi(z) = 0 for all i € knowledge of the system solutions. The application of The-
{0,1,...,5} thenug j11(x) <O0. orem 3.1 only requires the ability to construct the Matrosov

The theorem imposes a nested negative semi-definite coerﬂCt'onS as Exz?\mp_le 3'_2 demonstrates. Another applitatio
tion on the functions.,. ; andu,,;, which bound the change in of Theorem 3.1 is given in [18, Example 4.2].
V; along flows and jumps, respectively. Through the definition
of u.o andug o, the nested condition requires that; and IV. NESTEDMATROSOV FUNCTIONS
uq,1 are never positive. The function. o (respectivelyuy o) THE TIME-VARYING CASE
can be positive only where, ; (respectivelyy 1) is negative, .
and so on. Finally, through the definitions of. ,,,; and A. Main result
ud,m+1, there are no points i 4(J, A) where all of theu,.; Like in [15], [8], [10], [11], the time-varying version is
(respectivelyuq,;) are zero. given in the spirit of the result in [17], which is less gerera
The existence of. satisfying (2) is guaranteed whéf is  than Matrosov’s original result but is easier to state argtkh
continuous orf24(d, A). However, continuity is not required  Gjven A ¢ R”, define TA(5,A) = Qu(5,A) x Rog x
in general. The theorem is stated for functioisthat are 7., Given a setS c R™ x Rxg x Zso, defineIl(S) :=

continuously differentiable on an open set contain@g (5 c R" | (z,7,k) € S for some(r, k) € Rso x Zx }.
04(8,A), but a similar result holds for functions locally " -

Lipschitz on this set. Such a result requires working with #
generalized notion of derivative, like the Clarke geneei (F,C,G, D). Ais UGAS if there existn, s € Z-, and, for
) &y Ty . ) >1 ’

gradient [5].

When the first function in Matrosov’s theorem satisﬁegaChO <O<A,
the conditions in Theorem 2.4, it can be used to establishe & humbery > 0,
the required UGS property. This fact and Theorem 3.1 aree @ functiong : R™ x R>o x Z>o — R?,

illustrated next. « continuous functions. ; : (H(C) NQa(d, A)) x R® —

Example 3.2:(Bouncing ball) Consider a ball bouncingon R, . . TI(D) N QA5 A)) xR — R, i €
the ground with vertical position:; and vertical velocity (1,2 ’ m)
2. In between bounces, the equations of motion are given. fur’m{i.o.n.s:V -,R” x R>o x Zso — R, i€ {1,2 m}

Theorem 4.1: Time-varying nested MatrospwlLet A C
"™ be a compact, UGS set for the hybrid systém, =

by 1 = zs, 22 = —~, wherey > 0 is the gravitational ol L
. on an open set containing N Y 4(4, A),
constant and the state := (x1,22) is in the setC := P , ng (5, 4)
{z € R? | 2; > 0}. Bounces occur when the stateis in such that, for eachi € {1,2,...,m},
the setD := {z € R? | 21 = 0 andz, < 0} with the update
el . B max {|Vi(z, 7, k)|, [6(z, 7, k)[} <
rule z = 0, 23 = —owx2, Wherep € [0, 1) is the restitution Wz, 7, k) € (CUD) N TG, A), )

coefficient. There are various ways to show that= (0,0)

(or even the system with' and D replaced by their closures) v k v k) < i
is UGAS. In [3] a strictly decreasing Lyapunov function wa§ep(z?7§,gm i@, 7 k), f) + VrVil, 7 k) < ei(@s (@, k)

presented. Invariance principles, like those in [19], ctso a V(z,7,k) € CNY4(>5,A),
be applied using the energy functidf(z) := 23 +~va1. To 6
use Matrosov’s theorem, we start with this same functiipn sup Vilg, 7,k + 1) — Vi(x, 7, k)

