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Asymptotic stability in hybrid systems
via nested Matrosov functions

Ricardo G. Sanfelice and Andrew R. Teel

Abstract— A theorem on nested Matrosov functions is extended
to time-varying hybrid systems. It provides sufficient conditions
for uniform global asymptotic stability of a compact set. An
application to parameter identification with state resets is made
and illustrated on an example.

I. I NTRODUCTION

Matrosov’s theorem provides sufficient conditions for uni-
form global asymptotic stability of the origin in time-varying
differential equations. The sufficient condition reportedby
Matrosov [13] is that, given a continuously differentiable(C1)
function V that establishes uniform global stability of the
origin, there exists an auxiliaryC1 function with derivative
that is “definitely nonzero” in the set where the derivative
of V vanishes. Several alternative versions of Matrosov’s
theorem have appeared in the literature; see [8] and the
references therein. Matrosov’s theorem has been applied to
nonlinear control problems, including tracking control [17],
output feedback [16], and adaptive control [12], among others.

The most recent versions of Matrosov’s theorem have pro-
vided extra flexibility by using multiple auxiliary functions
rather than only one as in the original work of Matrosov. For
continuous-time systems see [8], where five auxiliary functions
are used in stability analysis for nonholonomic vehicles, and
[20], where 3n − 2 auxiliary functions are used for the
interconnection ofn subsystems; for discrete-time systems see
[15] and [11]. These auxiliary functions need to satisfynested
conditionsspecifying the points where they are negative. A
Matrosov theorem with one auxiliary function but a weaken
negativity condition, expressed in terms of persistency of
excitation, has been proposed for a class of single-valued,
time-varying hybrid systems in [11] (see also [10]). In [11],
and also in [14], these conditions have been shown to facilitate
the construction of strictly decreasing Lyapunov functions.

To the best of our knowledge, all instances of Matrosov’s
theorem in the literature have focused on time-varying sys-
tems. In this note, we emphasize that it can also be used
for time-invariant systems to assist in applying invariance-
principle-based stability analysis tools; see [9], [4], and [19].
In fact, to apply Matrosov’s theorem, neither notions of in-
variance nor specific conditions guaranteeing sequential com-
pactness of solutions are needed for its application.

Building from the ideas in [18], we develop a nested
Matrosov theorem for hybrid systems allowing for set-valued
dynamics, nonuniqueness of solutions, and Zeno solutions.
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After a brief introduction to hybrid systems and stability in
Section II, in Section III we present the result for time-
invariant systems and apply it to the bouncing ball system.
In Section IV, we give the main result, which is for time-
varying systems, and apply it to parameter identification with
state resets. Its proof is given in Section V.

R
n denotesn-dimensional Euclidean space,R the real

numbers,R≥0 := [0,∞), Z the integers, andZ≥k the integers
greater than or equal to the integerk. B is the open unit
ball in an Euclidean space. Given a setS, S is its closure.
Given S ⊂ R

n and a pointx ∈ R
n, |x|S := infy∈S |x − y|,

where | · | is Euclidean norm. GivenS ⊂ R
n and constants

δ,∆, 0 ≤ δ ≤ ∆, ΩS(δ,∆) := {x ∈ R
n | δ ≤ |x|S ≤ ∆}. A

functionα : R≥0 → R≥0 is said to belong to class-K∞ if it is
continuous, zero at zero, strictly increasing, and unbounded.

II. H YBRID SYSTEMS

A. Modeling framework and solutions

We follow the presentation in [6] and [7]. Cf. [2], [21], [9].
Hybrid systems are dynamical systems with a statex ∈ R

n

that can change continuously during flows, and discontinu-
ously at jumps. The state may include physical variables, like
positions and velocities, as well as logic variables takingvalues
like “on” and “off”, which are typically identified with integers
embedded in Euclidean space. A hybrid systemH is defined
by four objects comprising itsdata:

• Flow map:A set-valued mappingF : R
n ⇉ R

n defining
the flows (or continuous evolution).

• Flow set: A set C ⊂ R
n specifying the set of points

where flows are possible.
• Jump map:A set-valued mappingG : R

n ⇉ R
n defining

the jumps (or discrete evolution).
• Jump set:A set D ⊂ R

n specifying the set of points
where jumps are possible.

A hybrid systemH := (F,C,G,D) can be written in the form

H :

{
ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

the solutions for which are now made precise.

Definition 2.1: (hybrid time domain) A setE⊂R≥0×Z≥0

is a compact hybrid time domainif
E =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times0 = t0 ≤ t1 ≤ t2 ... ≤ tJ .
A set E ⊂ R≥0 × Z≥0 is a hybrid time domainif for all
(T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ...J}) is a compact hybrid
time domain.

Definition 2.2: (hybrid arc) A function x : domx → R
n

is a hybrid arc if domx is a hybrid time domain and if for
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eachj ∈ Z≥0, the functiont 7→ x(t, j) is locally absolutely
continuous.

