Results on Input-to-Output and Input-Output-to-State Stability
for Hybrid Systems and their Interconnections

Ricardo G. Sanfelice

Abstract— We present results for the analysis of input/output  the size of both inputs and outputs. I0SS was recently
properties of interconnections of a general class of hybrid extended to discrete-time systems in [3]. Lyapunov charact
systems. Input-to-output and input-output-to-state stallity for —, 5iinns of |0SS were reported for continuous-time systems
hybrid systems are considered. Definitions of these notiorend . ) . . ;
sufficient conditions are introduced for hybrid systems gien in [1], fo!' discrete-time S.yStemS "_1 [5], and for .SW'tChEd
by a flow set, a flow map, a jump set, a jump map, and an Systems in [22]. Small gain results in terms/of estimates
output function. An interconnection result in terms of a smdl  were presented for interconnections of I0S/IOSS nonlinear
gain theorem for the said notions is also presented. continuous-time systems in [14], for I0OS continuous and
discrete-time systems [13], for input/output system msedel
in [30], and for a class of systems with jumps in [24].

Input-to-state stability (ISS) has wide applicability in  The purpose of this paper is to provide tools for the
analysis and design of nonlinear control systems. Intreduc analysis of interconnections of hybrid systems using ktgbi
in [27], the recent article [29] summarizes the progresden t notions involving their inputs and outputs. To that end, we
subject. The ISS concept is of particular importance in thgefine the notions of 10S and 10SS to a class of hybrid
study of interconnections of dynamical systems. It is welkystems with inputs and outputs specified by a flow set, a
known that the feedback interconnection of 1SS non“neqrow map, Jump set, and a Jump set. We present sufficient
systems is ISS when a small gain condition holds. Sucgbnditions for I0S and 10SS of individual hybrid systems as
a result can be asserted using & estimates involved ell as Lyapunov characterizations of these properties. We
in the definition of ISS for the individual systems. Smallaso show that, as for continuous and discrete-time systems
gain theorems in terms @¢f L estimates for interconnections [33], [18], certain 10SS properties are both necessary and
of ISS systems for continuous-time systems appeared &ufficient for the existence of state-norm estimators for
[14], [35], [12]. Alternatively, sufficient conditions fd6S of  hybrid systems (a similar result was established in [2] for
interconnections in terms of Lyapunov functions have beepss). Tools for the analysis of interconnections of 10S and
shown to be powerful as they provide an ISS Lyapunov fungoss systems are given in terms of a small gain theorem.
tion for the entire interconnection. These exploit Lyapuino Following the ideas in [15] for continuous-time systems and
characterizations and sufficient conditions for ISS of the i in [23] for hybnd SystemS, we provide Lyapunov conditions
dividual systems, results that were presented for contistio guaranteeing 10S/10SS of the interconnection of I0S/I0SS
time systems in [32], for discrete-time systems in [16], fohybrid systems. To the best of the author’s knowledge, there
switched systems in [21], [36], and for hybrid systems in [4]are no previous Lyapunov-based small gain theorems for
A Lyapunov-based small gain theorem for interconnection s and 10SS, not even for continuous-time or discrete-time
ISS systems appeared in [15] for continuous-time systemgystems.
and later extended to discrete-time and hybrld systems in The remainder of the paper is organized as follows. Sec-
[19] and [23] (see also [7]), respectively. tion Il summarizes the framework for hybrid systems under

Classical notions relating inputs and outputs used in thgudy and gives basic definitions. In Section IlI, definition
study of input/output interconnections of linear systelis [ of |0S and 10SS for hybrid systems are introduced. It
and certain classes of nonlinear systems [17] have been gfesents sufficient conditions and Lyapunov characteriza-
tended to the ISS framework of [28]. Input-to-output stépil  tjons. A small gain theorem for the analysis of interconedct

(10S) for continuous-time systems in such a framework wag)s and 10SS hybrid systems is presented in Section IV.
introduced in [34], [26], along with several characteriaas.

