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Abstract— The problem of robustly, globally stabilizing a compact set globally attractive. The proposed supervisor
point (or set) with two nonlinear output-feedback hybrid  controller for each of these hybrid control algorithms is
controllers is considered. These control laws may have diéfent shown to solve the uniting problem when the individual
objectives, e.g., both closed-loop systems may have difet
attractors. We provide a control algorithm that combines the closed-loop systems are output-to-state stable (_Cf' 3.
two hybrid controllers to accomplish the task. It consists 6a  Our construction exploits the fact that, as established &} [
hybrid supervisor that, based on the values of plant's outpts  for continuous-time nonlinear systems and generalized to
and state estimates, selects the hybrid controller that shad be hybrid systems in [3], this property implies the existence
applied to the plant. The accomplishment of the stabilizatin of an estimator of the norm of the state. By combining a

task relies on an output-to-state stability property induced by . . -
the controllers, which enables us to construct an estimatofor ~ iSCTete state and a timer state, we design a robustly, igfoba

the norm of the plant's state. stabilizing hybrid supervisor. We work on the hybrid syssem
framework of [7] (see also [6], [8]) and employ results on
|. INTRODUCTION robust asymptotic stability in [8].

Many control applications cannot be solved by means of The remainder paper is organized as follows. After basic
a single state-feedback controller. As a consequenceratontnotation is introduced, Section Il presents a short deserip
a|gorithms Combining more than one controller have bee(hf the framework used for analysis. The main results follow
thoroughly investigated in the literature. Particulaeation in Section IlI. It starts by introducing the problem to be
has been given to the problem of uniting local and globaiolved, the proposed formulation of a solution, and the
controllers, in which two control laws are used: one that i§equired assumptions. After presenting a detailed design
Supposed to work On|y |Oca||y' perhaps guaranteeing gocﬂjocedure for the SUperViSOf, it establishes the main rtobus
performance, and another that is capable of steering t§éability properties of the closed-loop system. The design
system trajectories to a neighborhood of the operatingtpoirProcedure is exercised in an example.
where the local control law works; see, e.g., [20], [11], and
[5]. More recently, these ideas have been extended in [15] totation
allow for the combination of more than two state-feedback ) ) o
laws as well as open-loop control laws. They have also been Ve use the following notation and definitions throughout

extended to the case when, rather than state-feedback, offl§ PaPerR™ denotesi-dimensional Euclidean spac@o
output-feedback controllers are available [12]. denotes the nonnegative real numbers, Re.; = [0, 00). N

The motivation of this paper is two fold. On the one hangdenotes the natural nur_nbers !ncludmg.e.,N =1{0,1, o 3
the impossibility of robustly, locally stabilizing an edjbi B denotes the_open unit ball_ in Euclidean space. lee_n a set
rium point (or set) with smooth or discontinuous controlgaw > > denotes its closure. Given a s€tc R" and a point
(see, e.g., [13], [2]) precludes utilizing uniting contess * € R?, |o]s = 1n_fyes | —y|. Given a vectorr R, |z
that combine smooth or discontinuous (non-hybrid) statéjleno_tes the Euclidean vector norm. A funct_lon R>o —
feedback laws. On the other hand, the typical limitation of>0 IS said to belong to the clagS if it is continuous, zero
measuring all of the plant variables for state-feedbackrobn at zero, and strictly increasing. A f_unc'utm: R>o = R>o
demands the use of output-feedback controllers. Buildin'g said _to belong to the cIad@o_o if it belongs to the class
from the ideas in [12] on uniting output-feedback contnaile & @nd is unbounded. A functiofi : R>o x R>o — Rxg
and the supervisory control algorithms in [10], [9], [16],'_3 said to belong tq clasléj_c if _|t is nondecreasing in its
we propose a hybrid controller to solve the problem Ofl.rst argument, nonincreasing in its secoqd argument, and
uniting two output-feedback hybrid controllers with difat 100 5(5,) = limy—.oc (s, 1) = 0. A function 5: R>q x
objectives, one considered local and the other one gIob:Iﬁ.ZO X R>o = Rxo IS S_a'd o belong to classLL if, for
Each of the output-feedback hybrid controllers is known tgachr € Rxo, the functionss(., -,r) and5(;,r, ) belong to
confer certain properties to each of the resulting closegy ClaSSXL.
systems: the local controller renders, for the plant state,
target compact set locally asymptotically stable, while th 1. PRELIMINARIES

global controller renders, for the plant state, a particula ] ) ] ]
In this paper, we consider hybrid systems as in [7] (see
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and can be written in the compact form « Stable if for eache > 0 there exists§ > 0 such that
, each solutiony to H with |x(0,0)|4 < J satisfies

