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Abstract— We present results for the analysis of input/output
properties of interconnections of a general class of hybrid
systems. Input-to-output and input-output-to-state stability for
hybrid systems are considered. Definitions of these notionsand
sufficient conditions are introduced for hybrid systems given
by a flow set, a flow map, a jump set, a jump map, and an
output function. An interconnection result in terms of a small
gain theorem for the said notions is also presented.

I. I NTRODUCTION

Input-to-state stability (ISS) has wide applicability in
analysis and design of nonlinear control systems. Introduced
in [27], the recent article [29] summarizes the progress on the
subject. The ISS concept is of particular importance in the
study of interconnections of dynamical systems. It is well
known that the feedback interconnection of ISS nonlinear
systems is ISS when a small gain condition holds. Such
a result can be asserted using theKL estimates involved
in the definition of ISS for the individual systems. Small
gain theorems in terms ofKL estimates for interconnections
of ISS systems for continuous-time systems appeared in
[14], [35], [12]. Alternatively, sufficient conditions forISS of
interconnections in terms of Lyapunov functions have been
shown to be powerful as they provide an ISS Lyapunov func-
tion for the entire interconnection. These exploit Lyapunov
characterizations and sufficient conditions for ISS of the in-
dividual systems, results that were presented for continuous-
time systems in [32], for discrete-time systems in [16], for
switched systems in [21], [36], and for hybrid systems in [4].
A Lyapunov-based small gain theorem for interconnection of
ISS systems appeared in [15] for continuous-time systems,
and later extended to discrete-time and hybrid systems in
[19] and [23] (see also [7]), respectively.

Classical notions relating inputs and outputs used in the
study of input/output interconnections of linear systems [8]
and certain classes of nonlinear systems [17] have been ex-
tended to the ISS framework of [28]. Input-to-output stability
(IOS) for continuous-time systems in such a framework was
introduced in [34], [26], along with several characterizations.
Its output to state counterpart, output-to-state stability (OSS)
[33], provides a tool to establish bounds on the state in terms
of the system outputs as well as a link to detectability; see
the recent extension to hybrid systems in [2]. Combined
with ISS, OSS led to the concept of input-output-to-state
stability (IOSS) in [31]. Instead of bounds on solutions in
terms of inputs only, IOSS relates bounds on solutions to
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the size of both inputs and outputs. IOSS was recently
extended to discrete-time systems in [3]. Lyapunov character-
izations of IOSS were reported for continuous-time systems
in [1], for discrete-time systems in [5], and for switched
systems in [22]. Small gain results in terms ofKL estimates
were presented for interconnections of IOS/IOSS nonlinear
continuous-time systems in [14], for IOS continuous and
discrete-time systems [13], for input/output system models
in [30], and for a class of systems with jumps in [24].

The purpose of this paper is to provide tools for the
analysis of interconnections of hybrid systems using stability
notions involving their inputs and outputs. To that end, we
define the notions of IOS and IOSS to a class of hybrid
systems with inputs and outputs specified by a flow set, a
flow map, jump set, and a jump set. We present sufficient
conditions for IOS and IOSS of individual hybrid systems as
well as Lyapunov characterizations of these properties. We
also show that, as for continuous and discrete-time systems
[33], [18], certain IOSS properties are both necessary and
sufficient for the existence of state-norm estimators for
hybrid systems (a similar result was established in [2] for
OSS). Tools for the analysis of interconnections of IOS and
IOSS systems are given in terms of a small gain theorem.
Following the ideas in [15] for continuous-time systems and
in [23] for hybrid systems, we provide Lyapunov conditions
guaranteeing IOS/IOSS of the interconnection of IOS/IOSS
hybrid systems. To the best of the author’s knowledge, there
are no previous Lyapunov-based small gain theorems for
IOS and IOSS, not even for continuous-time or discrete-time
systems.