A hybrid arc x is a solution to the hybrid systemH if
x(0, 0) ∈ C ∪D and:
(S1) For allj ∈ Z≥0 and almost allt such that(t, j)∈dom x,1

x(t, j)∈C and ẋ(t, j)∈F (x(t, j)).
(S2) For all (t, j) ∈ domx such that(t, j + 1) ∈ domx,
x(t, j) ∈ D andx(t, j + 1) ∈ G(x(t, j)).

A solution x is called maximal if there does not exist a
solutionx′ such thatx is a truncation ofx′ to some proper
subset ofdomx′.

The results in [7] give mild conditions on the data
(F,C,G,D) to guarantee certain regularity properties for the
set of solutions to a hybrid system. These conditions are
critical for sequential compactness of solutions and inherent
robustness of asymptotic stability [7], invariance principles
[19], and converse Lyapunov theorems [3]. However, these
conditions are not critical in sufficient conditions for nominal
asymptotic stability, like those in this paper.

B. Globally asymptotically stable sets

To establish sufficient conditions for uniform global asymp-
totic stability for hybrid systems, we consider closed, not
necessarily compact, sets.

Definition 2.3: (UGS, UGA & UGAS) The closed setA⊂
R

n for the systemH is said to be
• uniformly globally stable(UGS) if there existsα ∈

K∞ such that any solutionx satisfies |x(t, j)|A ≤
α(|x(0, 0)|A) for all (t, j) ∈ domx;

• uniformly globally attractive(UGA) if for each ε > 0
andr > 0 there existsT > 0 such that, for any solution
x, |x(0, 0)|A ≤ r, (t, j) ∈ domx, and t + j ≥ T imply
|x(t, j)|A ≤ ε;

• uniformly globally asymptotically stable(UGAS) if it is
both UGS and UGA.

UGAS does not imply that solutions exist from every point in
R

n nor that maximal solutions have unbounded time domains.
A sufficient condition for UGS of a closed setA is given next.

Theorem 2.4: The closed setA ⊂ R
n is UGS for the hybrid

systemH = (F,C,G,D) if there exists a functionV : R
n →

R≥0, C1 on an open set containingC, and class-K∞ functions
α1, α2 such thatα1(|x|A) ≤ V (x) ≤ α2(|x|A) for all x ∈
C ∪D∪G(D), supf∈F (x)〈∇V (x), f〉 ≤ 0 for all x ∈ C, and
supg∈G(x) V (g) − V (x) ≤ 0 for all x ∈ D.

C. Time-varying systems

Time-varying hybrid systems with statex ∈ R
n have the

form

Htv :

{
ẋ ∈ F (x, τ, k) (x, τ, k) ∈ C,
x+ ∈ G(x, τ, k) (x, τ, k) ∈ D,

(1)

whereτ increments with ordinary time andk increments with
jumps, andC,D ⊂ R

n × R≥0 × Z≥0. Time-varying systems

1When UGAS holds for the solution concept that uses (S1), it also holds
for the more restrictive solution concept wherex(t, j) ∈ C for all t except
possibly at the beginning and end of intervals of non-zero length. WhenC is
closed, these two solution concepts are equivalent.

can be converted to time-invariant systems by considering the
augmented system with state(x, τ, k)

Haug :






ẋ ∈ F (x, τ, k)
τ̇ = 1, k̇ = 0

}
(x, τ, k) ∈ C,

x+ ∈ G(x, τ, k)
τ+ = τ, k+ = k + 1

}
(x, τ, k) ∈ D.

Then UGAS of a compact setA for the statex in Htv is
identified with UGAS of the closed (not compact) setA ×
R≥0 × Z≥0 for the augmented systemHaug. This requires
giving special attention to the possibly unbounded statesτ
andk. See Section IV.

WhenHtv is periodic, with periodT > 0 with respect toτ
and periodN ∈ Z≥1 with respect tok, the augmented system
can be written as

Htv,p :






ẋ ∈ F (x,∠z, k)

ż =
1

2πT

[
−z2
z1

]

k̇ = 0






(x,∠z, k) ∈ C,
z ∈ S1,

k ∈ {1, . . . , N} ,

x+ ∈ G(x,∠z, k)
z+ = z
k+ = (k modN) + 1

}
(x,∠z, k) ∈ D,

z ∈ S1,
k ∈ {1, . . . , N} ,

whereS1 denotes the unit circle and∠ : S1 → [0, 2π) is such
that ∠z denotes the angle, positive in the counterclockwise
direction, betweenz and the positive horizontal axis. In this
case, UGAS of a compact setA for the statex in Htv is
identified with UGAS of the compact setA×S1×{1, . . . , N}
for Htv,p. Thus, the time-invariant result in Section III can be
applied directly to periodic time-varying hybrid systems.

