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Abstract— The problem of robustly, globally stabilizing a
point (or set) with two nonlinear output-feedback hybrid
controllers is considered. These control laws may have different
objectives, e.g., both closed-loop systems may have different
attractors. We provide a control algorithm that combines the
two hybrid controllers to accomplish the task. It consists of a
hybrid supervisor that, based on the values of plant’s outputs
and state estimates, selects the hybrid controller that should be
applied to the plant. The accomplishment of the stabilization
task relies on an output-to-state stability property induced by
the controllers, which enables us to construct an estimatorfor
the norm of the plant’s state.

I. I NTRODUCTION

Many control applications cannot be solved by means of
a single state-feedback controller. As a consequence, control
algorithms combining more than one controller have been
thoroughly investigated in the literature. Particular attention
has been given to the problem of uniting local and global
controllers, in which two control laws are used: one that is
supposed to work only locally, perhaps guaranteeing good
performance, and another that is capable of steering the
system trajectories to a neighborhood of the operating point,
where the local control law works; see, e.g., [20], [11], and
[5]. More recently, these ideas have been extended in [15] to
allow for the combination of more than two state-feedback
laws as well as open-loop control laws. They have also been
extended to the case when, rather than state-feedback, only
output-feedback controllers are available [12].

The motivation of this paper is two fold. On the one hand,
the impossibility of robustly, locally stabilizing an equilib-
rium point (or set) with smooth or discontinuous control laws
(see, e.g., [13], [2]) precludes utilizing uniting controllers
that combine smooth or discontinuous (non-hybrid) state-
feedback laws. On the other hand, the typical limitation of
measuring all of the plant variables for state-feedback control
demands the use of output-feedback controllers. Building
from the ideas in [12] on uniting output-feedback controllers
and the supervisory control algorithms in [10], [9], [16],
we propose a hybrid controller to solve the problem of
uniting two output-feedback hybrid controllers with different
objectives, one considered local and the other one global.
Each of the output-feedback hybrid controllers is known to
confer certain properties to each of the resulting closed-loop
systems: the local controller renders, for the plant state,a
target compact set locally asymptotically stable, while the
global controller renders, for the plant state, a particular
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compact set globally attractive. The proposed supervisor
controller for each of these hybrid control algorithms is
shown to solve the uniting problem when the individual
closed-loop systems are output-to-state stable (cf. [12],[4]).
Our construction exploits the fact that, as established in [19]
for continuous-time nonlinear systems and generalized to
hybrid systems in [3], this property implies the existence
of an estimator of the norm of the state. By combining a
discrete state and a timer state, we design a robustly, globally
stabilizing hybrid supervisor. We work on the hybrid systems
framework of [7] (see also [6], [8]) and employ results on
robust asymptotic stability in [8].

The remainder paper is organized as follows. After basic
notation is introduced, Section II presents a short description
of the framework used for analysis. The main results follow
in Section III. It starts by introducing the problem to be
solved, the proposed formulation of a solution, and the
required assumptions. After presenting a detailed design
procedure for the supervisor, it establishes the main robust
stability properties of the closed-loop system. The design
procedure is exercised in an example.

Notation

We use the following notation and definitions throughout
the paper.Rn denotesn-dimensional Euclidean space.R≥0

denotes the nonnegative real numbers, i.e.,R≥0 = [0,∞). N

denotes the natural numbers including0, i.e.,N = {0, 1, . . .}.
B denotes the open unit ball in Euclidean space. Given a set
S, S denotes its closure. Given a setS ⊂ R

n and a point
x ∈ R

n, |x|S := infy∈S |x − y|. Given a vectorx ∈ R
n, |x|

denotes the Euclidean vector norm. A functionα : R≥0 →
R≥0 is said to belong to the classK if it is continuous, zero
at zero, and strictly increasing. A functionα : R≥0 → R≥0

is said to belong to the classK∞ if it belongs to the class
K and is unbounded. A functionβ : R≥0 × R≥0 → R≥0

is said to belong to class-KL if it is nondecreasing in its
first argument, nonincreasing in its second argument, and
limsց0 β(s, t) = limt→∞ β(s, t) = 0. A functionβ : R≥0×
R≥0 × R≥0 → R≥0 is said to belong to class-KLL if, for
eachr ∈ R≥0, the functionsβ(·, ·, r) andβ(·, r, ·) belong to
class-KL.