The remainder of the paper is organized as follows. Sec-
tion II summarizes the framework for hybrid systems under
study and gives basic definitions. In Section III, definitions
of IOS and IOSS for hybrid systems are introduced. It
presents sufficient conditions and Lyapunov characteriza-
tions. A small gain theorem for the analysis of interconnected
IOS and IOSS hybrid systems is presented in Section IV.

II. PRELIMINARIES

Before introducing the hybrid systems framework under
study, we summarize the notation used throughout the paper.
R

n denotesn-dimensional Euclidean space;R real numbers.
R≥0 nonnegative real numbers;N natural numbers including
0; B the closed unit ball in a Euclidean space. Given a setS,
S denotes its closure. Given a vectorx ∈ R

n, |x| denotes the
Euclidean vector norm. Given a setS ⊂ R

n and a pointx ∈
R

n, |x|S := infy∈S |x−y|. Given a setS, ess supS denotes
its essential supremum and int(S) its interior. A function



α : R≥0 → R≥0 is said to belong to class-K (α ∈ K) if
is continuous, zero at zero, and strictly increasing and to
belong to class-K∞ (α ∈ K∞) if it belongs to class-K and
is unbounded. A functionβ : R≥0 × R≥0 → R≥0 is said to
belong to class-KL (β ∈ KL) if is continuous, nondecreasing
in its first argument, nonincreasing in its second argument,
and limsց0 β(s, r) = limr→∞ β(s, r) = 0.

A hybrid systemH with statex, input u, and outputy is
modeled as

H





ẋ = f(x, u) (x, u) ∈ C

x+ = g(x, u) (x, u) ∈ D

y = h(x),
(1)

whereRn is the space for the statex, U ⊂ R
m is the space

for inputsu, the setC ⊂ R
n×U is theflow set, the function

f : C → R
n is the flow map, the setD ⊂ R

n × U is the
jump set, g : D → R

n is the jump map, andh : Rn → R
p

is theoutput map. The data of the hybrid systemH is given
by (C, f,D, g, h).

Definition 2.1 (hybrid time domain):A setE ⊂ R≥0×N

is a compact hybrid time domain if

E =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times0 = t0 ≤ t1 ≤ t2... ≤
tJ . It is a hybrid time domain if for all(T, J) ∈ E, E ∩
([0, T ]× {0, 1, ...J}) is a compact hybrid time domain.

Solutions to hybrid systemsH will be given in terms of
hybrid arcs and hybrid inputs. These are parameterized by
pairs(t, j), wheret is the ordinary-time component andj is
the discrete-time component that keeps track of the number
of jumps.

Definition 2.2 (hybrid arc and input):A function x :
domx → R

n is a hybrid arc ifdomx is a hybrid time
domain and, for eachj ∈ N, the functiont 7→ x(t, j) is
absolutely continuous on the interval{t : (t, j) ∈ domx }.
A function u : domu → U is a hybrid input ifdomu is
a hybrid time domain and, for eachj ∈ N, the function
t 7→ u(t, j) is Lebesgue measurable and locally essentially
bounded on the interval{t : (t, j) ∈ domu }.

We will employ the following signal norm for general
hybrid signals, such as a hybrid arc or input.

Definition 2.3 (L∞ norm of hybrid signals):Given a hy-
brid signalr, its L∞ norm is given by

‖r‖(t,j) := max

{
ess sup

(t′,j′)∈dom r\Γ(r), t′+j′≤t+j

|r(t′, j′)|,

sup
(t′,j′)∈Γ(r), t′+j′≤t+j

|r(t′, j′)|

}
,

whereΓ(r) := {(t, j) ∈ dom r : (t, j + 1) ∈ dom r }.

For notational convenience,‖r‖ denoteslimt+j→N ‖r‖(t,j),
whereN = sup(t,j)∈dom r t+ j.

With the definitions of hybrid time domain, and hybrid arc
and input in Definitions 2.1 and 2.2, respectively, we define
a concept of solution for hybrid systemsH.