H { X, S &8 k%S IX(t:7)la < € for all (1, ) € domx;
X (x X ’ o Locally attractive if there existg > 0 so that every
wherex € R is the state taking values in a Euclidean space ~ solution x to H with [x(0,0)|4 < p is complete
R™, the set-valued map' defines the continuous dynamics  and satisfiesim;; ; .. [x(f,5)[a = 0, and globally

on the setC' and the set-valued ma@ defines the discrete attractive if every solutiony to H is complete and

dynamics on the seb. The notationy* indicates the value satisfieslimy j—.oo [X(,7)[.4 = 0;

of the statey after a jump. o Locally asymptotically stable if is both stable and
A set £ is a hybrid time domainif for all (7,J) € E, locally attractive, and globally asymptotically stable if

EN([0,T] x {0,1,....J})is acompact hybrid time domain is both stable and globally attractive.

i.e., it can be written aEJj;Ol ([tj,tj41],7) for some finite  The basin of attractionof an asymptotically stable set is

sequence of time§ = ¢, < £;... < t;. A solution x to the set of points from which every solution is complete and

H is a hybrid arc x consisting of a hybrid time domain converges tod. Note that, under the hybrid basic conditions,

dom x and a functiony : dom y — R™ such thatx(¢,j) is  points not inC U D are automatically in the basin of

locally absolutely continuous ofy := {t : (t,7) € dom x} attraction since there is nothing to be checked. For results

for eachj € N and satisfies: about asymptotically stable compact sets for hybrid system
(S1) for eachj € N such thatl; has nonempty interior see Section VI in [8] and Section VI and VIl in [17].

) ) The following output-to-state stability definition for hgit
x(t,j) € C forallte [min [;, sup ;) (1) systemsH with an output was introduced in [3]: a hybrid
X(t,7) € F(x(t,j)) foralmostallt € I, systemH,, with data(h, C, F, D, G) and given by

(S2) for each(t,j) € domy such that(t,j + 1) €

X F C
dom X X € (X) X SHOA

Hy (X" € Gix) xeD,
x(t.j)eD, x(tj+1)eGx(tyj). (2 y = h(x)

Then, the state trajectory is parameterized bit, j), where IS Output-to-state stable (OSS) with respect to aset R”
¢ is the ordinary time ang is an independent variable that!f there exist a clasg=LL function 5 and a classc function
corresponds to the number of jumps of the solution. p sgch that each maximal solutionto 7, satisfies, for all
A solution y to H is said to becompleteif domy is (t,j) € dom,
unboundedZenaif it is complete but the projection efom y . )
. L . t < 0,0)]4,t ;
onto R>( is bounded, andgnaximalif there does not exist It )la < max {B(1x(0,0)la,t. 7). pllwle.p)}
another hybrid arc(’ such thaty is a truncat_ion ofy’ to  where, for each, j) € domy,
some proper subset afom x’. For more details about this
hybrid systems framework, we refer the reader to [7]. Iyl == sup .|y(t’,j’)|. (3)
When the datd F, C, G, D) of H satisfies certain condi- (t/,5)Edom y,t/+j' <t+j
tions, which we refer to _abybrld basic cond|t|o_n,shyl_3r|d From the definition ofy, we havey(t, j) = h(x(t, j)).
systems are well posed in the sense that they inherit several
good structural properties of their solution sets. These in ||| UniTING Two OUTPUT FEEDBACK CONTROLLERS
clude sequential compactness of the solution set, clossdne )
of perturbed and unperturbed solutions, etc. We refer tfe- Problem statement and assumptions

reader to [8] (see also [6]) and [18] for details on and \we consider robust, global stabilization of a compact set