Its output to state counterpart, output-to-state stghi@SS) Il. PRELIMINARIES

[33], provides a tool to establish bounds on the state indempefore introducing the hybrid systems framework under
of the system outputs as well as a link to detectability; segtudy, we summarize the notation used throughout the paper.
the recent extension to hybrid systems in [2]. Combineg” denotes:-dimensional Euclidean spadg;real numbers.
with ISS, OSS led to the concept of input-output-to-statg ., nonnegative real numbers; natural numbers including
stability (I0SS) in [31]. Instead of bounds on solutions iny; B the closed unit ball in a Euclidean space. Given aSset
terms of inputs only, IOSS relates bounds on solutions t§ denotes its closure. Given a vectoe R™, || denotes the
o _ Euclidean vector norm. Given a sgtC R™ and a point: €
R. G. Sanfelice is with the Department of Aerospace and Machh

Engineering, University of Arizona, 1130 N. Mountain AveZ/85721. Rn’ |2|s = inf,es |z —y|. Given a ;eS, ess supS denqtes
Email: sri cardo@. ari zona. edu its essential supremum and (if} its interior. A function

I. INTRODUCTION



a : R>g — R>¢ is said to belong to clasks- (o« € K) if Definition 2.4 (solution):Given a hybrid input «

is continuous, zero at zero, and strictly increasing and tbomwu — U and an initial conditions, a hybrid arce :
belong to clas¥. (o € K ) if it belongs to class€ and dom¢ — R™ defines asolution pair (¢, ) to the hybrid
is unbounded. A functior : R>¢ x R>o — R>¢ is said to systeni if the following conditions hold:

belong to clas¥c L (8 € KL) if is continuous, nondecreasing (S0) (&,u(0,0)) € CUD anddom ¢ = dom u;

in its first argument, nonincreasing in its second argument,

andlimg o (s, 7) = lim, .. B(s,7) = 0. (S1) For each j € N such that I; =
A hybrid system?# with statez, inputu, and outputy is {t : (t,j) € dom(¢,u) } has nonempty interior
modeled as int(Z;),
= flzu) (z,u)eC . , .
1 oot = gla,u) (z,u) € D ) (o(t,5),u(t,j)) € C forall t € int(l;),
y = h(x), and, for almost alk € I;,
whereR" is the space for the state ¢/ C R™ is the space d , ) .
for inputsw, the set”’ C R™ x U is theflow sef the function E(b(t’j) = f@(t, ), ult, 1);

f: C — R"™ is theflow map the setD C R™ x U is the

jump setg : D — R™ is thejump map andh : R™ — R? (S2) For each(t, j) € dom(g,u) such that(t,j +1) €

is theoutput map The data of the hybrid systef is given dom(g, ),
by (C.f,D,g,h). (@(t,4),ult, j)) € D,
Definition 2.1 (hybrid time domain)A setE C R>o x N o(t, 7+ 1) =g(o(t, ), ult, j)).
is a compact hybrid time domain if A solution pair (¢,u) to H is said to becompleteif
dom(¢,w) is unboundedZeno if it is complete but the
E = U i), projection of dom(¢,u) onto R>( is bounded discrete if

their domain is{0} x N, and maximalif there does not

for some finite Sequence of timés= to < 1 < t2... < exist another paifg,u) such that(¢, u) is a truncation of
t;. Itis a hybrid time domain if for al(7,J) € E, E N (¢,u)’ to some proper subset dbm(¢,u)’. Given¢ € R™,
([0,7] x {0,1,...J}) is a compact hybrid time domain. Su(€) denotes the set of maximal solution paiis u) to

Solutions to hybrid system# will be given in terms of # with $(0,0) = £ andu with finite ||u||. For a solution
hybrid arcs and hybrid inputs. These are parameterized IB@ir (¢, u) € Sx(€), we denote byy(t, 7, &, u) its value at
pairs(t, j), wheret is the ordinary-time component agds (£, ) € dom(¢,u).
the discrete-time component that keeps track of the numberThe following definition introduces a concept of stability
of jumps. for hybrid systemsH. It is stated for general compact sets