Definition 2.4 (solution):Given a hybrid input u :
domu → U and an initial conditionξ, a hybrid arcφ :
domφ → R

n defines asolution pair (φ, u) to the hybrid
systemH if the following conditions hold:

(S0) (ξ, u(0, 0)) ∈ C ∪D anddomφ = domu;

(S1) For each j ∈ N such that Ij :=
{t : (t, j) ∈ dom(φ, u) } has nonempty interior
int(Ij),

(φ(t, j), u(t, j)) ∈ C for all t ∈ int(Ij),

and, for almost allt ∈ Ij ,

d

dt
φ(t, j) = f(φ(t, j), u(t, j));

(S2) For each(t, j) ∈ dom(φ, u) such that(t, j + 1) ∈
dom(φ, u),

(φ(t, j), u(t, j)) ∈ D,

φ(t, j + 1) = g(φ(t, j), u(t, j)).

A solution pair (φ, u) to H is said to becompleteif
dom(φ, u) is unbounded,Zeno if it is complete but the
projection of dom(φ, u) onto R≥0 is bounded,discrete if
their domain is{0} × N, and maximal if there does not
exist another pair(φ, u)′ such that(φ, u) is a truncation of
(φ, u)′ to some proper subset ofdom(φ, u)′. Givenξ ∈ R

n,
SH(ξ) denotes the set of maximal solution pairs(φ, u) to
H with φ(0, 0) = ξ and u with finite ‖u‖. For a solution
pair (φ, u) ∈ SH(ξ), we denote byφ(t, j, ξ, u) its value at
(t, j) ∈ dom(φ, u).

The following definition introduces a concept of stability
for hybrid systemsH. It is stated for general compact sets
of the state space.

Definition 2.5 (stability):A compact setA ⊂ R
n is said

to be
• stableif for eachε > 0 there existsδ > 0 such that each

solution pair(φ, u) ∈ SH(ξ) with |ξ|A ≤ δ satisfies
|φ(t, j, ξ, u)|A ≤ ε for all (t, j) ∈ dom(φ, u);

• 0-input stableif it is stablewith u ≡ 0;
• pre-attractive if there existsµ > 0 such that ev-

ery solution pair (φ, u) ∈ SH(ξ) with |ξ|A ≤
µ is bounded and if it is complete satisfies
lim(t,j)∈dom(φ,u),t+j→∞ |φ(t, j, ξ, u)|A = 0;

• 0-input pre-attractiveif it is pre-attractivewith u ≡ 0;
• pre-asymptotically stableif stable and pre-attractive;
• 0-input pre-asymptotically stableif 0-input stable and

0-input pre-attractive.

The following mild assumptions on the data ofH will be
imposed in some of the results in this paper.

Assumption 2.6 ([11], [10]):The data(C, f,D, g, h) of
the hybrid systemH satisfies

(A1) C, D, andU are closed sets,
(A2) f : C → R

n, g : D → R
n, andh : Rn → R

p are
continuous.

The conditions in Assumption 2.6 assure that closed hybrid
systemsH are well posed in the sense that they inherit



several good structural properties of their solution sets.
These include sequential compactness of the solution set,
closedness of perturbed and unperturbed solutions, etc. We
refer the reader to [10], [11] (see also [9]) and [25] for details
on and consequences of these conditions.

III. IOS AND IOSSFOR HYBRID SYSTEMS

This section introduces definitions of IOS and IOSS for
hybrid systemsH as well as sufficient conditions. We also
define state-norm estimators for hybrid systems and establish
their connections to IOSS for hybrid systems. Below, it is
assumed that, given a compact setA ⊂ R

n, the output
functionh : Rn → R

p is such thath(x) = 0 for all x ∈ A.

A. IOS definitions and results

The next input/output stability notion for hybrid systems
follows those in [34], [26] for continuous-time systems.