consequences of these conditions. for nonlinear control systems of the form
Definition 2.1: (Well-posed hybrid systems)The hybrid . N m
systemH with data(F, C, G, D) is said to bevell posedf it P &= fp&uy)  EER™, u, eR™,  (4)

satisfies the followindpybrid basic conditionghe sets” and
D are closed, the mappings: C = R" andG : D = R”
are outer semicontinuous and locally bound&df'(z) is

nonempty and convex for alt € C, andG(z) is nonempty _ _ )
forall 2 € D. (x) Given a compact set C R"» and continuous functions

ho, h1 defining outputshy (), h1(£) of (4), design an
output feedback controllelC, that rendersA robustly
globally asymptotically stable.

1A set-valued mapping defined onR™ is outer semicontinuou# for For starters, we assume there exist two hybrid controllers,

each sequence; € R" convergi_ng toa point: € R™ and each sequence denotedk, and Ky, with “local” and “global” stabilizing
y; € G(x;) converging to a poiny, it holds thaty € G(z). It is locally biliti ivel hich . hat Wwé
boundedif, for each compact sek’ C R™ there existsy > 0 such that capabilities, respectively, which are properties tha

G(K) := Uge g G(z) C uB. made precise later. The controllers have stgtand(;, both

with only measurements of two outputs given by functions
of the statehy andhy. That is, we are interested in solving
the following problem:

For a hybrid systen¥{ = (C, F, D, G), the compact set
A C R" is said to be



in R™<, respectively? For eachi = 0, 1, the hybrid controller
K; takes the formiC; = (k¢,i, Ce.iy feis De,is Ge,i)s

} (te,is Gi) € Cei

yc,i - ﬁc,i(uc,ia gz)
Ki: Gi fe,iltes, Gi)

G € gei(ueiG) (te,i, Ci) € Do,

(5)

where(; € R is the controller's statey.; € R™< the
controller’s input,C,; and D, ; are subsets dR™* x R"e,
ke @ Cei x R — R™» is the controller's outputf,; :
Cei — R", andg.; : D.; = R". The controllers
measure plant outputg, o = ho(§) and y,1 = hi(§)
and, for eachi = 0,1, via the assignment.; = yp,
up = Y.,; defines a hybrid system of the forfid, denoted
(P,KZ) = (hl,Cl,fl,DZ,gl) with state [é'T C;F]T € R™,

a) Stability: For eachey > 0 there existsd, >
0 such that every solutior(¢, ¢y) to (P, Ko)
with [(£(0,0),0(0,0))|agxa, < do satisfies
[(6(t 1) Co(t, )L agxwe < €0 for all (t,5) €
dom(g, ¢o);®

b) Local attractivity: There existg: > 0 such
that every solution (¢, ¢y) to (P,Kp) with
1(£(0,0),¢0(0,0))[4yx@, < p is complete and
satisfies

. hm |(§(t,j),Co(t,j))|onq>0 =0
+j—00

c) Output-to-state stability: The hybrid system
(P, Ko) with outputy, o = ho(§) is output-to-
state stable with respect tdy x ®;

n = ny + n., and given by 2) A well-posed hybrid controller Xy =
' i (b ; (ke Ceny fe1,Det,gen) for the plant  output
E] = fi(&,G) == [f”(fc’ é(}p((g)(gg)?)g ))} (&, G)edCy, yp,1 = h1(§) inducing the following properties exists:
! AT a) Global attractivity: Every maximal solution
e+ : (¢,¢1) to (P, Kq) is complete and satisfies
[CJr] 691(55(1) = L“(hz(g) C) (gaCi)EDia tJrlji'Too|(§(t’j)’gl(t7j))|A1Xq)l = 0;
yi = hi(€), b) Output-to-state stability: The hybrid system
(6) (P, K1) with outputy, = hi(§) is output-to-

state stable with respect td; x ®4;

and have the property that; and the basin of attraction of
the controllerCy, denotedB,, satisfy, for someu > 0,

A +puB C {€eR™ : (& e By}. 7
The controllersiC;, ¢ = 0,1, are assumed to induce the L {€ ) (&:60) o} 0
properties that, for = 0, a compact sefd, x &, C R", Remark 3.2:By construction and well posedness of the