II. PRELIMINARIES

In this paper, we consider hybrid systems as in [7] (see
also [6], [8]) where solutions can evolve continuously (flow)
and/or discretely (jump) depending on the continuous and
discrete dynamics and the sets where those dynamics apply.
In general, a hybrid systemH is given by data(F, C, G, D)



and can be written in the compact form

H

{
χ̇ ∈ F (χ) χ ∈ C

χ+ ∈ G(χ) χ ∈ D,

whereχ ∈ R
n is the state taking values in a Euclidean space

R
n, the set-valued mapF defines the continuous dynamics

on the setC and the set-valued mapG defines the discrete
dynamics on the setD. The notationχ+ indicates the value
of the stateχ after a jump.

A set E is a hybrid time domainif for all (T, J) ∈ E,
E ∩ ([0, T ]× {0, 1, . . . J}) is acompact hybrid time domain,
i.e., it can be written as

⋃J−1
j=0 ([tj , tj+1], j) for some finite

sequence of times0 = t0 ≤ t1 . . . ≤ tJ . A solution χ to
H is a hybrid arc χ consisting of a hybrid time domain
domχ and a functionχ : domχ → R

n such thatχ(t, j) is
locally absolutely continuous onIj := {t : (t, j) ∈ domχ}
for eachj ∈ N and satisfies:

(S1) for eachj ∈ N such thatIj has nonempty interior

χ(t, j) ∈ C for all t ∈ [min Ij , sup Ij)
χ̇(t, j) ∈ F (χ(t, j)) for almost allt ∈ Ij ,

(1)

(S2) for each(t, j) ∈ domχ such that(t, j + 1) ∈
domχ,

χ(t, j) ∈ D, χ(t, j + 1) ∈ G(χ(t, j)). (2)

Then, the state trajectoryχ is parameterized by(t, j), where
t is the ordinary time andj is an independent variable that
corresponds to the number of jumps of the solution.

A solution χ to H is said to becompleteif domχ is
unbounded,Zenoif it is complete but the projection ofdomχ

onto R≥0 is bounded, andmaximal if there does not exist
another hybrid arcχ′ such thatχ is a truncation ofχ′ to
some proper subset ofdomχ′. For more details about this
hybrid systems framework, we refer the reader to [7].

When the data(F, C, G, D) of H satisfies certain condi-
tions, which we refer to ashybrid basic conditions, hybrid
systems are well posed in the sense that they inherit several
good structural properties of their solution sets. These in-
clude sequential compactness of the solution set, closedness
of perturbed and unperturbed solutions, etc. We refer the
reader to [8] (see also [6]) and [18] for details on and
consequences of these conditions.

Definition 2.1: (Well-posed hybrid systems)The hybrid
systemH with data(F, C, G, D) is said to bewell posedif it
satisfies the followinghybrid basic conditions: the setsC and
D are closed, the mappingsF : C ⇉ R

n andG : D ⇉ R
n

are outer semicontinuous and locally bounded,1 F (x) is
nonempty and convex for allx ∈ C, andG(x) is nonempty
for all x ∈ D.

For a hybrid systemH = (C, F, D, G), the compact set
A ⊂ R

n is said to be

1A set-valued mappingG defined onR
n is outer semicontinuousif for

each sequencexi ∈ R
n converging to a pointx ∈ R

n and each sequence
yi ∈ G(xi) converging to a pointy, it holds thaty ∈ G(x). It is locally
boundedif, for each compact setK ⊂ R

n there existsµ > 0 such that
G̃(K) := ∪x∈KG(x) ⊂ µB.

• Stable if for eachǫ > 0 there existsδ > 0 such that
each solutionχ to H with |χ(0, 0)|A ≤ δ satisfies
|χ(t, j)|A ≤ ǫ for all (t, j) ∈ domχ;

• Locally attractive if there existsµ > 0 so that every
solution χ to H with |χ(0, 0)|A ≤ µ is complete
and satisfieslimt+j→∞ |χ(t, j)|A = 0, and globally
attractive if every solutionχ to H is complete and
satisfieslimt+j→∞ |χ(t, j)|A = 0;

• Locally asymptotically stable if is both stable and
locally attractive, and globally asymptotically stable if
is both stable and globally attractive.