Definition 3.1 (input-to-output stability):The hybrid sys-
tem H is input-to-output stable (IOS) with respect to a
compact setA ⊂ R

n if there existβ ∈ KL and γ ∈ K
such that, for eachξ ∈ R

n, each(φ, u) ∈ SH(ξ) satisfies,
for each(t, j) ∈ dom(φ, u),

|h(φ(t, j, ξ, u))| ≤ (2)

max
{
β(|φ(0, 0, ξ, u)|A, t+ j), γ(‖u‖(t,j))

}
.

It is said to belocally input-to-output stable (locally IOS)
with respect to a compact setA ⊂ R

n if there existδ > 0,
β ∈ KL, andγ ∈ K such that, for eachξ ∈ R

n with |ξ|A ≤ δ

and each solution pair(φ, u) ∈ SH(ξ), ‖u‖ ≤ δ, we have
that (2) holds for all(t, j) ∈ dom(φ, u).

When the functionh is given by the identity and|h(·)|
is replaced by| · |A 1, then Definition 3.1 reduces to the
definition of ISS in [4, Definitions 2.1 and 2.3].

The following proposition guarantees that, under growth
conditions of the output functionh, asymptotic stability with
zero inputs guarantees that the IOS property holds for inputs
with small enough size. It parallels the ISS results in [32,
Lemma I.2] for continuous-time systems and [4, Proposition
2.3] for hybrid systems.

Proposition 3.2: Given a hybrid systemH satisfying
Assumption 2.6, if the compact setA is 0-input pre-
asymptotically stable forH and there exist functions
α1, α2 ∈ K such that

|h(x)| ≤ α1(|x|A) + α2(|u|) ∀(x, u) ∈ R
n × U , (3)

thenH is locally IOS with respect toA.

The following proposition is useful when dealing with ISS
systems.

Proposition 3.3: Suppose that a hybrid systemH is input-
to-state stable with respect to a compact setA ⊂ R

n. If there
exist functionsα1, α2 ∈ K such that(3) holds thenH is IOS
with respect toA.

1Instead of | · |A, using a proper indicator forA on Rn would be
equivalent.

Lyapunov conditions asserting IOS for continuous-time
systems have been introduced in [26]. Following [26, Defi-
nition 1.1], we define a class of IOS Lyapunov functions for
H.

Definition 3.4 (IOS Lyapunov function):A continuously
differentiable functionV : Rn → R≥0 is an IOS Lyapunov
function with respect to a compact setA ⊂ R

n for H if
there existα1, α2, α3 ∈ K∞ andχ ∈ K such that

α1(|h(x)|) ≤ V (x) ≤ α2(|x|A) ∀x ∈ R
n, (4)

〈∇V (x), f(x, u)〉 ≤ −α3(V (x)) (5)

∀(x, u) ∈ C, V (x) ≥ χ(|u|),

V (g(x, u))− V (x) ≤ −α3(V (x)) (6)

∀(x, u) ∈ D,V (x) ≥ χ(|u|).

The following proposition relates IOS Lyapunov functions
in the form (5)-(6) to a dissipative inequality form.

Proposition 3.5: Given a hybrid systemH satisfying As-
sumption 2.6, a continuously differentiable functionV :
R

n → R≥0 is an IOS Lyapunov function with respect to
a compact setA ⊂ R

n for the hybrid systemH if and only
if there existα1, α2, α3 ∈ K∞ and ρ ∈ K such that

α1(|h(x)|) ≤ V (x) ≤ α2(|x|A) ∀x ∈ R
n, (7)

〈∇V (x), f(x, u)〉 ≤ −α3(V (x)) + ρ(|u|) (8)

∀(x, u) ∈ C,

V (g(x, u))− V (x) ≤ −α3(V (x)) + ρ(|u|) (9)

∀(x, u) ∈ D.

Next, it is established that the existence of an IOS Lya-
punov function implies IOS.

Theorem 3.6: Given a hybrid systemH satisfying As-
sumption 2.6, if there exists an IOS Lyapunov function with
respect to a compact setA ⊂ R

n for H thenH is IOS with
respect toA.