and find that the conditions of Theorem 2.4 hold, so that the € G(z,7,k) N Q4(5,A)
origin is UGS, and conditions (3) and (4) in Theorem 3.1 hold (9: 7.k + 1) € (C'U D)
fOI‘ 7 =1 W|th S ud,’i('rv ¢(Ia T, k))
_ 1 _ V(z, 7, k) € DNY 4(5,A),
Ue(x) =0Ve e O, ugq(x) = —5(1 — QQ),T% Vr € D. (7)
1 H . n—+s
Since these functions are never positive, items 1) and 2) jﬁg,u\;v:huzheio.nﬂséaﬂ En{cfl}or}z?o’eggﬁfé {El)%l Hﬂig}
Theorem 3.1 hold foj = 0. In fact, since there are no points e ’ o
outside of A whereu, ; is zero (points inD havez; = 0), 1) it 2 € TI(C) N Qa(6,A), [¢] < py andue(z,9) = 0
item 2 in Theorem 3.1 will hold for alj no matter what ; for all i € {0,1,.... 7}, thenue ;i (z,¢) <0,
is for i > 1. Next, we pickV3 : R2 — R to be given by  2) if 2 € I(D) N Q4(6,A), [¢] < p, andug,i(z,9) = 0
V() := ~ya5. Conditions (3) and (4) in Theorem 3.1 hold for forall i € {0,1,...,j}, thenug ;1 (x,¢) < 0.
1 =2 with It can be verified that the conditions for uniform asymptotic
stability in [10], [11] can be cast as those in Theorem 4.1.
The utility of Theorem 4.1 for continuous-time and discrete
Sinceu, o is always negative, item 1) of Theorem 3.1 holdSme systems has been illustrated in [15], [8], [20]. Nex& w
for all j. The origin is UGAS. A llustrate its usefulness for time-varying hybrid systehds, .

Ue2(w) == =2 Vo € C , uga(x) := —v(o+ 1)x2 Vo € D.



B. Application: Parameter identification with state resagt and, for all(z,7) € D andg € G(x, 1),

Consider the class o_f systems with stégeC, p, 7) € R™ x Vig) <FETPE+ (T I¢ < V(a),
R™ x R x R, flow and jump set& := R™ x R"2 x [0, T3] X N
Rsg, D :=R™ x R" x [I1, T3] x Rxq, respectively, where Wherey := min {exp(—ST1), exp(—/3T2)}. It follows from
0 < Ty < Ty < oo, and dynamics Theorem 2.4 thatd is UGS.
. . T i Now we use Theorem 4.1 to establish UGAS.4f Using
§= AL+ B(1.6)¢, ¢ = —exp(=fp)TBHT.E)PE, p=1  assumption 4.2, lete; > 0 be such that, for alb € (¢),
vTo < (exp(kiTh) — 1)ETE. Also, lete > 0. Then define
Vi(,7):=V(z),  Va(z,7):=exp(rip)€'¢,
+ + +_
5 € @(5)7 < - Ca p =Y (9) ‘/3(17,7) o —CTBT(T, 0)5,
when (¢, ¢, p,7) € D, whereA, P € RM*™, B :RxR™ — _ [T B 9
Rn1><’r7.2, 6 c R, r e RHQXTLQ’ and(p - R™m = R™ . In V4(Ia7—) T i eXp(T S)|B(S,O)<| dS,
the case whergs = 0 andT; = T, = oo, the system Vs(z,7) == exp(cp)|¢[?, ¢(x,7) := B(7,0)C.
(8)-(9) corresponds to the dynamics of a classical parame{gsing Assumption 4.3, it follows for each > 0 there exists
identification algorithm. In particular, for the system = 4 > 0 such that|(¢,¢)] < A implies |¢(z,7)| < p and

x(t,n) + o, n)6 wheref € R™ is an unknown constant jy; ;. -y < i fori € {1,2,...,5}. Moreover,Vi(z,7) <
vector, consider the parameter identification algorithm —eexp(—T)|¢|? for any T > 0. Define

when (¢, ¢, p,7) € C, and

n A(f) = n) + x(t,m) +9(t,0)0, e (2,0) = —(8—\)exp(—Bp)¢T PE,
0 T " (t,n)P(7) — n). uea(w,9) = exp(riTa)(k1|E]* + 2| All¢[?
i £ = 7y ¢ e § _ +2(0 -+ a(lED)ENC.
f =n-mn,(:=60—-46, and IR )
e e e ) w0 s ) s w) = I +olcPalie + ol Allllc] + sl

+0 (0 + a([€])) exp(=Bp) &2 PIIT],
= —eexp(=T)|¢]* + [¢]?
+20° exp(—p) L] P| (o + a([€])) [€]IC],

so thatD is empty. See also the systems considered in [8]. (
For the system (8)-(9), we make the following assumptionsyc’4 z,9)