WhereAO — A, Q)O C R’ﬂc, is |oca”y asymptotica"y stable hyb”d COI’ItI’OlleI’/Ci, the hyb”d SySten(I'P, ICZ) is well posed
for (P,Ko) and, fori = 1, a compact setd; x ®; C for eachi = 0, 1. Assumption 3.1.1.c and Assumption 3.1.2.b
R", &, C R, is globally attractive for(P,k;) and a imply that, for eachi = 0,1, there exist a clas&LL
neighborhood of itself is contained in the basin of attaeti function 3; and a classc function p; such that for each
of K. These properties readily suggest that, when far awaplution (¢, ;) to (P, K;), (£(0,0),¢:(0,0)) € R,

from .AO’ IC; can be used to steer the plant’s stqt_e tQ(§(t,j),Ci(t7j))|Aix¢i < (8)

a region from wherefC; can be used to locally stabilize )

Ajo. However, these controllers cannot be combined using {6:(1(6(0,0), Gi(0,0)) 4w 1.9), pillyille.0))}
supervisory control techniques in the literature (see, E1§] for all (¢,5) € dom(¢,¢;). Then, under the stated as-
and the references therein) due to being hybrid and to tlsemptions, as established in [3, Theorem 1], the output-
lack of full measurements @f. Following the ideas in [12], to-state stability property in (8) implies that there exist
we resolve this issue by designing two norm observers. Tlan exponential-decay OSS-Lyapunov function with respect
existence of such observers is guaranteed when the hybtid . A; x ®; for (P,K;). As defined in [3, Definition 5],
controllers induce an output-to-state stability propeMgre this smooth functionV; : R® — Rxg is such that there
precisely: exist classko, functionsa; 1, v 2, classk function~;, and

Assumption 3.1Given a compact setly(= A) ¢ R & € (0,1] satisfying: for all(¢, ¢;) € R™,

and continuous functiony : R™ — R™<, hy : R™ — . (/£ ¢)axa.) < Vi(€,G) < aiz(|(€,C)|axa,); (9)
R™e1, whereho(¢) = 0 for all ¢ € Ay, assume there exist (& Glaixa) < VA6 6) < a0z ({6 Gl aixas)
for all (¢,¢:) € Ci,

compact setsd; C R"», &y, &; C R, whereh;(§) =0
for all £ € Ay, such that (VVA(E, Gi), fil6,G)) < —eiVil€.G) + 7 ha(€));
for all (¢,¢) € D,

1) A well-posed hybrid controller K, =
(Fe,0, Ce 05 fe,0, Deoy geo)  for the  plant  output
qerqnaxc)%(g) = Vi(€ G) = —eiVi(&, G) +v([Ra(€)))- (11)

wherey; is the output,
Ci = {(65 CZ) : 5 € Rnp? (h’l(g)v C’L) € Oc,’i}a and
D;:={(§G) + €€R™,(hi(§),¢) € Dei}-

(10)

yp,0 = ho(§) inducing the following properties exists:

2The case where the hybrid controllers have a dynamical taespec-
tively (1) in a setR™c0 (resp.R™<1) of different dimensionn.o # nc1
can be treated by embedding both sets into the set of largerdionR™ <
with ne = max{nco, nc1}.

3The plant staté is parameterized b, 5) since it is a component of the
closed-loop hybrid system’s staie whose solutions are defined on hybrid
time domains.



As stated in [3, Proposition 2], a norm estimator for theestat « Flow according to
, () (and, hence, fof) exists. A particular construction is :
(& o P £ = hlErealn(©.0)

Zi = —eizi +vi(lh , i) € Cy, o=
o= (1- si)zjﬂ%((gly}(ﬁ)l) Eg 43 ep, 12 2 = Jf;g?f )7’1<(1|i)11(§)|) (15)
In fact, given a solution(¢, ¢;) to (P, K;), with (10) and ¢ =0
(11), we obtain, using the upperbound in (9), for@lly) when, for a design parametey, > 0,
dom(¢, G;),
, 20=0 and 2z >e1, and ¢g=1, or (16)
Vil€(t,4), Gt 7)) < zi(t,j) + exp(—eit)(1 — &)’ i}
(i2(|(£(0,0), C:(0,0))|a xa,) — 2i(0,0)) . zo=0and z; >0 and 7<7" and ¢=1. (17)
Assuming, without loss of generality, thas (s) > s Vs > 0 « Jump according to
and definingB; (s, t, j) := 2 exp(—e;t)(1 — ;) a; 2(s) gives G edy, ¢ edy, 25 =0, 27 =0, ¢t =0 (18)
Vil€(t, ), Gi(t. 7)) = =zt )) when