The basin of attractionof an asymptotically stable setA is
the set of points from which every solution is complete and
converges toA. Note that, under the hybrid basic conditions,
points not in C ∪ D are automatically in the basin of
attraction since there is nothing to be checked. For results
about asymptotically stable compact sets for hybrid systems,
see Section VI in [8] and Section VI and VII in [17].

The following output-to-state stability definition for hybrid
systemsH with an output was introduced in [3]: a hybrid
systemHy with data(h, C, F, D, G) and given by

Hy





χ̇ ∈ F (χ) χ ∈ C,

χ+ ∈ G(χ) χ ∈ D,

y = h(χ)

is output-to-state stable (OSS) with respect to a setA ⊂ R
n

if there exist a class-KLL functionβ and a class-K function
ρ such that each maximal solutionχ to Hy satisfies, for all
(t, j) ∈ domχ,

|χ(t, j)|A ≤ max
{
β(|χ(0, 0)|A, t, j), ρ(‖y‖(t,j))

}
,

where, for each(t, j) ∈ dom y,

‖y‖(t,j) := sup
(t′,j′)∈dom y,t′+j′≤t+j

|y(t′, j′)|. (3)

From the definition ofy, we havey(t, j) = h(χ(t, j)).

III. U NITING TWO OUTPUT FEEDBACK CONTROLLERS

A. Problem statement and assumptions

We consider robust, global stabilization of a compact set
for nonlinear control systems of the form

P : ξ̇ = fp(ξ, up) ξ ∈ R
np , up ∈ R

mp , (4)

with only measurements of two outputs given by functions
of the stateh0 andh1. That is, we are interested in solving
the following problem:

(⋆) Given a compact setA ⊂ R
np and continuous functions

h0, h1 defining outputsh0(ξ), h1(ξ) of (4), design an
output feedback controllerKs that rendersA robustly
globally asymptotically stable.

For starters, we assume there exist two hybrid controllers,
denotedK0 and K1, with “local” and “global” stabilizing
capabilities, respectively, which are properties that will be
made precise later. The controllers have stateζ0 andζ1, both



in R
nc , respectively.2 For eachi = 0, 1, the hybrid controller

Ki takes the formKi = (κc,i, Cc,i, fc,i, Dc,i, gc,i),

Ki :





yc,i = κc,i(uc,i, ζi)

ζ̇i = fc,i(uc,i, ζi)

}
(uc,i, ζi) ∈ Cc,i

ζ+
i ∈ gc,i(uc,i, ζi) (uc,i, ζi) ∈ Dc,i,

(5)
where ζi ∈ R

nc is the controller’s state,uc,i ∈ R
mc,i the

controller’s input,Cc,i andDc,i are subsets ofRmc,i ×R
nc ,

κc,i : Cc,i × R
nc → R

mp is the controller’s output,fc,i :
Cc,i → R

nc , and gc,i : Dc,i ⇉ R
nc . The controllers

measure plant outputsyp,0 = h0(ξ) and yp,1 = h1(ξ)
and, for eachi = 0, 1, via the assignmentuc,i = yp,i,
up = yc,i defines a hybrid system of the formHy denoted
(P ,Ki) = (hi, Ci, fi, Di, gi) with state [ξ⊤ ζ⊤i ]⊤ ∈ R

n,
n = np + nc, and given by

[
ξ̇

ζ̇i

]
= fi(ξ, ζi) :=

[
fp(ξ, κc,i(hi(ξ), ζi))

fc,i(hi(ξ), ζi)

]
(ξ, ζi)∈Ci,


ξ+

ζ+
i


 ∈ gi(ξ, ζi) :=


 ξ

gc,i(hi(ξ), ζi)


 (ξ, ζi)∈Di,

yi = hi(ξ),
(6)

whereyi is the output,

Ci := {(ξ, ζi) : ξ ∈ R
np , (hi(ξ), ζi) ∈ Cc,i} , and

Di := {(ξ, ζi) : ξ ∈ R
np , (hi(ξ), ζi) ∈ Dc,i} .