Definition 2.2 (hybrid arc and input)A function =z of the_ S.t"."te Space. 3 . .
domz — R” is a hybrid arc ifdomz is a hybrid time Definition 2.5 (stability): A compact set4d C R" is said
domain and, for each € N, the functiont — x(t,j) is to be

absolutely continuous on the intendl : (¢,5) € domz }. « stableif for eache > 0 there exist$ > 0 such that each

A function u : domwu — U is a hybrid input ifdomu is solution pair (¢, u) € Sy (§) with [£|4 < ¢ satisfies

a hybrid time domain and, for each € N, the function |p(t,4,&, u)|a < e forall (¢,7) € dom(¢, u);

t — u(t,j) is Lebesgue measurable and locally essentially « O-input stableif it is stablewith u = 0;

bounded on the intervelt : (¢,j) € domuw }. o pre-attractive if there existsp > 0 such that ev-
We will employ the following signal norm for general ery solution pair (,u) € Su(£) with [fla <

hybrid signals, such as a hybrid arc or input. p is bounded and if |jc is complete satisfies
Definition 2.3 €. norm of hybrid signals):Given a hy- limr ) edom(g,u).t+j—00 [9(L 5, € )| 4 = 0;

« O-input pre-attractivef it is pre-attractivewith v = 0;

brid signalr, its L., norm is given by o pre-asymptotically stablé@ stable and pre-attractive;

.. o O-input pre-asymptotically stablé O-input stable and
Il = max () edom L) t/ﬂ-,gtﬂ-'r(t =l 0-input pre-attractive.
The following mild assumptions on the data&fwill be
sup |r(t, ] )|} imposed in some of the results in this paper.
(t',3")€L(r), t'+j'<t+] Assumption 2.6 ([11], [10]):The data(C, f, D, g, h) of
whereI'(r) := {(t,j) € domr : (t,j+1) € domr }. the hybrid systeny{ satisfies
For notational conveniencér|| denotesimy.y;—n |7z, (A1) C, D, andi{ are closed sets,
where N = sup(; jycqom,t + J- (A2) f:C—=R", g:D—=R" andh : R" — R? are

With the definitions of hybrid time domain, and hybrid arc ~ continuous.
and input in Definitions 2.1 and 2.2, respectively, we defin@he conditions in Assumption 2.6 assure that closed hybrid
a concept of solution for hybrid systerfs. systems?# are well posed in the sense that they inherit



several good structural properties of their solution sets. Lyapunov conditions asserting 1I0S for continuous-time
These include sequential compactness of the solution ssystems have been introduced in [26]. Following [26, Defi-
closedness of perturbed and unperturbed solutions, etc. \Wtion 1.1], we define a class of IOS Lyapunov functions for
refer the reader to [10], [11] (see also [9]) and [25] for dsta #.

on and consequences of these conditions. Definition 3.4 (10S Lyapunov functionA continuously

differentiable functionl” : R — Rx is an IOS Lyapunov

function with respect to a compact sdt ¢ R™ for #H if
This section introduces definitions of 10S and I0SS fothere existo, as, a3 € Ko andy € K such that

hybrid systemsH as well as sufficient conditions. We also

define state-norm estimators for hybrid systems and establi ¢! (In()])

IIl. 1OS AND IOSSFORHYBRID SYSTEMS

< V() < alz[a) VreR", (4)

their connections to 10SS for hybrid systems. Below, it is (VV(z), f(z,u)) < —as(V(z)) (5)
assumed that, given a compact sétC R", the output V(z,u) € C,V(x) > x(|u]),
function i : R™ — R? is such thath(xz) = 0 for all x € A. Vig(z,u)) - V(z) < —as(V(z)) (6)
A. 10S definitions and results V(z,u) € D,V(z) = x(|ul).

The next input/output stability notion for hybrid systems The following proposition relates 10S Lyapunov functions
follows those in [34], [26] for continuous-time systems.  in the form (5)-(6) to a dissipative inequality form.