III. N ESTEDMATROSOV FUNCTIONS: THE

TIME-INVARIANT CASE

We first state a Matrosov theorem for time-invariant hy-
brid systems. It provides sufficient conditions for UGAS of
compact sets that relax classical Lyapunov conditions. It is
a convenient alternative to LaSalle’s invariance principle for
establishing attractivity of a stable compact set. In contrast
to invariance principles, no knowledge about solutions is
required. Like Lyapunov theorems, only bounds on derivatives
and differences must be established.

Theorem 3.1: (Time-invariant nested Matrosov) Let A ⊂
R

n be a compact, UGS set for the hybrid systemH =
(F,C,G,D). A is UGAS if there existm ∈ Z≥1 and, for
each0 < δ < ∆,

• a numberµ > 0,
• continuous functionsuc,i : C ∩ ΩA(δ,∆) → R, ud,i :
D ∩ ΩA(δ,∆) → R, i ∈ {1, 2, . . . ,m},

• functionsVi : R
n → R, i ∈ {1, 2, . . . ,m}, C1 on an

open set containingC ∩ ΩA(δ,∆),
such that, for eachi ∈ {1, 2, . . . ,m},

|Vi(x)| ≤ µ ∀x ∈ (C ∪D) ∩ ΩA(δ,∆), (2)

sup
f∈F (x)

〈∇Vi(x), f〉 ≤ uc,i(x) ∀x ∈ C ∩ ΩA(δ,∆), (3)

sup
g∈G(x)∩(C∪D)∩ΩA(δ,∆)

Vi(g) − Vi(x) ≤ ud,i(x)

∀x ∈ D ∩ ΩA(δ,∆),
(4)
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and, with the constant functionsuc,0, ud,0 : R
n → {0} and

uc,m+1, ud,m+1 : R
n → {1}, for eachj ∈ {0, 1, . . . ,m},

1) if x ∈ C ∩ ΩA(δ,∆) and uc,i(x) = 0 for all i ∈
{0, 1, . . . , j} thenuc,j+1(x) ≤ 0,

2) if x ∈ D ∩ ΩA(δ,∆) and ud,i(x) = 0 for all i ∈
{0, 1, . . . , j} thenud,j+1(x) ≤ 0.

The theorem imposes a nested negative semi-definite condi-
tion on the functionsuc,i andud,i, which bound the change in
Vi along flows and jumps, respectively. Through the definition
of uc,0 andud,0, the nested condition requires thatuc,1 and
ud,1 are never positive. The functionuc,2 (respectively,ud,2)
can be positive only whereuc,1 (respectively,ud,1) is negative,
and so on. Finally, through the definitions ofuc,m+1 and
ud,m+1, there are no points inΩA(δ,∆) where all of theuc,i

(respectively,ud,i) are zero.
The existence ofµ satisfying (2) is guaranteed whenVi is

continuous onΩA(δ,∆). However, continuity is not required
in general. The theorem is stated for functionsVi that are
continuously differentiable on an open set containingC ∩
ΩA(δ,∆), but a similar result holds for functions locally
Lipschitz on this set. Such a result requires working with a
generalized notion of derivative, like the Clarke generalized
gradient [5].

When the first function in Matrosov’s theorem satisfies
the conditions in Theorem 2.4, it can be used to establish
the required UGS property. This fact and Theorem 3.1 are
illustrated next.

Example 3.2:(Bouncing ball) Consider a ball bouncing on
the ground with vertical positionx1 and vertical velocity
x2. In between bounces, the equations of motion are given
by ẋ1 = x2, ẋ2 = −γ, where γ > 0 is the gravitational
constant and the statex := (x1, x2) is in the setC :={
x ∈ R

2 | x1 > 0
}

. Bounces occur when the statex is in
the setD :=

{
x ∈ R

2 | x1 = 0 andx2 < 0
}

with the update
rule x+

1 = 0, x+
2 = −̺x2, where̺ ∈ [0, 1) is the restitution

coefficient. There are various ways to show thatA := (0, 0)
(or even the system withC andD replaced by their closures)
is UGAS. In [3] a strictly decreasing Lyapunov function was
presented. Invariance principles, like those in [19], can also
be applied using the energy functionV1(x) := 1

2x
2
2 + γx1. To

use Matrosov’s theorem, we start with this same functionV1

and find that the conditions of Theorem 2.4 hold, so that the
origin is UGS, and conditions (3) and (4) in Theorem 3.1 hold
for i = 1 with

uc,1(x) := 0 ∀x ∈ C , ud,1(x) := −
1

2
(1 − ̺2)x2

2 ∀x ∈ D.