The controllersKi, i = 0, 1, are assumed to induce the
properties that, fori = 0, a compact setA0 × Φ0 ⊂ R

n,
whereA0 = A, Φ0 ⊂ R

nc , is locally asymptotically stable
for (P ,K0) and, for i = 1, a compact setA1 × Φ1 ⊂
R

n, Φ1 ⊂ R
nc , is globally attractive for(P ,K1) and a

neighborhood of itself is contained in the basin of attraction
of K0. These properties readily suggest that, when far away
from A0, K1 can be used to steer the plant’s state to
a region from whereK0 can be used to locally stabilize
A0. However, these controllers cannot be combined using
supervisory control techniques in the literature (see, e.g., [16]
and the references therein) due to being hybrid and to the
lack of full measurements ofξ. Following the ideas in [12],
we resolve this issue by designing two norm observers. The
existence of such observers is guaranteed when the hybrid
controllers induce an output-to-state stability property. More
precisely:

Assumption 3.1:Given a compact setA0(= A) ⊂ R
np

and continuous functionsh0 : R
np → R

mc,0 , h1 : R
np →

R
mc,1 , whereh0(ξ) = 0 for all ξ ∈ A0, assume there exist

compact setsA1 ⊂ R
np , Φ0, Φ1 ⊂ R

nc , whereh1(ξ) = 0
for all ξ ∈ A1, such that:

1) A well-posed hybrid controller K0 =
(κc,0, Cc,0, fc,0, Dc,0, gc,0) for the plant output
yp,0 = h0(ξ) inducing the following properties exists:

2The case where the hybrid controllers have a dynamical stateζ0 (respec-
tively ζ1) in a setRnc0 (resp.Rnc1 ) of different dimensionnc0 6= nc1

can be treated by embedding both sets into the set of larger dimensionR
nc

with nc = max{nc0, nc1}.

a) Stability: For eachε0 > 0 there existsδ0 >

0 such that every solution(ξ, ζ0) to (P ,K0)
with |(ξ(0, 0), ζ0(0, 0))|A0×Φ0

≤ δ0 satisfies
|(ξ(t, j), ζ0(t, j))|A0×Φ0

≤ ε0 for all (t, j) ∈
dom(ξ, ζ0);3

b) Local attractivity: There existsµ > 0 such
that every solution (ξ, ζ0) to (P ,K0) with
|(ξ(0, 0), ζ0(0, 0))|A0×Φ0

≤ µ is complete and
satisfies

lim
t+j→∞

|(ξ(t, j), ζ0(t, j))|A0×Φ0
= 0;

c) Output-to-state stability: The hybrid system
(P ,K0) with output yp,0 = h0(ξ) is output-to-
state stable with respect toA0 × Φ0;

2) A well-posed hybrid controller K1 =
(κc,1, Cc,1, fc,1, Dc,1, gc,1) for the plant output
yp,1 = h1(ξ) inducing the following properties exists:

a) Global attractivity: Every maximal solution
(ξ, ζ1) to (P ,K1) is complete and satisfies

lim
t+j→∞

|(ξ(t, j), ζ1(t, j))|A1×Φ1
= 0;

b) Output-to-state stability: The hybrid system
(P ,K1) with output yp,1 = h1(ξ) is output-to-
state stable with respect toA1 × Φ1;

and have the property thatA1 and the basin of attraction of
the controllerK0, denotedB0, satisfy, for someµ > 0,

A1 + µB ⊂ {ξ ∈ R
np : (ξ, ζ0) ∈ B0} . (7)

Remark 3.2:By construction and well posedness of the
hybrid controllerKi, the hybrid system(P ,Ki) is well posed
for eachi = 0, 1. Assumption 3.1.1.c and Assumption 3.1.2.b
imply that, for eachi = 0, 1, there exist a class-KLL
function βi and a class-K function ρi such that for each
solution (ξ, ζi) to (P ,Ki), (ξ(0, 0), ζi(0, 0)) ∈ R

n,

|(ξ(t, j), ζi(t, j))|Ai×Φi
≤ (8)

max
{
βi(|(ξ(0, 0), ζi(0, 0))|Ai×Φi

, t, j), ρi(‖yp,i‖(t,j))
}

for all (t, j) ∈ dom(ξ, ζi). Then, under the stated as-
sumptions, as established in [3, Theorem 1], the output-
to-state stability property in (8) implies that there exists
an exponential-decay OSS-Lyapunov function with respect
to Ai × Φi for (P ,Ki). As defined in [3, Definition 5],
this smooth functionVi : R