Definition 3.1 (input-to-output stability)The hybrid sys- ~ Proposition 3.5: Given a hybrid systed satisfying As-
tem 7 is input-to-output stable (10S) with respect to aSumption 26 a continuously dlfferenyable_funcudm :
compact setd c R” if there exist3 € KL and~y € K R™ — Rso is an 10S Lyapunov _functlon W|_th respect to
such that, for eaclj € R”, each(¢,u) € Sy () satisfies, & compact setd C R™ for the hybrid systeni{ if and only

for each(t, j) € dom(¢, u), if there existay, as, a3 € K andp € K such that
Ih((t,j,6,u))| < ) ar([h(z)]) < V(z) < ao(lzla) VzeR", (7)
max {B(|6(0,0,&,u)| 4, t + ), v([[ull )} - (VV(2), f(z,u)) < —az(V(2))+p(u)) (8)
» N V(z,u) € C,

It is said to belocally input-to-output stable (locally 10S)

— < =
with respect to a compact set C R" if there existd > 0, Vigle,w)) = V(z) < as(V(@)) + p(jul) ©)

B € KL, andy € K such that, for each € R™ with |{|4 < ¢ V(z,u) € D.
and each solution paifp, ) € Sy (€), |Ju| < 6, we have Next, it is established that the existence of an IOS Lya-
that (2) holds for all(t, j) € dom(¢, u). punov function implies 10S.

When the function: is given by the identity andh(-)| Theorem 3.6: Given a hybrid syste# satisfying As-
is replaced by| - |4 1, then Definition 3.1 reduces to the sumption 2.6, if there exists an 10S Lyapunov function with
definition of ISS in [4, Definitions 2.1 and 2.3]. respect to a compact set C R for # then’{ is 10S with

The following proposition guarantees that, under growtfespect toA.

conditions of the output functioh, asymptotic stability with Remark 3.7:0ur proof technique for Theorem 3.6 differs
zero inputs guarantees that the 10S property holds for 8pUom that one given in [26, Theorem 2.1], which uses

with small enough size. It parallels the ISS results in [3Z, gma)| gain result for output-Lagrange stability. Instead
Lemma [.2] for continuous-time systems and [4, Propositiof} ¢qjiows the proof of [4, Proposition 2.7], which is for

2.3] for hybrid systems. hybrid systems that are not necessarily forward complete
Proposition 3.2: Given a hybrid syster satisfying and, therefore, no underlying bounded-input/boundetésta

Assumption 2.6, if the compact set is 0O-input pre- property is required.

asymptotically stable for# and there exist functions

a1, o € K such that B. 10SS definitions and results

The following definition introduces the property of I0OSS
|h(z)] < ar(lzfa) + a(lul)  V(z,u) €R" xU, (3) for hybrid systems.

then is locally 10S with respect tod. Definition 3.8 (input-output-to-state stability)fhe

. e . . hybrid system# is input-output-to-state stable (IOSS) with
The following proposition is useful when dealing with ISSreSpeCt to a compact set C R" if there exist3 € KL and

systems.. _ . o 1,72 € K such that, for eacly € R", each(¢,u) € S (€)
Proposition 3.3: Suppose that a hybrid systéis input-  satisfies, for eaclit, j) € dom(¢, u),

to-state stable with respect to a compact.det R™. If there '

exist functionsy,, a» € K such that(3) holds ther is 10S (4,5, u)la < (10)

with respect taA. max {3(|6(0,0,&,u)|a,t + 3), vi(llulle.))s v2 (Yl e.5) } -

linstead of | - | 4, using a proper indicator ford on R would be It iS locally input-output-to-state stgble (Iocally IOSS) with
equivalent. respect to a compact set C R™ if there existd > 0,



8 € KL, andvy;,v2 € K such that, for eacl§ € R™ with H admits an IOSS Lyapunov function with respect4df

|€].4 < § and each solution pafi, u) € Sy (£), |[ul]| < dand and only if it admits an exponential-decay 0SS Lyapunov
lyl| <4, we have that (10) holds for aft, j) € dom(¢,w). function with respect tod.