Since these functions are never positive, items 1) and 2) in
Theorem 3.1 hold forj = 0. In fact, since there are no points
outside ofA whereud,1 is zero (points inD havex1 = 0),
item 2 in Theorem 3.1 will hold for allj no matter whatud,i

is for i > 1. Next, we pickV2 : R
2 → R to be given by

V2(x) := γx2. Conditions (3) and (4) in Theorem 3.1 hold for
i = 2 with

uc,2(x) := −γ2 ∀x ∈ C , ud,2(x) := −γ(̺+ 1)x2 ∀x ∈ D.

Sinceuc,2 is always negative, item 1) of Theorem 3.1 holds
for all j. The origin is UGAS. △

To show UGAS of the origin of the system in Example 3.2
via invariance principles, it is required to define a notion of
invariance, verify certain regularity conditions under which the
invariance principle is applicable, as well as have rudimentary
knowledge of the system solutions. The application of The-
orem 3.1 only requires the ability to construct the Matrosov
functions as Example 3.2 demonstrates. Another application
of Theorem 3.1 is given in [18, Example 4.2].

IV. N ESTEDMATROSOV FUNCTIONS:
THE TIME-VARYING CASE

A. Main result

Like in [15], [8], [10], [11], the time-varying version is
given in the spirit of the result in [17], which is less general
than Matrosov’s original result but is easier to state and check.

Given A ⊂ R
n, defineΥA(δ,∆) := ΩA(δ,∆) × R≥0 ×

Z≥0. Given a setS ⊂ R
n × R≥0 × Z≥0, defineΠ(S) :=

{x ∈ R
n | (x, τ, k) ∈ S for some(τ, k) ∈ R≥0 × Z≥0 }.

Theorem 4.1: (Time-varying nested Matrosov) Let A ⊂
R

n be a compact, UGS set for the hybrid systemHtv =
(F,C,G,D). A is UGAS if there existm, s ∈ Z≥1 and, for
each0 < δ < ∆,

• a numberµ > 0,
• a functionφ : R

n × R≥0 × Z≥0 → R
s,

• continuous functionsuc,i :
(
Π(C) ∩ ΩA(δ,∆)

)
×R

s →

R, ud,i :
(
Π(D) ∩ ΩA(δ,∆)

)
× R

s → R, i ∈

{1, 2, . . . ,m},
• functionsVi : R

n × R≥0 × Z≥0 → R, i ∈ {1, 2, . . . ,m},
C1 on an open set containingC ∩ ΥA(δ,∆),

such that, for eachi ∈ {1, 2, . . . ,m},

max {|Vi(x, τ, k)|, |φ(x, τ, k)|} ≤ µ
∀(x, τ, k) ∈ (C ∪D) ∩ ΥA(δ,∆),

(5)

sup
f∈F (x,τ,k)

〈∇xVi(x, τ, k), f〉 + ∇τVi(x, τ, k) ≤ uc,i(x, φ(x, τ, k))

∀(x, τ, k) ∈ C ∩ ΥA(δ,∆),
(6)

sup
g ∈ G(x, τ, k) ∩ ΩA(δ,∆)
(g, τ, k + 1) ∈ (C ∪ D)

Vi(g, τ, k + 1) − Vi(x, τ, k)

≤ ud,i(x, φ(x, τ, k))
∀(x, τ, k) ∈ D ∩ ΥA(δ,∆),

(7)
and, with the constant functionsuc,0, uc,m+1 : R

n+s → {0}
andud,0, ud,m+1 : R

n+s → {1}, for eachj ∈ {0, 1, . . . ,m},

1) if x ∈ Π(C) ∩ ΩA(δ,∆), |ψ| ≤ µ, and uc,i(x, ψ) = 0
for all i ∈ {0, 1, . . . , j}, thenuc,j+1(x, ψ) ≤ 0,

2) if x ∈ Π(D) ∩ ΩA(δ,∆), |ψ| ≤ µ, and ud,i(x, ψ) = 0
for all i ∈ {0, 1, . . . , j}, thenud,j+1(x, ψ) ≤ 0.

It can be verified that the conditions for uniform asymptotic
stability in [10], [11] can be cast as those in Theorem 4.1.

The utility of Theorem 4.1 for continuous-time and discrete-
time systems has been illustrated in [15], [8], [20]. Next, we
illustrate its usefulness for time-varying hybrid systemsHtv.
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B. Application: Parameter identification with state resetting