n → R≥0 is such that there
exist class-K∞ functionsαi,1, αi,2, class-K functionγi, and
εi ∈ (0, 1] satisfying: for all(ξ, ζi) ∈ R

n,

αi,1(|(ξ, ζi)|Ai×Φi
) ≤ Vi(ξ, ζi) ≤ αi,2(|(ξ, ζi)|Ai×Φi

); (9)

for all (ξ, ζi) ∈ Ci,

〈∇Vi(ξ, ζi), fi(ξ, ζi)〉 ≤ −εiVi(ξ, ζi) + γi(|hi(ξ)|); (10)

for all (ξ, ζi) ∈ Di,

max
g∈gi(ξ,ζi)

Vi(g) − Vi(ξ, ζi) ≤ −εiVi(ξ, ζi) + γi(|hi(ξ)|). (11)

3The plant stateξ is parameterized by(t, j) since it is a component of the
closed-loop hybrid system’s statex, whose solutions are defined on hybrid
time domains.



As stated in [3, Proposition 2], a norm estimator for the state
(ξ, ζi) (and, hence, forξ) exists. A particular construction is

żi = −εizi + γi(|hi(ξ)|) (ξ, ζi) ∈ Ci,

z+
i = (1 − εi)zi + γi(|hi(ξ)|) (ξ, ζi) ∈ Di.

(12)

In fact, given a solution(ξ, ζi) to (P ,Ki), with (10) and
(11), we obtain, using the upperbound in (9), for all(t, j) ∈
dom(ξ, ζi),

Vi(ξ(t, j), ζi(t, j)) ≤ zi(t, j) + exp(−εit)(1 − εi)
j

(αi,2(|(ξ(0, 0), ζi(0, 0))|Ai×Φi
) − zi(0, 0)) .

Assuming, without loss of generality, thatα2(s) ≥ s ∀s ≥ 0
and definingβi(s, t, j) := 2 exp(−εit)(1− εi)

jαi,2(s) gives

Vi(ξ(t, j), ζi(t, j)) ≤ zi(t, j)

+βi(|(ξ(0, 0), ζi(0, 0))|Ai×Φi
+ |zi(0, 0)|, t, j). (13)

We impose mild regularity conditions on the nominal
model of the plantP in (4).

Assumption 3.3:The functionsfp : R
np × R

mp → R
np ,

h0 : R
np → R

m0 , andh1 : R
np → R

m1 are continuous.

For analysis of robustness, the following model of the
plant with perturbations is considered

ξ̇ = fp(ξ, u + d1) + d2 , (14)

with outputsyp,0 = h0(ξ) + d3 and yp,1 = h1(ξ) + d4,
whered1 corresponds to actuator error,d2 models unmodeled
dynamics, andd3, d4 represent measurement noise.

In the next section, we provide a solution to problem
(⋆) that consists of a hybrid controller coordinating, using
control logic and norm observers, the two (well-posed)
output-feedback hybrid controllersK0 andK1.

B. Controller design

We propose a hybrid controller to superviseK0,K1. This
hybrid controller, referred to as thehybrid supervisor, is
denotedKs and designed to perform the uniting task as
follows:

A) Apply the hybrid (“global”) controllerK1 when the
estimate of|ξ|A1

is away from the origin.
B) Permit estimate of|ξ|A1

to converge.
C) Apply K0 when the estimate of|ξ|A1

are close enough
to zero.

To accomplish these tasks, the supervisor has a discrete state
q ∈ Q := {0, 1} and a timer stateτ ∈ R with parameter
τ∗ > 0. The dynamics of the stateq are designed to indicate
that the controllerKq is connected to the plant. We now
describe the control mechanisms in the hybrid supervisor.

1) Global Controller (q = 1): Assumption 3.1.2.a implies
that for every solution(ξ, ζ1) to (P ,K1), we have

lim
t+j→∞

γ1(|hi(ξ(t, j))|) = 0.