When (10) holds fon: = 0, the system is said to beinput

(locally) 10SS. C. State-norm estimators
IOSS for hybrid systems can be guaranteed, at least State-norm estimators are useful for the purposes of con-
locally, when a0-input 0SS property holds. trol when the full state is not available for measurement, bu

rather, a function of the state defining an output. As shown in
the literature (see, e.g., [33], [18]), their existenceinked

to the OSS and 10SS properties of the system. A state-norm
estimator will involve a hybrid systetn

Proposition 3.9: Letd ¢ R™ be a compact set an# be
a hybrid system satisfying Assumption 2.6Alfis 0-input
IOSS forH, then? is locally I0SS with respect tal.
Sufficient conditions for IOSS in terms of Lyapunov func- )
tions appeared in [18] and [3] for continuous and discrete-, { ¢ = folCuy) (Cu,y) € Cs (18)
time systems, respectively. Following these references, w =~ | (" = ¢o(¢u,y) (¢, u,y) € Do
define 10SS Lyapunov functions for hybrid systefds with state ¢ and inputs(u,y). A hybrid system?, with

Definition 3.10 (I0SS Lyapunov functior input w and outputy, and the hybrid systeni{, define

continuously differentiable functiod” : R"™ — Rxo iS  an interconnection, which we deno#¢, H.. A state-norm
an 10SS Lyapunov function with respect to a compacistimator is defined as follows.

set A C R" for the hybrid system# if there exist

Definition 3.14: A state-norm estimator for a hybrid sys-
a1, a9, a3 € Koy andpy, po € K, such that y y

tem H with respect to a compact set ¢ R" consist of a
a(zla) < V() < ao(lz|la) Vz e R*, (11) functiony :R" x R? — R and a hybrid systerit/, as in
(VV(x), f(z,u)) < —az(|z|la) + p1(lul) (18), with state¢ € R"* and input(u, ), such that
+p2(|h(2)]) Y(z,u) € C, (12) o There existp1,p2 € K, and 5 € KL such that, for
R™, every solution pai(¢, (u,y)) € Su,(2)
Vg, w) = V(@) < —ag(fzla) + pa(Ju) catisios, | :
13
+pa(lh()]) W(z,u) € D. (13) satisfies, for all(t, j) € dom(¢, (u,y)),

The next proposition relates 0SS Lyapunov functions to  [(C(¢, 7, 2, (u, ), y(t, 7)) < (19)
a different inequality form; cf., [18, Definition 2.2] and,[3 3 i)+ p N+ Ry
Definition 3.7]. Bzl t+ ) + prllulle.gy) + 2yl c.4))

Proposition 3.11: Given an I0SS LyapundVv with re- « There existp € K and 3 € KL such that, for every
spect to a compact set  R™ for the hybrid systeny, (§,2) € R" x R"°, every solution pair((¢,¢),u) €
there existay, as, as € Koo and x1, x2 € K such that(11) Suu. (8, 2) satisfies, for allz, j) € dom((¢, (), u),
holds and . ~ ,

6t 5, & u)a < BIELa+ 2]t +7) (20)
(VV(@), f(z,u)) < —as(|a]a) (14) +p(P(C(E, 4, 2, u), h(@(t, 5,6, w)))])-
V(z,u) € C,|z|a = max{xi(|ul), x2(|h(z)])}, Input-output-to-state stability and the existence of &esta
Vig(z,u)) =V(z) < —asz(|z]a) (15) norm estimator are related as follows.
V(z,u) € D, |z|a > max{xi(|u|), x2(|h(z)])}. Proposition 3.15: Letd C R™ be compact and consider

a hybrid systen¥{. The following hold:

1) If H satisfies Assumption 2.6 and admits an
exponential-decay I0SS Lyapunov function with re-
spect toA then?# admits a state-norm estimator with

(VV(x), f(z,u)) < —eV(x) + p1(Ju]) + p2(|h(x)]) (16) respect toA.

2) If H admits a state-norm estimator with respect4o
then? is IOSS with respect tol.

V(g(z,u)) —V(z) < —eV(z)+ pi(|u|) + p2(|h(x)]) (17) Proposition 3.15 permits to establish that hybrid systems
admitting an 10SS Lyapunov function with respect to a
compactA as in Definition 3.10 are IOSS with respect to

A.