A_s;umptipr_1 4.2The matricesI" and P are symmetric, Ues(z, ) = cexp(ep)|C]?
positive definite, | +exp((c — B)p)2(o + a([€)[TIIPIICIEN
v € ¢(§) = v Pv < min {exp(—AT1),exp(=fT2)} £ PE,  where by the norm of a matrix we mean its matghnorm.
and there exish € (—oo, 3) such thatAT P + PA < \P. Using Assumption 4.3, routine calculations establish iweriol

(6) fori e {1,2,...,5}.
Using Assumption 4.2, let, > 0 be such that, for all
v e &), [v] < Kal]. Then define

Assumption 4.3The functionr — B(7,0) is continuously
differentiable. Moreover, there exist strictly positiveal num-
berso, ¢, ¢, andT, anda € K, such that, for all- > 0,

1) _B(T7 0)| < o, Ud,l(%w) =0, Ud,2(957¢) = _§T§7
2 | L p(r0)| < ua3(x,¥) = (k2 + 1)ol€|[C], uga(z, ) =0,
dr = ua,5(z,¥) = (1 —exp(cT)) |¢|*.
3) 1B(r.¢) - B(r,0)] < a(fé]). and Using Assumption 4.3, routine calculations establish thertol
4) el < / BT (s,0)B(s,0)ds. (7) fori e {1,2,...,5}
T Finally, it is also straightforward to verify conditions ahd
The next result for the system (8)-(9) follows from Theorerg) of Theorem 4.1. m
4.1.

Example 4.5:Consider the system (8)-(9) witB(r, &) =
Corollary 4.4: For the systen{8)-(9) and under Assump- [ max {0, sin(7)}  min {0, sin(7)} ] A=—1,P=1T=
Fions 4.2 and 4.3, the compact sdt:= {0} x {0} x [0, T3] [,3=0,T, =T, = ande(£) = 0. Assumptions 4.2 and
is UGAS. 4.3 are satisfied except for the condition tliais continuously
Proof. Let = := ({(p), F(z,7) = (A§ + differentiable. In this case, the functidi in the proof of
B(7,£)¢, —exp(—Bp) LB (1,§)P¢, 1) forall (z,7) € C and  Corollary 4.4 would be only locally Lipschitz. However, the
G(z,7) == (¢(£),¢,0) for all (z,7) € D. We establish UGS arguments for UGAS go through in the same way in this case

of A. Consider the Lyapunov function candidai&z) := but using a more general notion of derivative, like the Gark

exp(—Bp)¢ T PE + (TT'71¢. There exist strictly positive real generalized gradient [5].

numbersa and@ such thata|(z, 7)% < V(z) < @l(x, 7)% Figure 1 shows solutions, projected onto the ordinary time

for all (z,7) € CUD. Using Assumption 4.2, for allz,7) € axis, for this system compared to solutions when usifg) =

C, &, i.e., the system without resets. Because of the structure

(VV(z),F(x,7)) = —Bexp(—pBp)ET P¢ of B in this example, state resetting is able to decouple the

+exp(—Bp)ET (ATP + PA) identification of the two unknown parameters in the system. |
+ exp(—Bp)2¢T PB(r, €)¢ particular, when the initial estimate of one parameter rsau,
—2¢T exp(—Bp)BT (1, €) P¢ it remains correct throughout the process of identifying th

—(B— \)exp(—Bp)ET PE <0, second parameter.

IN



Q4(6, A)NII(CUD) (the latter set since all solutionsto H;,
. take values in this set) for alk, i) € dom x with s+i < ¢+ 5.

00 It follows using (10) forxz (0, 0) andx(¢, 7), denoting the initial
¢ (oo G value of(r, k) by (7o, ko), integrating and summing (11)-(12),
" and using that(s, i) € II(C) for almost all timess, that

—n < V(t,j) SV(0,0) = (t+j)p<n-Tp< —n,

@) (é) ©) where V(t,7) = V(x(t,7),t + 70,j + ko). This being
o1 : impossible, we conclude thét, () is empty for each solution
T e 0 x and A is UGA for Hy,. Now, we show that this implies that
! 0 A is UGA for H,,,. For arbitrarys,» > 0, let o € K, come
G G2 s from the UGS property of{;, and definej = a~!(e). Let
T come from the UGA property of{;, with parameters)
) ) andr (6 plays the role ofz in Definition 2.3). For solutions
S S x to Hy with |2(0,0)] < r that are also solutions t®{;,
(d) (e) ® there is nothing to check. Let be a solution toH,, with
i _ , _ ~|=(0,0)] < r that is not a solution t@4,. Then, there exists
Fig. 1. Solutions to system (8)-(9) projected onto thaxis. (a)-(c) depict