Consider the class of systems with state(ξ, ζ, ρ, τ) ∈ R
n1×

R
n2 ×R×R, flow and jump setsC := R

n1 ×R
n2 × [0, T2]×

R≥0, D := R
n1 × R

n2 × [T1, T2] × R≥0, respectively, where
0 < T1 ≤ T2 <∞, and dynamics

ξ̇ = Aξ +B(τ, ξ)ζ, ζ̇ = − exp(−βρ)ΓB⊤(τ, ξ)Pξ, ρ̇ = 1
(8)

when (ξ, ζ, ρ, τ) ∈ C, and

ξ+ ∈ ϕ(ξ), ζ+ = ζ, ρ+ = 0, (9)

when(ξ, ζ, ρ, τ) ∈ D, whereA,P ∈ R
n1×n1 , B : R×R

n1 →
R

n1×n2 , β ∈ R, Γ ∈ R
n2×n2 , and ϕ : R

n1 ⇉ R
n1 . In

the case whereβ = 0 and T1 = T2 = ∞, the system
(8)-(9) corresponds to the dynamics of a classical parameter
identification algorithm. In particular, for the systeṁη =
χ(t, η) + ϑ(t, η)θ where θ ∈ R

n2 is an unknown constant
vector, consider the parameter identification algorithm

˙̂η = A(η̂ − η) + χ(t, η) + ϑ(t, η)θ̂,
˙̂
θ = −Γϑ⊤(t, η)P (η̂ − η).

Defining ξ := η̂ − η, ζ := θ̂ − θ, andB(τ, ξ) := ϑ(τ, η(τ))
results in the system (8)-(9) withβ = 0, andT1 = T2 = ∞,
so thatD is empty. See also the systems considered in [8].

For the system (8)-(9), we make the following assumptions:

Assumption 4.2:The matricesΓ and P are symmetric,
positive definite,

v ∈ ϕ(ξ) =⇒ v⊤Pv ≤ min {exp(−βT1), exp(−βT2)} ξ
⊤Pξ,

and there existλ ∈ (−∞, β) such thatA⊤P + PA ≤ λP .

Assumption 4.3:The functionτ 7→ B(τ, 0) is continuously
differentiable. Moreover, there exist strictly positive real num-
bersσ, ς, ε, andT , andα ∈ K∞, such that, for allτ ≥ 0,

1) |B(τ, 0)| ≤ σ,

2)

∣∣∣∣
d

dτ
B(τ, 0)

∣∣∣∣ ≤ ς,

3) |B(τ, ξ) −B(τ, 0)| ≤ α(|ξ|), and

4) εI ≤

∫ τ+T

τ

B⊤(s, 0)B(s, 0)ds.

The next result for the system (8)-(9) follows from Theorem
4.1.

Corollary 4.4: For the system(8)-(9) and under Assump-
tions 4.2 and 4.3, the compact setA := {0} × {0} × [0, T2]
is UGAS.

Proof. Let x := (ξ, ζ, ρ), F (x, τ) := (Aξ +
B(τ, ξ)ζ,− exp(−βρ)ΓB⊤(τ, ξ)Pξ, 1) for all (x, τ) ∈ C and
G(x, τ) := (ϕ(ξ), ζ, 0) for all (x, τ) ∈ D. We establish UGS
of A. Consider the Lyapunov function candidateV (x) :=
exp(−βρ)ξ⊤Pξ + ζ⊤Γ−1ζ. There exist strictly positive real
numbersα andα such thatα|(x, τ)|2A ≤ V (x) ≤ α|(x, τ)|2A
for all (x, τ) ∈ C ∪D. Using Assumption 4.2, for all(x, τ) ∈
C,

〈∇V (x), F (x, τ)〉 = −β exp(−βρ)ξ⊤Pξ
+ exp(−βρ)ξ⊤(A⊤P + PA)ξ
+ exp(−βρ)2ξ⊤PB(τ, ξ)ζ
−2ζ⊤ exp(−βρ)B⊤(τ, ξ)Pξ

≤ −(β − λ) exp(−βρ)ξ⊤Pξ ≤ 0,

and, for all(x, τ) ∈ D andg ∈ G(x, τ),

V (g) ≤ γ̃ξ⊤Pξ + ζ⊤Γ−1ζ ≤ V (x),

where γ̃ := min {exp(−βT1), exp(−βT2)}. It follows from
Theorem 2.4 thatA is UGS.

Now we use Theorem 4.1 to establish UGAS ofA. Using
Assumption 4.2, letκ1 > 0 be such that, for allv ∈ ϕ(ξ),
v⊤v ≤ (exp(κ1T1) − 1)ξ⊤ξ. Also, let c > 0. Then define

V1(x, τ) := V (x), V2(x, τ) := exp(κ1ρ)ξ
⊤ξ,

V3(x, τ) := −ζ⊤B⊤(τ, 0)ξ,

V4(x, τ) := −

∫ ∞

τ

exp(τ − s)|B(s, 0)ζ|2ds,

V5(x, τ) := exp(cρ)|ζ|2, φ(x, τ) := B(τ, 0)ζ.