Using (12) fori = 1, it follows thatz1 also approaches zero,
and that, eventually, whent and j are large enough,|ξ|A1

is small enough. This suggests that the supervisor should
applyK1 until, eventually,z1 is small enough. This can be
implemented as follows:

• Flow according to

ξ̇ = fp(ξ, κc,1(h1(ξ), ζ1))

ζ̇1 = fc,1(h1(ξ), ζ1)
ż1 = −ε1z1 + γ1(|h1(ξ)|)
q̇ = 0

(15)

when, for a design parameterε1a > 0,

z0 = 0 and z1 ≥ ε1a and q = 1, or (16)

z0 = 0 and z1 ≥ 0 and τ ≤ τ∗ and q = 1. (17)

• Jump according to

ζ+
0 ∈ Φ0, ζ+

1 ∈ Φ1, z+
0 = 0, z+

1 = 0, q+ = 0 (18)

when

z0 = 0 and 0 ≤ z1 ≤ ε1a and τ ≥ τ∗ and q = 1.

(19)

The flows defined in (15) enforce, in particular, thatq

remains constant and that the estimate of|ξ|A1
converges.

Condition (16) allows flows when the estimate of|ξ|A1
is not

small enough, while, when condition (19) holds, the stateq

is set to0 so thatK0 is applied. The stateζ0 of the “local”
controller is updated to a point inΦ0 and the estimator state
z0 is reset to zero. These selections are to properly initialize
K0. Note that the values to whichz1 and ζ1 are updated
are not important since the dynamics ofK0 do not depend
on them. Due to the impossibility of measuringξ, it is not
possible to ensure thatξ is such that(ξ, ζ0) is in the basin
of attractionB0 after jumps fromq = 1 to q = 0 occur.
Hence, it could be the case that there are jumps fromq = 0
back to q = 1. Condition (17) enforces that, perhaps after
a few jumps toq = 0 and back toq = 1, ξ eventually is
so that(ξ, ζ0) is in the said basin of attraction by allowing
the estimate|ξ|A1

to converge. The conditionsz0 = 0 in
(16), (17), and (19) forcez0 to remain nonnegative along
solutions.

2) Local Controller(q = 0): The local asymptotic stabil-
ity property assured by Assumption 3.1.1.a and b guarantees
that there existsε0b > 0 such that

{(ξ, ζ0) : V0(ξ, ζ0) ≤ ε0b} (20)

is a subset of the basin of attractionB0 for the asymptotic
stabilization ofA with K0. Moreover, from condition (7)
in Assumption 3.1, it follows that there existsε0a > 0 and
ε1b > 0 such that, for each solution(ξ, ζ0) to (P ,K0) from

{ξ ∈ R
np : V1(ξ, ζ1) ≤ ε1b, ζ1 ∈ Φ1} × Φ0, (21)

we have γ0(|h0(ξ(t, j))|) < ε0a ∀(t, j) ∈ dom(ξ, ζ0). Note
that from (12) for i = 0 it follows that z0 approaches
γ0(|h0(ξ(t, j))|) along solutions. Furthermore, whenz0 ≤
ε0a, ζ0 ∈ Φ0, andt andj are large enough, it follows from
(13) for i = 0 that after jumps toq = 0, (ξ, ζ0) will be in
the set (20). Then, the supervisor is designed to applyK0 as
long asz0 is smaller or equal thanε0a, and when is larger or
equal to that parameter, a jump toq = 1 is triggered. Note
that the logic forq = 1 eventually forces flows for at leastτ∗



units of time, which allowst andj to become large enough,
and with that, guarantee that(ξ, ζ0) is in the set (20). This
mechanism is implemented as follows:

• Flow according to

ξ̇ = fp(ξ, κc,0(h0(ξ), ζ0))

ζ̇0 = fc,0(h0(ξ), ζ0)
ż0 = −ε0z0 + γ0(|h0(ξ)|)
q̇ = 0

(22)

when0 ≤ z0 ≤ ε0a and z1 ≥ 0 and q = 0. (23)

• Jump according to

ζ+
0 ∈ Φ0, ζ+

1 ∈ Φ1, z+
0 = 0, z+

1 = 0, q+ = 1. (24)

whenz0 ≥ ε0a and z1 ≥ 0 and q = 0. (25)

As (15), the flows defined in (22) enforce, in particular,
that q remains constant and that the estimate of|ξ|A0

con-
verges. While optimal choices might be possible to maximize
performance, the values to whichζ0, z0, ζ1, and z1 are
updated to at jumps are not crucial since the controllerK1

enforces a global attractivity property. The conditionz1 ≥ 0
in (23) and (25) forcesz1 to be nonnegative along solutions.