£, (1, and (o for the case without resets while (d)-(f) show the case witrqt*’j*) E. domz Sth thatr(t*,j*) % CubD. It f‘?HOWS ?hat

resets. In both cases, the initial conditions &fe, 0) = 0,¢;(0,0) =0, and the solution resulting from truncating up to (t*, j* — 1) is a

tcr?(?}g) = i FOtr tfg; Cise without resefﬁ,tlegve?hzer?haﬁ :h 27rdiﬂ?icé:tri]ng solution to’H;,. Then, using the UGA property 6f;,, when
_a e esAlmae 1 becomes Incorrect. n e other hana, tor e cast .*_1 > Twe have that (t )| < 5 t—|— P> t*—|— .*_1
with resetsf; = 61. +J =z ! T J)AS 0, 0] 2 J '
(t,j) € domz. Using the UGS property oft;,, UGA of A

for H,, follows with parameters, ¢, andT + 1 (in the order

V. PROOFS introduced in Definition 2.3). [ |
Theorem 3.1 follows from Theorem 4.1. Our proof of
Theorem 4.1 uses ideas in [15], [8]. B. Proof of Lemma 5.1
We use the following auxiliary lemmas, which are adapta-
A. Behavior of solutions tions of Claim 1 and Claim 2 in [8], culminating in a theorem
UGS is assumed: we establish UGA. Consider the hy]at generalizes the nonlinear version of Finsler's lemivarg
brid systemH,, = (F,C,G,D), where G(z,,k) := N[l Theorem A.1].

{9 € Gz, 7.k) | (9.7,k+1) € CUD} foreach(z,7,k) € Lemma 5.2: Letl C R” be a nonempty compact séf; :
D. By assumptionA is UGS forH,,. Lete >0 andr >0. ¥ =R, i€ {1,2,...,m}, be continuous functions and, :
Let a € Ko come from the UGS property 6%, and define ¥ — {0}, Ym+1: ¥ — {1} be constant functions such that
A= ar)andd = a1(e). UGA_is established if there exists for eachj € {m — 1,m}, if Y;(z) = 0 for all

T > 0 such that, for each solution to H,,, the set i € {0,1,...,5} thenYs 1 (2) < 0. (13)

Or(z) = {(t,j) €domaz | T <t+j, x(s,i) € Qa(d,A) Then, there exists > 0 such that;
V(s,i) € domz, s+i<t+j}

Yi(z) =0 for all 4 1,2,....m—1}imply Y,,(2) < —e.
is empty. To establish this fact, we will use the following (2) red m = 1} imply ¥in(2) y

lemma which will be proved later (14)
~ Proof: By contradiction, suppose that for eagchte Z
Lemma 5.1: Under the conditions of Theorem 4.1%05, .o 0 existzy c W such thatF})/P(z ) = 0 for al Z.Zé

there exist a fu_nctiomf :R"x R>ox Z>o—R, C* on an open (0,1
set containingC N 4(d, A), and numbers), p > 0 such that .

max {|V(z,7,k)|, |¢o(z, 7, k)|} < n

..,m— 1} andY,,(z,) > —<. By compactness o¥,
the continuity ofY;,,, and the property (13) with = m — 1,
the sequencéz, }5°, has an accumulation poiat € ¥ such

Y(z,7, k) € (5up) NYA(5,A), (10) that Y;(z*) = 0 for all i € {0,1,...,m}. Then, using the
property (13) withj = m, this implies thatY,,1(z*) < 0.
sup (Vo V(z,7.k), f)+ V. V(z,7,k) < —p This is a contradiction since, by definitiol,,;(z*) = 1. ®
fEF(z,7.k) (11)  Lemma 5.3: Let C R? be a nonempty compact séf, :
V(z,7,k) € CNYA(5,A), U — R, i€ {1,2,...,m}, m > 2, be continuous functions
andYy : ¥ — {0},Y,,41 : ¥ — {1} be constant functions
~ sup Vig,mk+1)=V(z, k) < —p 12) such that
g€G(z,7,k)NQA(6,A) i .
I A Y(z, 7, k) € DN Ta(S,A). for eachyj € {0,1,...,m}, if Y;(z) = 0 for all (15)