L (1(£(0,0), G(0,0))| 4, <o, :(0,0)],¢,4). (13
+ﬁ(|(§( ) Gl )).|A7'X¢l +|Z( JI:t:4)- ( ) 20=0and 0<z <e1, and 7> 7" and ¢=1.
We impose mild regularity conditions on the nominal (19)
model of the plant® in (4).
Assumption 3.3The functionsf, : R"» x R™» — R"»,
ho : R"» — R™0 andh; : R"» — R™! are continuous.

The flows defined in (15) enforce, in particular, that
remains constant and that the estimatel&f;, converges.
Condition (16) allows flows when the estimate|§f4, is not

For analysis of robustness, the following model of th&mall enough, while, when condition (19) holds, the state
plant with perturbations is considered is set to0 so thatky is applied. The state, of the “local”

: controller is updated to a point ity and the estimator state

E=hlGurd)tdz, (14) zp IS reset to zero. These selections are to properly inigaliz
with outputsy, o = ho(§) +ds andy,1 = hi(§) + ds, Ko. Note that the values to which; and ¢; are updated
whered; corresponds to actuator errdg, models unmodeled are not important since the dynamics /6§ do not depend
dynamics, andils, d, represent measurement noise. on them. Due to the impossibility of measuriggit is not

In the next section, we provide a solution to problenpossible to ensure thdtis such that¢, ¢y) is in the basin
(x) that consists of a hybrid controller coordinating, usingf attraction B, after jumps fromg = 1 to ¢ = 0 occur.
control logic and norm observers, the two (well-posedHence, it could be the case that there are jumps fjom0
output-feedback hybrid controlle#§, and ;. back toq = 1. Condition (17) enforces that, perhaps after
a few jumps tog = 0 and back tog = 1, £ eventually is
) . so that(&, (o) is in the said basin of attraction by allowing
We propose a hybrid controller to supervisg, K1. This e estimatel¢| 4, to converge. The conditions, = 0 in

hybrid controller, referred to as thieybrid supervisar is (16), (17), and (19) force, to remain nonnegative along
denoted/C; and designed to perform the uniting task asg|ytions.

B. Controller design

follows: 2) Local Controller(g = 0): The local asymptotic stabil-
A) Apply the hybrid (“global”) controllerkC; when the ity property assured by Assumption 3.1.1.a and b guarantees
estimate ofi¢| 4, is away from the origin. that there existsg, > 0 such that
B) Permit estimate of¢| 4, to converge.
C) Apply Ko when the estimate df| 4, are close enough {(&:¢0) = Vol(§: <o) < eon} (20)
to zero.

_ . _ is a subset of the basin of attractidiy for the asymptotic
To accomplish these tasks, the supervisor has a discréte s@abilization of A with Ko. Moreover, from condition (7)
q € Q:={0,1} and a timer state- € R with parameter in Assumption 3.1, it follows that there exists, > 0 and

7* > 0. The dynamics of the stateare designed to indicate -, > ( such that, for each solutioft, ¢o) to (P, Ko) from
that the controller, is connected to the plant. We now

describe the control mechanisms in the hybrid supervisor. ~ {§ €R™ = Vi(§,C1) <ew, G € P} x ®o,  (21)