Remark 3.7:Our proof technique for Theorem 3.6 differs
from that one given in [26, Theorem 2.1], which uses
a small gain result for output-Lagrange stability. Instead,
it follows the proof of [4, Proposition 2.7], which is for
hybrid systems that are not necessarily forward complete
and, therefore, no underlying bounded-input/bounded-state
property is required.

B. IOSS definitions and results

The following definition introduces the property of IOSS
for hybrid systems.

Definition 3.8 (input-output-to-state stability):The
hybrid systemH is input-output-to-state stable (IOSS) with
respect to a compact setA ⊂ R

n if there existβ ∈ KL and
γ1, γ2 ∈ K such that, for eachξ ∈ R

n, each(φ, u) ∈ SH(ξ)
satisfies, for each(t, j) ∈ dom(φ, u),

|φ(t, j, ξ, u)|A ≤ (10)

max
{
β(|φ(0, 0, ξ, u)|A, t+ j), γ1(‖u‖(t,j)), γ2(‖y‖(t,j))

}
.

It is locally input-output-to-state stable (locally IOSS) with
respect to a compact setA ⊂ R

n if there exist δ > 0,



β ∈ KL, andγ1, γ2 ∈ K such that, for eachξ ∈ R
n with

|ξ|A ≤ δ and each solution pair(φ, u) ∈ SH(ξ), ‖u‖ ≤ δ and
‖y‖ ≤ δ, we have that (10) holds for all(t, j) ∈ dom(φ, u).
When (10) holds foru ≡ 0, the system is said to be0-input
(locally) IOSS2.

IOSS for hybrid systems can be guaranteed, at least
locally, when a0-input IOSS property holds.

Proposition 3.9: LetA ⊂ R
n be a compact set andH be

a hybrid system satisfying Assumption 2.6. IfA is 0-input
IOSS forH, thenH is locally IOSS with respect toA.

Sufficient conditions for IOSS in terms of Lyapunov func-
tions appeared in [18] and [3] for continuous and discrete-
time systems, respectively. Following these references, we
define IOSS Lyapunov functions for hybrid systemsH.

Definition 3.10 (IOSS Lyapunov function):A
continuously differentiable functionV : R

n → R≥0 is
an IOSS Lyapunov function with respect to a compact
set A ⊂ R

n for the hybrid systemH if there exist
α1, α2, α3 ∈ K∞ andρ1, ρ2 ∈ K, such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ R
n, (11)

〈∇V (x), f(x, u)〉 ≤ −α3(|x|A) + ρ1(|u|)
+ρ2(|h(x)|) ∀(x, u) ∈ C,

(12)

V (g(x, u))− V (x) ≤ −α3(|x|A) + ρ1(|u|)
+ρ2(|h(x)|) ∀(x, u) ∈ D.

(13)

The next proposition relates IOSS Lyapunov functions to
a different inequality form; cf., [18, Definition 2.2] and [3,
Definition 3.7].

Proposition 3.11: Given an IOSS LyapunovV with re-
spect to a compact setA ⊂ R

n for the hybrid systemH,
there existα1, α2, α3 ∈ K∞ andχ1, χ2 ∈ K such that(11)
holds and

〈∇V (x), f(x, u)〉 ≤ −α3(|x|A) (14)

∀(x, u) ∈ C, |x|A ≥ max{χ1(|u|), χ2(|h(x)|)},

V (g(x, u))− V (x) ≤ −α3(|x|A) (15)

∀(x, u) ∈ D, |x|A ≥ max{χ1(|u|), χ2(|h(x)|)}.

Definition 3.12: A continuously differentiable function
V : Rn → R≥0 satisfying, for someα1, α2, α3 ∈ K∞ and
ρ1, ρ2 ∈ K, (11) and, for someε ∈ (0, 1],

〈∇V (x), f(x, u)〉 ≤ −εV (x) + ρ1(|u|) + ρ2(|h(x)|) (16)

for all (x, u) ∈ C, and

V (g(x, u))− V (x) ≤ −εV (x) + ρ1(|u|) + ρ2(|h(x)|) (17)

for all (x, u) ∈ D, is said to be anexponential-decay IOSS
Lyapunov function with respect to the compact setA ⊂ R

n

for the hybrid systemH.