Using Assumption 4.3, it follows for each∆ > 0 there exists
µ > 0 such that|(ξ, ζ)| ≤ ∆ implies |φ(x, τ)| ≤ µ and
|Vi(x, τ)| ≤ µ for i ∈ {1, 2, . . . , 5}. Moreover,V4(x, τ) ≤
−ε exp(−T )|ζ|2 for anyT > 0. Define

uc,1(x, ψ) := −(β − λ) exp(−βρ)ξ⊤Pξ,
uc,2(x, ψ) := exp(κ1T2)(κ1|ξ|

2 + 2|A||ξ|2

+2(σ + α(|ξ|))|ξ||ζ|),
uc,3(x, ψ) := −|ψ|2 + σ|ζ|2α(|ξ|) + σ|A||ξ||ζ| + ς|ξ||ζ|

+σ (σ + α(|ξ|)) exp(−βρ)|ξ|2|P ||Γ|,
uc,4(x, ψ) := −ε exp(−T )|ζ|2 + |ψ|2

+2σ2 exp(−βρ)|Γ||P | (σ + α(|ξ|)) |ξ||ζ|,
uc,5(x, ψ) := c exp(cρ)|ζ|2

+ exp((c− β)ρ)2(σ + α(|ξ|))|Γ||P ||ζ||ξ|,

where by the norm of a matrix we mean its matrix2-norm.
Using Assumption 4.3, routine calculations establish the bound
(6) for i ∈ {1, 2, . . . , 5}.

Using Assumption 4.2, letκ2 > 0 be such that, for all
v ∈ ϕ(ξ), |v| ≤ κ2|ξ|. Then define

ud,1(x, ψ) := 0, ud,2(x, ψ) := −ξ⊤ξ,
ud,3(x, ψ) := (κ2 + 1)σ|ξ||ζ|, ud,4(x, ψ) := 0,
ud,5(x, ψ) := (1 − exp(cT1)) |ζ|

2.

Using Assumption 4.3, routine calculations establish the bound
(7) for i ∈ {1, 2, . . . , 5}.

Finally, it is also straightforward to verify conditions 1)and
2) of Theorem 4.1. �

Example 4.5:Consider the system (8)-(9) withB(τ, ξ) =[
max {0, sin(τ)} min {0, sin(τ)}

]
, A = −1, P = 1, Γ =

I, β = 0, T1 = T2 = π, andϕ(ξ) = 0. Assumptions 4.2 and
4.3 are satisfied except for the condition thatB is continuously
differentiable. In this case, the functionV3 in the proof of
Corollary 4.4 would be only locally Lipschitz. However, the
arguments for UGAS go through in the same way in this case
but using a more general notion of derivative, like the Clarke
generalized gradient [5].

Figure 1 shows solutions, projected onto the ordinary time
axis, for this system compared to solutions when usingϕ(ξ) =
ξ, i.e., the system without resets. Because of the structure
of B in this example, state resetting is able to decouple the
identification of the two unknown parameters in the system. In
particular, when the initial estimate of one parameter is correct,
it remains correct throughout the process of identifying the
second parameter.
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Fig. 1. Solutions to system (8)-(9) projected onto thet axis. (a)-(c) depict
ξ, ζ1, and ζ2 for the case without resets while (d)-(f) show the case with
resets. In both cases, the initial conditions areξ(0, 0) = 0, ζ1(0, 0) = 0, and
ζ2(0, 0) = 1. For the case without resets,ζ1 leaves zero att = 2π indicating
that the estimate ofθ1 becomes incorrect. On the other hand, for the case
with resetsθ̂1 ≡ θ1.

V. PROOFS

Theorem 3.1 follows from Theorem 4.1. Our proof of
Theorem 4.1 uses ideas in [15], [8].

A. Behavior of solutions

UGS is assumed; we establish UGA. Consider the hy-
brid system H̃tv = (F,C, G̃,D), where G̃(x, τ, k) :={
g ∈ G(x, τ, k)

∣∣ (g, τ, k + 1) ∈ C ∪D
}

for each(x, τ, k) ∈
D. By assumption,A is UGS for H̃tv. Let ε > 0 andr > 0.
Let α ∈ K∞ come from the UGS property of̃Htv and define
∆ := α(r) andδ = α−1(ε). UGA is established if there exists
T > 0 such that, for each solutionx to H̃tv, the set

ΘT (x) := {(t, j) ∈ domx | T ≤ t+ j , x(s, i) ∈ ΩA(δ,∆)
∀(s, i) ∈ domx, s+ i ≤ t+ j}

is empty. To establish this fact, we will use the following
lemma which will be proved later.