" 1t)fGIobaI Con;[rct)_ller G= 1t). A;sllémp'uon r?.1.2.a implies e have70(|h0(§(t,j))|) < £0a Y(t,5) € dom(¢, Co). Note
at for every solutior(¢, 1) to (P, K1), we have that from (12) fori = 0 it follows that z, approaches
lim 1 (|hi(€(E, 5))]) = 0. Yo (lho(£(t, 7))|) along solutions. Furthermore, whep <
tHj—oo €0as Co € Po, andt andj are large enough, it follows from
Using (12) fori = 1, it follows thatz; also approaches zero, (13) for i = 0 that after jumps ta; = 0, (&, o) will be in
and that, eventually, whehand j are large enough¢|4, the set (20). Then, the supervisor is designed to afiplas
is small enough. This suggests that the supervisor shodlthg asz, is smaller or equal thasy,, and when is larger or
apply K1 until, eventually,z; is small enough. This can be equal to that parameter, a jump ¢o= 1 is triggered. Note
implemented as follows: that the logic forg = 1 eventually forces flows for at least



units of time, which allows and; to become large enough, G(x) = () otherwise; for eacly = 1, (¢,¢o) € D,

and with that, guarantee th&g, (o) is in the set (20). This 1

mechanism is implemented as follows:
o Flow according to

when0 < zg < gg, and

5' = fp(gvﬂc,O(hO(g)aCO))
G = feo(ho(€),¢0)

20 = —¢cozo +0(|ho(§)])
i = 0

« Jump according to

g €D, (FEP, 2 =0, 2 =0, ¢" =1
Co 1 0 1 q

whenzg > g¢, and

As (15), the flows defined in (22) enforce, in particular, C..

z1>0 and ¢=0.

z17>0 and ¢=0.

(22)

(23)

(24)

(25)

that ¢ remains constant and that the estimatdépfi, con-

verges. While optimal choices might be possible to maximize

performance, the values to whidfy, 29, (1, and z; are
updated to at jumps are not crucial since the contrdller
enforces a global attractivity property. The conditian> 0

in (23) and (25) forces; to be nonnegative along solutions.
3) Closed-loop systemWe are now ready to write the

3
Co
9e,1(h1(§), C1)
Gi(x) = 2 :
(1 =€)z +7(ha(9)])
q

T

G1(x) = 0 otherwise; for eachy € D, , U Dsp Gs(x) =
[ P9 ®1 001 —¢q0], Gs(x) =0 otherwise;

C = {X : (gagq)ecq}ﬂ(cs,aUCs,bUCs,c),
= {X : €a>2>0,21>0,g=0},
Csp = {x : 20=0,21 > €14,q9 =1},
Cse = {x:20=0,21>0,7<7",q=1},
D = {x : (£, ¢y) € Dy} UDsqU Dy,
Dso = {x : 20> ¢0a21>0,¢ =0},
Dsp == {x: 20=0,614>21>0,7>7",q=1}.

resulting closed loop as a hybrid system. kgl, 1., and  The flow mapF is defined in terms of the discrete state

7" be design parameters selected as suggested in Sectionstll“select” the appropriate flow dynamics whély and K,
B.1 and IlI-B.2. The closed-loop hybrid system has sjate

(&, Co, (1, 20, 21, ¢, T) taking values inX := R"™» x R™ x

R xRxRx QxR. Collecting the definitions in Sections IlI-
B.1 and IlI-B.2, the resulting closed-loop system, deneted

‘H.:, has dynamics given as follows:

X" e Go(x)UGI(x) UGs(x) = G(x),

fo(&; Fe,q(hq(§), ¢q))
(1 —=a)feo(ho(€),Co)
q fea(ha(€),¢1)
(1 = q)(—c0z0 + 0 (|ho(E)))
a(—e1z1 + ([ (§)])
0

q

where: for eacly =0, (§,¢o) € Dy

Go(x)

3
9e,0(ho(€), Co)
G
=1 (I —¢0)z0 +70(ho())

Z1

yeC,
X € D,

are applied. In particular, wheqp = 0, ¢(; and z; remain
constant during flows while, whep= 1, ¢, and zo remain
constant. The flow sef’ allows flow when botH¢&, ¢,) is in

the flow setC, and the conditions for flow imposed by the
hybrid supervisor are satisfied. The latter are given in,(23)
(17), and (16), which are captured in the s€ts,, Cs ., and
Csp, respectively. The jump mapS,, G;, and G5 above
are defined to execute the jumps of the individual hybrid
controllers when their state jumps duecpe D, , or when
reset of the appropriate states is required by the superviso
jump setsD; , and D; ;, which are given in (25) and (19),
respectively. Note that singg , is only defined orD, 4, the
set-valued maps&/, and G; are nonempty at pointg with

¢q cOmponents inD.. 4.