The following result relates IOSS and exponential-decay
IOSS Lyapunov functions.

Proposition 3.13: LetA ⊂ R
n be a compact set andH be

a hybrid system satisfying Assumption 2.6. The hybrid system

2Equivalently, (locally)0-OSS; see, e.g., [5].

H admits an IOSS Lyapunov function with respect toA if
and only if it admits an exponential-decay IOSS Lyapunov
function with respect toA.

C. State-norm estimators

State-norm estimators are useful for the purposes of con-
trol when the full state is not available for measurement, but
rather, a function of the state defining an output. As shown in
the literature (see, e.g., [33], [18]), their existence is linked
to the OSS and IOSS properties of the system. A state-norm
estimator will involve a hybrid system3

H◦

{
ζ̇ = f◦(ζ, u, y) (ζ, u, y) ∈ C◦

ζ+ = g◦(ζ, u, y) (ζ, u, y) ∈ D◦
(18)

with state ζ and inputs(u, y). A hybrid systemH, with
input u and outputy, and the hybrid systemH◦ define
an interconnection, which we denoteH,H◦. A state-norm
estimator is defined as follows.

Definition 3.14: A state-norm estimator for a hybrid sys-
temH with respect to a compact setA ⊂ R

n consist of a
functionψ : Rn◦ × R

p → R and a hybrid systemH◦ as in
(18), with stateζ ∈ R

n◦ and input(u, y), such that

• There existρ̂1, ρ̂2 ∈ K, and β̂ ∈ KL such that, for
everyz ∈ R

n◦ , every solution pair(ζ, (u, y)) ∈ SH◦
(z)

satisfies, for all(t, j) ∈ dom(ζ, (u, y)),

|ψ(ζ(t, j, z, (u, y)), y(t, j))| ≤ (19)

β̂(|z|, t+ j) + ρ̂1(‖u‖(t,j)) + ρ̂2(‖y‖(t,j));

• There existρ̃ ∈ K and β̃ ∈ KL such that, for every
(ξ, z) ∈ R

n × R
n◦ , every solution pair((φ, ζ), u) ∈

SH,H◦
(ξ, z) satisfies, for all(t, j) ∈ dom((φ, ζ), u),

|φ(t, j, ξ, u)|A ≤ β̃(|ξ|A + |z|, t+ j) (20)

+ρ̃(|ψ(ζ(t, j, z, u), h(φ(t, j, ξ, u)))|).

Input-output-to-state stability and the existence of a state-
norm estimator are related as follows.

Proposition 3.15: LetA ⊂ R
n be compact and consider

a hybrid systemH. The following hold:

1) If H satisfies Assumption 2.6 and admits an
exponential-decay IOSS Lyapunov function with re-
spect toA thenH admits a state-norm estimator with
respect toA.

2) If H admits a state-norm estimator with respect toA
thenH is IOSS with respect toA.

Proposition 3.15 permits to establish that hybrid systems
admitting an IOSS Lyapunov function with respect to a
compactA as in Definition 3.10 are IOSS with respect to
A.

Theorem 3.16: Given a hybrid systemH satisfying As-
sumption 2.6, if there exists an IOSS Lyapunov function with
respect to a compact setA ⊂ R

n for H thenH is IOSS with
respect toA.

3A family of state-norm estimators for hybrid systems was also introduced
in [2, Definition 12].