Using this lemma, we tak& > 27/p. Now, suppose there 1€{0,1,...j} then¥jy (2) < 0.

exists a solution to H;, such thatOr(z) is nonempty, i.e., Let/ € {2,3,...,m}, € > 0, and a continuous function
there existqt, j) € doma such thatt + j > T andz(s,i) € Yy : ¥ — R be given. Then, Property 1 implies Property 2.



Property 1: A) Yi(z) = 0 forall i € {1,2,...,¢— 1}
implies B)f/g(z) < —¢.

Property 2: there existg(; , > 0 such that:A) Y;(z) =
Oforallic{1,2,...,~2} implies B) K, 1Y, 1(2)+
Yo(z) < —g/2forall Ky—q > K} ;.

Proof: By property (15), Property 2A implieg;_1(z) <
0. Therefore, Property 2A implies

Ky 1Ypo1(2) + Yo(2) < Ye(2) VK1 > 0.

If Y,—1(z) = 0 then, due to Property 1, Property 2B holds for
all K,_1 > 0 whenever Property 2A holds. We claim further !
that there exists > 0 such that Property 2B holds whenever
Property 2A holds and;_1(z) > —7. Suppose not, that is, for [2]
each integen there exists:,, € ¥ such thatYy_1(z,) > —%

and 3]

€

Yi(2n) > -5 (16)

4

Then, by compactness of, continuity ofY,_;, and the nested a
property (15), the sequencg:,}52, has an accumulation
point z* € ¥ such thatY;_;(z*) = 0. Then, there exists
a subsequence dfz, };2;, which we will not relabel, con-
verging to z*. Then, Property 1 implieg(z*) < —¢. By
continuity of Y this contradicts (16) for large enough

It follows from the continuity ofY; and compactness of
U that we can pickK; ; > 0 large enough to satisfy
max, ey }7@(2) < 7K; |, —€/2. Hence, Property 2A implies
Property 2B. [ ]

Theorem 5.4: LetW ., ¥,; be compact subsets &, Y., :
U, - R, Yy, : ¥y — R, i€ {1,2,...,m}, be continuous
functions andY.o,Yy0 : R? — {0}, Yem+1, Yam+1
R? — {1} be constant functions such that, for eaghe
{0,1,...,m},

(5]
(6]

(7]

(8]

El

[10]

[11]

1) if ze W, andY,;(z) =0 forall i € {0,1,...,5} then
Yeji1(2) <0, . , [12)
2) if ze UyandY, () =0forall i € {0,1,...,;} then

Yaj+1(2) <0.

Then there exist<; > 0,7 € {1,2,...,m—1},andp > 0
such that

Z?;l K;Yei(2) + Yo m(2) —p Yz e W,
S K Yai(2) + Yam(2) —p  VzelU,
Proof: If either ¥., ¥y, or both sets are empty, then[16]
there is nothing to check for the corresponding inequalitie
in (17). By assumption, (13) in Lemma 5.2 holds for bothi7]
sets of functionsY.; and Yy ;. Apply Lemma 5.2 to each
set of functions to generate. > 0, ¢4 > 0 and define 18]
¢ = min{e.eq}. Lemma 5.2 implies that Property 1 of
Lemma 5.3 holds, for both sets of functions, with= m, & =
e,andY, , =Y. ,,, andY, ¢ = Yy ,,,. Since Property 1A holds,
Property 2A holds. Then, from Property 2 of Lemma 5.3, there
exists K,,,_1 > 0 such that [20]

(23]

[14]

<
- A7) s

[19]

2€W,., Ye(2)=0, ie{l,2,...,m—2} implies

Kmflifc,mfl(z) + }/cm(z) S _%

z2€Wq, Ygi(2)=0,ie{l,2,...,m—2} implies
Kmflyd,mfl(z) + Yd7m(2) < —%

[21]

Then, Lemma 5.3 can be applied again with= m — 1,

€ =¢/2,andY,y = Kp_1Yem—1 + Yem and Yy, =

K-1Y4q m—1+ Ya,m. Proceeding in this way, the result holds

with p :=¢/2m~ 1,
Lemma 5.1 now follows from Theorem 5.4 by settifig :=

(H(c) A QA A)) B, Wy = (H(D) A QA A)) x 1B,
Yei = e, Yai = uqq ¢ € {1,2,...,m}, and then taking
V.=

S KV + Vi andn o=+ 30 K,

REFERENCES

K. J. Arrow, F. J. Gould, and S. M. Howe. A general saddlépoesult
for constrained optimizationMathematical Programming5:225-234,
1973.