C. Closed-loop system properties

Theorem 3.4:(Nominal global asymptotic stability)
Suppose Assumptions 3.1 and 3.3 hold. Then, there exist a
hybrid controller IC; that provides a solution to the uniting
problem &). Moreover, the hybrid controllek, is such that,
for the hybrid systent{.;, every solution is bounded and
complete, and the compact set

AS ::AX(I)()X(I)lX{O}X{O}XQX[()’T*]

is globally asymptotically stable.

With the plant in (14) under the presence of perturbations,
the resulting closed-loop systefd,; results in a perturbed
hybrid system, denote &<.;, which can be written as

F(X+{l~v1)+622
G(x+di)+ds

x—i—czleg
X+d1€D.

X‘ p—
xt o€



The following result asserts that the closed-loop systerft), «). From (27), it follows that0, «) belongs to the interior
is robust to a class of perturbations. It follows from theof By. Let hy(§) := & — «. The controllerC; is given as
asymptotic stability property established in Theorem 3d a in (5) with . 1(¢) := [h1(£) + o, 0]T on the selC.; = R,
the fact that the construction of the hybrid supervisor shsu n. = 0, and empty seD.. ;. With this controller, the function
that the hybrid basic conditions of Definition 2.1 hold foeth V;(€) = 1&f + 1(¢& — a)? satisfies

closed-loop systerft;, that is, /Cs is well posed.

Theorem 3.5:(Nominal robustness) Suppose Assump-
tions 3.1 and 3.3 hold. Then, for the hybrid systétn,

4

(VVA(E), fp(&, K (£))) < —VA(8),

from where a norm observer fd¢| 4, follows. Then, As-

there exists? € KLL, for eachs > 0 and each compact set sumptions 3.1 and 3.3 hold and the hybrid supervisor
K C R" there existss > 0 such that for each measurable robustly, globally asymptotically stabilizes the origif(26).

di,d> : R>q — 6B every solutiony to H,, from compact Figure 1 shows a trajectory to the closed-loop system when
=1, 00 =10 =001, andr* = 1.

subsets ofX with 2(0,0) € K satisfies

|z(t,4)la < B(12(0,0)] 4,8, 5) +

D. lllustrative Example

Y(t,j) € dom x.

(1]
Consider the global stabilization of the origin bf

=&+ (ur — &)&F
S+ & +a+uy |’

) [2]
= fp(gaup) = (26)

) ) ] [3]
where¢ € R? is the statey,, = [u; us] T is the control input
constrained ta; us = 0, anda € [—3, 1]. Measurements of A
& andé&, are available but not simultaneously. The proposec{
hybrid controllerCs is used to coordinate two controllers,
Ko and/C;. The “local” controllerCy measuregy(§) := &
and stabilizest to Ay = (0,0). It is given as in (5) with
Keo(€) == [0, —a]” on the setC., = R, n. = 0, and

empty setD. o. For Vy(¢) = 3|¢[?, it follows that

<VV0(§)7fP(§7"€C,O(§))> _512 - 5%52 - 5% + 525%
—Vo(&) + &l (1+¢€7)

and thus, by lettingyo(s) = s*(1 + s?) for all s > 0, a
norm observer fof¢| 4, is given byzy = —z¢ +70(|ho()])-

(5]
(6]

(7]

- (27) [8]

El

It can be verified tha{¢ : V(¢) < £} C Bo. A “global” [10]
controllerC; can be designed to steer the solutionstio:=
[11]
15 T T T T T T T T [12]
] [13]
[14]
Ji\}jo&f ~
. [15]
| [16]
3‘51 70‘,5 r; 0‘5 ‘1 1‘5 % 2‘5 é 35 [17]
&1
Fig. 1. A trajectory&(t, j) to (26) from £(0,0) = (3, —3) with hybrid (18]
supervisorks. Dotted lines denote an estimate 8§,  (red) the switch
from ¢ = 1 to 0, and x the sets4; and Ay. [19]

“4For the casex = 0, dynamic output feedback laws for outputs given by
&1 or & that globally asymptotically stabilizes the origin R? have been
proposed in [1].

[20]
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