3) Closed-loop system:We are now ready to write the
resulting closed loop as a hybrid system. Letε0a, ε1a, and
τ∗ be design parameters selected as suggested in Sections III-
B.1 and III-B.2. The closed-loop hybrid system has stateχ =
(ξ, ζ0, ζ1, z0, z1, q, τ) taking values inX := R

np × R
nc ×

R
nc×R×R×Q×R. Collecting the definitions in Sections III-

B.1 and III-B.2, the resulting closed-loop system, denotedas
Hcl, has dynamics given as follows:

χ̇ =




fp(ξ, κc,q(hq(ξ), ζq))

(1 − q)fc,0(h0(ξ), ζ0)

q fc,1(h1(ξ), ζ1)

(1 − q)(−ε0z0 + γ0(|h0(ξ)|))

q(−ε1z1 + γ1(|h1(ξ)|))

0

q




=: F (χ) ,

χ ∈ C̃,

χ+ ∈ G0(χ) ∪ G1(χ) ∪ Gs(χ) =: G(χ) , χ ∈ D̃,

where: for eachq = 0, (ξ, ζ0) ∈ Dq

G0(χ) =




ξ

gc,0(h0(ξ), ζ0)

ζ1

(1 − ε0)z0 + γ0(|h0(ξ)|)

z1

q

τ




,

G0(χ) = ∅ otherwise; for eachq = 1, (ξ, ζ0) ∈ Dq

G1(χ) =




ξ

ζ0

gc,1(h1(ξ), ζ1)

z0

(1 − ε1)z1 + γ1(|h1(ξ)|)

q

τ




,

G1(χ) = ∅ otherwise; for eachχ ∈ Ds,a ∪ Ds,b Gs(χ) =
[ξ Φ0 Φ1 0 0 1 − q 0] , Gs(χ) = ∅ otherwise;

C̃ := {χ : (ξ, ζq) ∈ Cq} ∩ (Cs,a ∪ Cs,b ∪ Cs,c) ,

Cs,a := {χ : ε0a ≥ z0 ≥ 0, z1 ≥ 0, q = 0} ,

Cs,b := {χ : z0 = 0, z1 ≥ ε1a, q = 1} ,

Cs,c := {χ : z0 = 0, z1 ≥ 0, τ ≤ τ∗, q = 1} ,

D̃ := {χ : (ξ, ζq) ∈ Dq} ∪ Ds,a ∪ Ds,b,

Ds,a := {χ : z0 ≥ ε0a, z1 ≥ 0, q = 0} ,

Ds,b := {χ : z0 = 0, ε1a ≥ z1 ≥ 0, τ ≥ τ∗, q = 1} .

The flow mapF is defined in terms of the discrete stateq

to “select” the appropriate flow dynamics whenK0 andK1

are applied. In particular, whenq = 0, ζ1 and z1 remain
constant during flows while, whenq = 1, ζ0 andz0 remain
constant. The flow set̃C allows flow when both(ξ, ζq) is in
the flow setCq and the conditions for flow imposed by the
hybrid supervisor are satisfied. The latter are given in (23),
(17), and (16), which are captured in the setsCs,a, Cs,c, and
Cs,b, respectively. The jump mapsG0, G1, and Gs above
are defined to execute the jumps of the individual hybrid
controllers when their state jumps due toζq ∈ Dc,q or when
reset of the appropriate states is required by the supervisor
jump setsDs,a andDs,b, which are given in (25) and (19),
respectively. Note that sincegc,q is only defined onDc,q, the
set-valued mapsG0 andG1 are nonempty at pointsχ with
ζq components inDc,q.

C. Closed-loop system properties

Theorem 3.4:(Nominal global asymptotic stability)
Suppose Assumptions 3.1 and 3.3 hold. Then, there exist a
hybrid controllerKs that provides a solution to the uniting
problem (⋆). Moreover, the hybrid controllerKs is such that,
for the hybrid systemHcl, every solution is bounded and
complete, and the compact set

As := A× Φ0 × Φ1 × {0} × {0} × Q × [0, τ∗]

is globally asymptotically stable.