Lemma 5.1: Under the conditions of Theorem 4.1 forH̃tv,
there exist a functionV :Rn×R≥0×Z≥0→R, C1 on an open
set containingC∩ΥA(δ,∆), and numbersη, ρ > 0 such that

max {|V (x, τ, k)|, |φ(x, τ, k)|} ≤ η
∀(x, τ, k) ∈ (C ∪D) ∩ ΥA(δ,∆),

(10)

sup
f∈F (x,τ,k)

〈∇xV (x, τ, k), f〉 + ∇τV (x, τ, k) ≤ −ρ

∀(x, τ, k) ∈ C ∩ ΥA(δ,∆),
(11)

sup
g∈ eG(x,τ,k)∩ΩA(δ,∆)

V (g, τ, k + 1) − V (x, τ, k) ≤ −ρ

∀(x, τ, k) ∈ D ∩ ΥA(δ,∆).
(12)

Using this lemma, we takeT > 2η/ρ. Now, suppose there
exists a solutionx to H̃tv such thatΘT (x) is nonempty, i.e.,
there exists(t, j) ∈ domx such thatt+ j ≥ T andx(s, i) ∈

ΩA(δ,∆)∩Π(C∪D) (the latter set since all solutionsx to H̃tv

take values in this set) for all(s, i) ∈ domx with s+i ≤ t+j.
It follows using (10) forx(0, 0) andx(t, j), denoting the initial
value of(τ, k) by (τ0, k0), integrating and summing (11)-(12),
and using thatx(s, i) ∈ Π(C) for almost all timess, that

−η ≤ Ṽ (t, j) ≤ Ṽ (0, 0) − (t+ j)ρ ≤ η − Tρ < −η,

where Ṽ (t, j) := V (x(t, j), t + τ0, j + k0). This being
impossible, we conclude thatΘT (x) is empty for each solution
x andA is UGA for H̃tv. Now, we show that this implies that
A is UGA for Htv. For arbitraryε, r > 0, let α ∈ K∞ come
from the UGS property ofHtv and defineδ = α−1(ε). Let
T come from the UGA property of̃Htv with parametersδ
and r (δ plays the role ofε in Definition 2.3). For solutions
x to Htv with |x(0, 0)| ≤ r that are also solutions tõHtv

there is nothing to check. Letx be a solution toHtv with
|x(0, 0)| ≤ r that is not a solution tõHtv. Then, there exists
(t∗, j∗) ∈ domx such thatx(t∗, j∗) 6∈ C ∪D. It follows that
the solution resulting from truncatingx up to (t∗, j∗ − 1) is a
solution toH̃tv. Then, using the UGA property of̃Htv, when
t∗+j∗−1 ≥ T we have that|x(t, j)|A ≤ δ, t+j ≥ t∗+j∗−1,
(t, j) ∈ domx. Using the UGS property ofHtv, UGA of A
for Htv follows with parametersε, δ, andT + 1 (in the order
introduced in Definition 2.3). �

B. Proof of Lemma 5.1

We use the following auxiliary lemmas, which are adapta-
tions of Claim 1 and Claim 2 in [8], culminating in a theorem
that generalizes the nonlinear version of Finsler’s lemma given
in [1, Theorem A.1].

Lemma 5.2: LetΨ ⊂ R
p be a nonempty compact set,Yi :

Ψ → R, i ∈ {1, 2, . . . ,m}, be continuous functions andY0 :
Ψ → {0}, Ym+1 : Ψ → {1} be constant functions such that

for eachj ∈ {m− 1,m}, if Yi(z) = 0 for all
i ∈ {0, 1, . . . , j} thenYj+1(z) ≤ 0.

(13)

Then, there existsε > 0 such that:

Yi(z) = 0 for all i ∈ {1, 2, . . . ,m− 1} imply Ym(z) ≤ −ε.
(14)

Proof: By contradiction, suppose that for eachn ∈ Z≥1

there exist zn ∈ Ψ such thatYi(zn) = 0 for all i ∈
{0, 1, . . . ,m− 1} andYm(zn) > − 1

n
. By compactness ofΨ,

the continuity ofYm, and the property (13) withj = m− 1,
the sequence{zn}

∞
i=1 has an accumulation pointz∗ ∈ Ψ such

that Yi(z
∗) = 0 for all i ∈ {0, 1, . . . ,m}. Then, using the

property (13) withj = m, this implies thatYm+1(z
∗) ≤ 0.

This is a contradiction since, by definition,Ym+1(z
∗) = 1.

Lemma 5.3: LetΨ ⊂ R
p be a nonempty compact set,Yi :

Ψ → R, i ∈ {1, 2, . . . ,m}, m ≥ 2, be continuous functions
and Y0 : Ψ → {0}, Ym+1 : Ψ → {1} be constant functions
such that

for eachj ∈ {0, 1, . . . ,m}, if Yi(z) = 0 for all
i ∈ {0, 1, . . . , j} thenYj+1(z) ≤ 0.

(15)

Let ℓ ∈ {2, 3, . . . ,m}, ε̃ > 0, and a continuous function
Ỹℓ : Ψ → R be given. Then, Property 1 implies Property 2.
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Property 1: A) Yi(z) = 0 for all i ∈ {1, 2, . . . , ℓ − 1}
implies B) Ỹℓ(z) ≤ −ε̃.