Definition 3.12: A continuously differentiable function
V : R™ — R>( satisfying, for somex;, az, az € K and
p1,p2 € K, (11) and, for some € (0, 1],

for all (z,u) € C, and

for all (x,u) € D, is said to be amxponential-decay I0SS
Lyapunov function with respect to the compact.det R"

for the hybrid systent{. ) ) o
Theorem 3.16: Given a hybrid system satisfying As-

The following result relates I0SS and eXponem"’ﬂ'dec";‘%(umption 2.6, if there exists an 0SS Lyapunov function with

10SS Lya_p_unov functions. respect to a compact sgt C R" for # then# is IOSS with
Proposition 3.13: LetA C R™ be a compact set artl be  regpect toA.

a hybrid system satisfying Assumption 2.6. The hybrid syste

3A family of state-norm estimators for hybrid systems was @éroduced
2Equivalently, (locally)0-OSS; see, e.g., [5]. in [2, Definition 12].



IV. INTERCONNECTIONS OFTWO HYBRID SYSTEMS is no guarantee that solutions #,, . are complete, or

We consider the interconnection of two hybrid system<EVen exist.
#, and?#., given, for each = 1,2, by Before we present a Lyapunov-based small gain result, we

state the following key result from [14].

" i; _ gzgi’:z’zg Eiz’z:’z; E gz 1) Lemma 4.1: Lety1, x2 € Koo satisfyxi o xa(s) < s for
o h‘(m’) ’ P all s > 0. Then, there existp € K, such that
di i\Fi), 1) x1(s) < p(s) for all s > 0;
wherez; € R™ is the stateu; € U; andv; € V; are inputs, 2) x2(s) < p~L(s) for all s > 0;
U; xV; C R™, u; corresponding to inputs for interconnection  3) p is continuously differentiable oft), oo) and %(s) >
between the systems while are exogenous inputs. The 0 for all s > 0.
system resulting from the interconnection condition Let X1, X», and X be the projection of the closure of

CUDU(g(D,V)x V) ontoR™, R"2, andR", respectively.
o Below, for a locally Lipschitz functioV, V°(z,w) denotes
is given by Hi, H, the Clarke generalized derivative df at = in the direction

Uy = Y2, U2 = Y1

w [6].

;;Ei:’gj(ij) v) } (2’ Z?gj;’zg 2 g: « Theorem 4.2: Suppose that foe= 1, 2 there exist contin-
L ’ ’ ’ uously differentiable functions; : R™* — R>( such that:
zy = g1(x1, ha(w2),v1) (w1, ha(x2),v1) € D1 & A) There exist functionsy;;,a;x € Koo and ¢, i -

T3 = 12 (w2, h1(x1),v2) & D2 R"™ — RP: such that for allz; € X;

af =21 (21, ho(x2),01) & Dy & apn ([ (z:)]) < Vi(zi) < aia(lgia(zi)])  (22)

z3 = go(z2, hi(21) (x2, h1(x1),v2) € Do B) There exist functiong;, i, ¢; € K, positive definite
functionsa; and \; satisfying;(s) < s for all s > 0

2 = g1(z1, ha(x (z1, ha(z2),v1) € D1 & such that:

23 = gao(w2, (2 (w2, h1(21),v2) € Do — For all (z,v) € C and

Vi(z1) > max{x1(Va(x2)), v1(Jv1]), p1([h1(z1)]) }:

= hi(x = :C
y= o) ) (VWA (1), fi (@1, ha (), v1)) < —aa (Vi (21)) (23)

Its state isz := (£C1,£C2), its input isv := (v,v2) € Vi X

V, =: V, and its output ig; := (y1,y2). The interconnection and, for all (z,v) € C" and
H.,H- can be written ag{ with Va(z2) > max{xa2(Vi(z1)), v2(Jv2]), p2(lh2(z2)|) }:
f(x,v) = [fl(Il,hQ(ZCQ),’Ul)T fQ(IQ,hl(ZCl),'UQ)T]T7 <v‘/2(1'2),f2(1'2,h1($1),’U2)> < _OQ(‘/?(‘TQ)) (24)