IV. I NTERCONNECTIONS OFTWO HYBRID SYSTEMS

We consider the interconnection of two hybrid systems,
H1 andH2, given, for eachi = 1, 2, by

Hi






ẋi = fi(xi, ui, vi) (xi, ui, vi) ∈ Ci

x+i = gi(xi, ui, vi) (xi, ui, vi) ∈ Di

yi = hi(xi),
(21)

wherexi ∈ R
ni is the state,ui ∈ Ui andvi ∈ Vi are inputs,

Ui×Vi ⊂ R
m, ui corresponding to inputs for interconnection

between the systems whilevi are exogenous inputs. The
system resulting from the interconnection condition

u1 = y2, u2 = y1

is given by H1,H2

ẋ1 = f1(x1, h2(x2), v1)

ẋ2 = f2(x2, h1(x1), v2)

}
(x1, h2(x2), v1) ∈ C1 &

(x2, h1(x1), v2) ∈ C2

x+1 = g1(x1, h2(x2), v1)

x+2 = x2

}
(x1, h2(x2), v1) ∈ D1 &

(x2, h1(x1), v2) 6∈ D2

x+1 = x1

x+2 = g2(x2, h1(x1), v2)

}
(x1, h2(x2), v1) 6∈ D1 &

(x2, h1(x1), v2) ∈ D2

x+1 = g1(x1, h2(x2), v1)

x+2 = g2(x2, h1(x1), v2)

}
(x1, h2(x2), v1) ∈ D1 &

(x2, h1(x1), v2) ∈ D2

y1 = h1(x1), y2 = h2(x2).

Its state isx := (x1, x2), its input isv := (v1, v2) ∈ V1 ×
V2 =: V , and its output isy := (y1, y2). The interconnection
H1,H2 can be written asH with

f(x, v) := [f1(x1, h2(x2), v1)
⊤ f2(x2, h1(x1), v2)

⊤]⊤,

C := {(x, v) : (x1, h2(x2), v1) ∈ C1, (x2, h1(x1), v2) ∈ C2 } ,

D := {(x, v) : (x1, h2(x2), v1) ∈ D1 }
∪ {(x, v) : (x2, h1(x1), v2) ∈ D1 } ,

g(x, v) := [g̃1(x1, h2(x2), v1)
⊤ g̃2(x2, h1(x1), v2)

⊤]⊤,

where, omitting the arguments of the functions,

g̃1 :=

{
g1 (x1, h2(x2), v1) ∈ D1

x1 otherwise,

g̃2 :=

{
g2 (x2, h1(x1), v2) ∈ D2

x2 otherwise,

andh(x) := [h1(x1)
⊤ h2(x2)

⊤]⊤.
In the same hybrid systems framework as above, intercon-

nections of two hybrid systems and several hybrid systems
were considered in [23] and [7], respectively, for the study
of their ISS properties. Interconnections of two systems with
jumps at pre-specified times and with state-triggered jumps
were considered in [24] and [20], respectively.

Note that the solutions to the interconnectionH1,H2 may
have different hybrid time domains than the solutions of the
individual systemsH1 andH2. Furthermore, in general, there

is no guarantee that solutions toH1,H2 are complete, or
even exist.

Before we present a Lyapunov-based small gain result, we
state the following key result from [14].

Lemma 4.1: Letχ1, χ2 ∈ K∞ satisfyχ1 ◦ χ2(s) < s for
all s > 0. Then, there existsρ ∈ K∞ such that

1) χ1(s) < ρ(s) for all s > 0;
2) χ2(s) < ρ−1(s) for all s > 0;
3) ρ is continuously differentiable on(0,∞) and dρ

ds
(s) >

0 for all s > 0.

Let X1, X2, andX be the projection of the closure of
C ∪D∪ (g(D,V)×V) ontoRn1 , Rn2 , andRn, respectively.
Below, for a locally Lipschitz functionV , V ◦(x,w) denotes
the Clarke generalized derivative ofV at x in the direction
w [6].