Property 2: there existsK∗
ℓ−1 > 0 such that:A) Yi(z) =

0 for all i ∈ {1, 2, . . . , ℓ−2} implies B)Kℓ−1Yℓ−1(z)+
Ỹℓ(z) ≤ −ε̃/2 for all Kℓ−1 ≥ K∗

ℓ−1.

Proof: By property (15), Property 2A impliesYℓ−1(z) ≤
0. Therefore, Property 2A implies

Kℓ−1Yℓ−1(z) + Ỹℓ(z) ≤ Ỹℓ(z) ∀Kℓ−1 ≥ 0.

If Yℓ−1(z) = 0 then, due to Property 1, Property 2B holds for
all Kℓ−1 ≥ 0 whenever Property 2A holds. We claim further
that there existsτ > 0 such that Property 2B holds whenever
Property 2A holds andYℓ−1(z) > −τ . Suppose not, that is, for
each integern there existszn ∈ Ψ such thatYℓ−1(zn) > − 1

n

and

Ỹℓ(zn) > −
ε̃

2
. (16)

Then, by compactness ofΨ, continuity ofYℓ−1, and the nested
property (15), the sequence{zn}

∞
n=1 has an accumulation

point z∗ ∈ Ψ such thatYℓ−1(z
∗) = 0. Then, there exists

a subsequence of{zn}
∞
n=1, which we will not relabel, con-

verging to z∗. Then, Property 1 implies̃Yℓ(z
∗) ≤ −ε̃. By

continuity of Ỹ this contradicts (16) for large enoughn.
It follows from the continuity ofỸℓ and compactness of

Ψ that we can pickK∗
ℓ−1 > 0 large enough to satisfy

maxz∈Ψ Ỹℓ(z) ≤ τK∗
ℓ−1 − ε̃/2. Hence, Property 2A implies

Property 2B.

Theorem 5.4: LetΨc,Ψd be compact subsets ofR
p, Yc,i :

Ψc → R, Yd,i : Ψd → R, i ∈ {1, 2, . . . ,m}, be continuous
functions andYc,0, Yd,0 : R

p → {0}, Yc,m+1, Yd,m+1 :
R

p → {1} be constant functions such that, for eachj ∈
{0, 1, . . . ,m},

1) if z ∈ Ψc and Yc,i(z) = 0 for all i ∈ {0, 1, . . . , j} then
Yc,j+1(z) ≤ 0,

2) if z ∈ Ψd andYd,i(z) = 0 for all i ∈ {0, 1, . . . , j} then
Yd,j+1(z) ≤ 0.

Then there existKi > 0, i ∈ {1, 2, . . . ,m− 1}, and ρ > 0
such that

∑m−1
i=1 KiYc,i(z) + Yc,m(z) ≤ −ρ ∀z ∈ Ψc,∑m−1
i=1 KiYd,i(z) + Yd,m(z) ≤ −ρ ∀z ∈ Ψd.

(17)

Proof: If either Ψc, Ψd, or both sets are empty, then
there is nothing to check for the corresponding inequalities
in (17). By assumption, (13) in Lemma 5.2 holds for both
sets of functionsYc,i and Yd,i. Apply Lemma 5.2 to each
set of functions to generateεc > 0, εd > 0 and define
ε := min {εc, εd}. Lemma 5.2 implies that Property 1 of
Lemma 5.3 holds, for both sets of functions, withℓ = m, ε̃ =
ε, andỸc,ℓ = Yc,m andỸd,ℓ = Yd,m. Since Property 1A holds,
Property 2A holds. Then, from Property 2 of Lemma 5.3, there
existsKm−1 > 0 such that

z ∈ Ψc , Yc,i(z) = 0 , i ∈ {1, 2, . . . ,m− 2} implies
Km−1Yc,m−1(z) + Yc,m(z) ≤ − ε

2

z ∈ Ψd , Yd,i(z) = 0 , i ∈ {1, 2, . . . ,m− 2} implies
Km−1Yd,m−1(z) + Yd,m(z) ≤ − ε

2

Then, Lemma 5.3 can be applied again withℓ = m − 1,
ε̃ = ε/2, and Ỹc,ℓ = Km−1Yc,m−1 + Yc,m and Ỹd,ℓ =
Km−1Yd,m−1 +Yd,m. Proceeding in this way, the result holds
with ρ := ε/2m−1.

Lemma 5.1 now follows from Theorem 5.4 by settingΨc :=(
Π(C) ∩ ΩA(δ,∆)

)
×µB, Ψd :=

(
Π(D) ∩ ΩA(δ,∆)

)
×µB,

Yc,i := uc,i, Yd,i := ud,i, i ∈ {1, 2, . . . ,m}, and then taking
V :=

∑m−1
i=1 KiVi + Vm andη := µ+

∑m−1
i=1 Kiµ.
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