— For all (z,v) € D we have
Vi(g1(z1, ha(w2),v1)) < max{A1(Vi(21)),

C:={(z,v) : (x1,ha(z2),v1) € C1, (x2,h1(x1),v2) € Ca },

25
D= {(x,v) : (x1,h2(z),v1) € Dy } a(Vale2)) o) er(ha@hy @
U{(,T,’U) : (l'g,hl(xl),’l)g)EDl }, and
N . o Va(ga(w2, hi(z1),v2)) < max{Aa(Va(x2)), 26)
g(@,v) := [gi(z1, ha(z2),01) " Ga(wa, ha(21),02) ] x2(Vi(z1)), v2(lv2]), p2(lha(22)]) }-
where, omitting the arguments of the functions, C) The following holds
G- { 9 (1, ha(x2),v1) € D1 Xioxa(s) <s  Vs>0. 27)
" otherwise, Let p € K be generated by Lemma 4.1 usigg, x2 and
~ ) 92 (w2, h1(x1),v2) € D2
9279 a otherwise, V(z) := max{Vi(21), p(Va(22))}. (28)
andh(x) := [hy(21) " ha(z2) ] T. Then:

In the same hybrid systems framework as above, interconl) There exist functionsi;, a2 € K such that, for all
nections of two hybrid systems and several hybrid systems < € X,
were considered in [23] and [7], respectively, for the study a1([(o11(z1), d21(22))]) < V(z)
of their ISS properties. Interconnections of two systents wi < ao(|(p12(x1), Paa(x2))]);
jumps at pre-specified times and with state-triggered jump
were considered in [24] and [20], respectively.

(29)

S2) There exist a positive definite functian and functions

Note that the solutions to the interconnectidn, > may ﬁé}fff('ﬁ)sgcr(" ;LTE;])gorv?g(ﬁé\% €CandV(z) =
have different hybrid time domains than the solutions of the AR ’
individual systemg{, and?{,. Furthermore, in general, there Ve(x, f(z,v)) < —a(V(z)); (30)



3) There exist a positive definite function A(s) < s for
all s > 0, and functionsy,, > € K such that, for all
(x,v) € D,

V(g(z,v)) < max{A(V(2)), %2 (Jo]), p2([h(z)))}. (31)  paop

Remark 4.3:The proof of Theorem 4.2 uses the ideas ofyy;
the proof of [15, Theorem 3.1] for continuous-time systems,
which have been recently exploited to establish small gagb]
results for ISS hybrid systems in [23, Theorem 2.1] an
[7, Theorem 3.1]. Note that Theorem 4.2 does not providg3]
a smooth functionV. It allows for different subsystems
with different compact sets of interest through, ¢;». The

(8]
El
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following special cases are of interest: 1
i) Foreachi=1,2, ¢;1 = ¢;2 andy; =0. [15]

i) For eachi = 1,2, ¢;,1 = h; and ¢, is the identity
function. [16]
iif) For eachi = 1,2, ¢;; and ¢; > are given by identity [17]
functions. [18]

The special case i) coincides with [23, Theorem 2.1]. Thﬁg]
conditions in Theorem 4.2 for cases ii) and iii) are in terrhs o
IOS and I0SS Lyapunov functions in the forms given by (5)-
(6) and (15)-(14), respectively. Note that the intercorioac 20]
H.,Ho does not rule out the possibility of solutions that are
discrete, or that eventually, after sotfte;j), become discrete. [21]
This includes interconnections having solutions with ofie o
the state components, say, constant through the second[22]
option in the definition of the update lags, for which it

would be difficult to satisfy conditions (25),(26). 23]

V. CONCLUSION

For a general class of hybrid systems, we presented inpl#4]
to-output and input-output-to-state stability notionsiffis
cient conditions for those to hold, and a small gain resujps)
for the study of an interconnection of two such systems.
The nature of the results and the general hybrid syste
framework under study, which cover classical continuows an
discrete-time systems, suggest wide applicability of the n [27]
tools. (28]
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