With the plant in (14) under the presence of perturbations,
the resulting closed-loop systemHcl results in a perturbed
hybrid system, denote as̃Hcl, which can be written as

χ̇ = F (χ + d̃1) + d̃2 χ + d̃1 ∈ C̃

χ+ ∈ G(χ + d̃1) + d̃2 χ + d̃1 ∈ D̃ .



The following result asserts that the closed-loop system
is robust to a class of perturbations. It follows from the
asymptotic stability property established in Theorem 3.4 and
the fact that the construction of the hybrid supervisor is such
that the hybrid basic conditions of Definition 2.1 hold for the
closed-loop systemHcl, that is,Ks is well posed.

Theorem 3.5:(Nominal robustness) Suppose Assump-
tions 3.1 and 3.3 hold. Then, for the hybrid systemHcl,
there existsβ ∈ KLL, for eachε > 0 and each compact set
K ⊂ R

np there existsδ > 0 such that for each measurable
d̃1, d̃2 : R≥0 → δB every solutionχ to H̃cl from compact
subsets ofX with x(0, 0) ∈ K satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t, j) + ε ∀(t, j) ∈ domχ.

D. Illustrative Example

Consider the global stabilization of the origin of4

ξ̇ = fp(ξ, up) :=

[
−ξ1 + (u1 − ξ2)ξ

2
1

−ξ2 + ξ2
1 + α + u2

]
, (26)

whereξ ∈ R
2 is the state,up = [u1 u2]

⊤ is the control input
constrained tou1u2 = 0, andα ∈ [− 1

2 , 1
2 ]. Measurements of

ξ1 andξ2 are available but not simultaneously. The proposed
hybrid controllerKs is used to coordinate two controllers,
K0 andK1. The “local” controllerK0 measuresh0(ξ) := ξ1

and stabilizesξ to A0 = (0, 0). It is given as in (5) with
κc,0(ξ) := [0, −α]⊤ on the setCc,0 = R, nc = 0, and
empty setDc,0. For V0(ξ) = 1

2 |ξ|
2, it follows that

〈∇V0(ξ), fp(ξ, κc,0(ξ))〉 = −ξ2
1 − ξ3

1ξ2 − ξ2
2 + ξ2ξ

2
1

≤ −V0(ξ) + ξ4
1(1 + ξ2

1)
(27)

and thus, by lettingγ0(s) = s4(1 + s2) for all s ≥ 0, a
norm observer for|ξ|A0

is given byż0 = −z0 +γ0(|h0(ξ)|).
It can be verified that

{
ξ : V0(ξ) ≤

1
6

}
⊂ B0. A “global”

controllerK1 can be designed to steer the solutions toA1 :=

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

ξ1

ξ 2

Fig. 1. A trajectoryξ(t, j) to (26) from ξ(0, 0) = (3,−3) with hybrid
supervisorKs. Dotted lines denote an estimate ofB0, ⋆ (red) the switch
from q = 1 to 0, and× the setsA1 andA0.

4For the caseα = 0, dynamic output feedback laws for outputs given by
ξ1 or ξ2 that globally asymptotically stabilizes the origin inR2 have been
proposed in [1].

(0, α). From (27), it follows that(0, α) belongs to the interior
of B0. Let h1(ξ) := ξ2 − α. The controllerK1 is given as
in (5) with κc,1(ξ) := [h1(ξ) + α, 0]⊤ on the setCc,1 = R,
nc = 0, and empty setDc,1. With this controller, the function
V1(ξ) = 1

4ξ4
1 + 1

2 (ξ2 − α)2 satisfies

〈∇V1(ξ), fp(ξ, κc,1(ξ))〉 ≤ −V1(ξ),

from where a norm observer for|ξ|A1
follows. Then, As-

sumptions 3.1 and 3.3 hold and the hybrid supervisorKs

robustly, globally asymptotically stabilizes the origin of (26).
Figure 1 shows a trajectory to the closed-loop system when
α = 1

4 , ε0a = ε1a = 0.01, andτ∗ = 1.
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