Theorem 4.2: Suppose that fori = 1, 2 there exist contin-
uously differentiable functionsVi : Rni → R≥0 such that:
A) There exist functionsαi1, αi2 ∈ K∞ and φi1, φi2 :

R
ni → R

pi such that for allxi ∈ Xi

αi1(|φi1(xi)|) ≤ Vi(xi) ≤ αi2(|φi2(xi)|) (22)

B) There exist functionsχi, γi, ϕi ∈ K∞, positive definite
functionsαi and λi satisfyingλi(s) < s for all s > 0
such that:

– For all (x, v) ∈ C and
V1(x1) ≥ max{χ1(V2(x2)), γ1(|v1|), ϕ1(|h1(x1)|)}:

〈∇V1(x1), f1(x1, h2(x2), v1)〉 ≤ −α1(V1(x1)) (23)

and, for all (x, v) ∈ C and
V2(x2) ≥ max{χ2(V1(x1)), γ2(|v2|), ϕ2(|h2(x2)|)}:

〈∇V2(x2), f2(x2, h1(x1), v2)〉 ≤ −α2(V2(x2)) (24)

– For all (x, v) ∈ D we have

V1(g̃1(x1, h2(x2), v1)) ≤ max{λ1(V1(x1)),
χ1(V2(x2)), γ1(|v1|), ϕ1(|h1(x1)|)}

(25)

and

V2(g̃2(x2, h1(x1), v2)) ≤ max{λ2(V2(x2)),
χ2(V1(x1)), γ2(|v2|), ϕ2(|h2(x2)|)}.

(26)

C) The following holds

χ1 ◦ χ2(s) < s ∀s > 0. (27)

Let ρ ∈ K∞ be generated by Lemma 4.1 usingχ1, χ2 and

V (x) := max{V1(x1), ρ(V2(x2))}. (28)

Then:
1) There exist functionsα1, α2 ∈ K∞ such that, for all

x ∈ X ,

α1(|(φ11(x1), φ21(x2))|) ≤ V (x)
≤ α2(|(φ12(x1), φ22(x2))|);

(29)

2) There exist a positive definite functionα, and functions
γ̃1, ϕ̃1 ∈ K such that, for all(x, v) ∈ C and V (x) ≥
max{γ̃1(|v|), ϕ̃1(|h(x)|)}, we have

V ◦(x, f(x, v)) ≤ −α(V (x)); (30)



3) There exist a positive definite functionλ, λ(s) < s for
all s > 0, and functions̃γ2, ϕ̃2 ∈ K such that, for all
(x, v) ∈ D,

V (g(x, v)) ≤ max{λ(V (x)), γ̃2(|v|), ϕ̃2(|h(x)|)}. (31)

Remark 4.3:The proof of Theorem 4.2 uses the ideas of
the proof of [15, Theorem 3.1] for continuous-time systems,
which have been recently exploited to establish small gain
results for ISS hybrid systems in [23, Theorem 2.1] and
[7, Theorem 3.1]. Note that Theorem 4.2 does not provide
a smooth functionV . It allows for different subsystems
with different compact sets of interest throughφi1, φi2. The
following special cases are of interest:

i) For eachi = 1, 2, φi,1 = φi,2 andϕi ≡ 0.
ii) For eachi = 1, 2, φi,1 = hi and φi,2 is the identity

function.
iii) For eachi = 1, 2, φi,1 andφi,2 are given by identity

functions.

The special case i) coincides with [23, Theorem 2.1]. The
conditions in Theorem 4.2 for cases ii) and iii) are in terms of
IOS and IOSS Lyapunov functions in the forms given by (5)-
(6) and (15)-(14), respectively. Note that the interconnection
H1,H2 does not rule out the possibility of solutions that are
discrete, or that eventually, after some(t, j), become discrete.
This includes interconnections having solutions with one of
the state components, sayx2, constant through the second
option in the definition of the update law̃g2, for which it
would be difficult to satisfy conditions (25),(26).

V. CONCLUSION

For a general class of hybrid systems, we presented input-
to-output and input-output-to-state stability notions, suffi-
cient conditions for those to hold, and a small gain result
for the study of an interconnection of two such systems.
The nature of the results and the general hybrid systems
framework under study, which cover classical continuous and
discrete-time systems, suggest wide applicability of the new
tools.
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