M.S. Branicky, V. S. Borkar, and S. K. Mitter. A unified freework
for hybrid control: Model and optimal control theorfEEE Trans. Aut.
Control, 43(1):31-45, 1998.

C. Cai, A.R. Teel, and R. Goebel. Smooth Lyapunov fundidor
hybrid systems. Part II: (Pre-)asymptotically stable caoisets.|EEE
Trans. Aut. Contrql53(3):734 — 748, 2008.

V. Chellaboina, S.P. Bhat, and W.H. Haddad. An invar@amzinciple
for nonlinear hybrid and impulsive dynamical systenionlin. Anal,
53:527-550, 2003.

F.H. Clarke. Optimization and Nonsmooth AnalysiSIAM’s Classic in
Applied Mathematics, 1990.

R. Goebel, J.P. Hespanha, A.R. Teel, C. Cai, and R.G .eBeaf Hybrid
systems: generalized solutions and robust stabilityPloc. 6th IFAC
Symposium in Nonlinear Control Systerpages 1-12, 2004.

R. Goebel and A.R. Teel. Solutions to hybrid inclusiona set and
graphical convergence with stability theory applicationSutomatica
42(4):573-587, 2006.

A. Loria, E. Panteley, D. Popovic, and A. R. Teel. A nesiddtrosov
theorem and persistency of excitation for uniform conveeogein stable
nonautonomous systemslEEE Trans. Aut. Control 50(2):183-198,
2005.

J. Lygeros, K.H. Johansson, S.N. Simi¢, J. Zhang, and.SSastry.
Dynamical properties of hybrid automatdEEE Trans. Aut. Control
48(1):2-17, 2003.

M. Malisoff and F. Mazenc. On control-Lyapunov funct®for hybrid
time-varying systems. IRroc. 45th IEEE Conference on Decision and
Control, pages 3265-3270, 2006.

M. Malisoff and F. Mazenc. Constructions of strict Lyav functions
for discrete time and hybrid time-varying systendNonlinear Analysis:
Hybrid Systems2(2):394-407, 2008.

R. Marino and P. Tomei. Global adaptive output-feedbaontrol of
nonlinear systems. |. Linear parameterizatieEE Trans. Aut. Control
38(1):17-32, 1993.

V. M. Matrosov. On the stability of motion.J. Appl. Math. Mech
26:1337-1353, 1962.

F. Mazenc and D. Nesic. Lyapunov functions for timeyiag systems
satisfying generalized conditions of Matrosov theorektath. Control
Signals Syst.19:151-182, 2007.

D. Nesic and A. R. Teel. Matrosov theorem for parametetifamilies
of discrete-time systemgAutomatica 40(6):1025-1034, 2004.

S. Nicosia and P. Tomei. A tracking controller for fleldljoint robots
using only link position feedbackEEE Trans. Aut. Control40(5):885—
890, 1995.

B. Paden and R. Panja. Globally asymptotically stalie-¢ontroller for
robot manipulatorsinternational Journal of Contrgl47(6):1697-1712,
1988.

R. G. Sanfelice and A. R. Teel. A nested Matrosov theoferrhybrid
systems. IrProc. 27th American Control Conferengeages 2915-2920,
2008.

R.G. Sanfelice, R. Goebel, and A.R. Teel. Invariancengiples for
hybrid systems with connections to detectability and agptigostability.
IEEE Trans. Aut. Contrgl52(12):2282-2297, 2007.

A.R. Teel, A. Loria, E. Panteley, and D. Popovic. Smotithe-varying
stabilization of driftless systems over communicationreies. Systems
& Control Letters 55(12):982-991, 2006.

A. van der Schaft and H. Schumachein Introduction to Hybrid
Dynamical Systemd.ecture Notes in Control and Information Sciences,
Springer, 2000.



