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Abstract

A stability result is given for hybrid control systems singularly perturbed by fast but continuous actuators. If a hybrid control
system has a compact set globally asymptotically stable when the actuator dynamics are omitted, or equivalently, are infinitely
fast, then the same compact set is semiglobally practically asymptotically stable in the finite speed of the actuator dynamics.
This result, which generalizes classical results for differential equations, justifies using a simplified plant model that ignores
fast but continuous actuator dynamics, even when using a hybrid feedback control algorithm.
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1 Introduction

Singular perturbation theory is a basic tenet of classi-
cal nonlinear control design [21], [22]. Among its many
applications, singular perturbation theory justifies us-
ing a continuous feedback control algorithm that is de-
signed based on a simplified plant model, one that ig-
nores the dynamics of actuators when those dynamics
are fast compared to the desired closed-loop bandwidth
of the control system.

With the emergence of novel hybrid control algorithms
over the last two decades [25], [3], [17], [9], [11], it is nat-
ural to ask whether classical singular perturbation the-
ory, in general, and the result about fast actuators, in
particular, apply also when designing hybrid control sys-
tems. A general singular perturbation theory for hybrid
dynamical systems remains elusive. Preliminary results
appear in [30] (see also [29]). In that work, two differ-
ent types of assumptions are made, neither of which are
used in the current paper. In particular, either a timer is
added to enforce a dwell-time period between jumps, or
else jumps are included in the definition of the bound-
ary layer system and aid in convergence toward a quasi-
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steady state equilibrium manifold. The former situation
is considered for the case of fast actuator dynamics. The
latter situation is considered for the case where measure-
ments are passed through a type of dynamic sensor.

The main contribution of the current work is a
semiglobal practical asymptotic stability result for a
class of singularly perturbed hybrid systems. This result
applies to hybrid control systems that are singularly
perturbed by fast, continuous actuators, as we indi-
cate via examples of hybrid control. In establishing this
result, we do not assume any dwell-time condition be-
tween jumps. Moreover, the models we use allow the
actuator dynamics to be purely continuous; in other
words, the actuator state is allowed to remain constant
during jumps of the closed-loop system.

The stability assumptions used here parallel the typical
stability assumptions imposed for continuous-time sin-
gular perturbation results on the semi-infinite time in-
terval. Cf. [18]. In contrast to the results in [2], [15], [4],
[35] and the references therein, we do not combine sin-
gular perturbations with averaging theory here. (Aver-
aging – without singular perturbations – for a class of
hybrid systems is addressed in [36].) On the other hand,
when specialized to continuous-time systems, the regu-
larity conditions we impose on the data are weaker than
what is typically used, even for results that pertain to
differential inclusions. Cf. [15], [37], [35], [38].
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The proof of our main result uses a Lyapunov function
argument and, hence, relies on recent converse Lyapunov
theorems for hybrid systems [8] which, in turn, follow
from the robustness of asymptotic stability for hybrid
systems established in [12]. The Lyapunov argument is
delicate because, while a small parameter is available
for the continuous dynamics (or flows) of the hybrid
system to ensure a negative definite Lyapunov function
derivative, there is no small parameter available to en-
sure that the value of the Lyapunov function decreases
during jumps.

The paper is organized as follows. In Section 2 we review
the basic theory of hybrid systems and associated stabil-
ity concepts. Section 3 uses a mobile robot stabilization
problem to motivate our main result. In Section 4 we
present our singular perturbation result along with its
Lyapunov-based proof. In Section 5 we demonstrate our
result on a class of hybrid control systems with fast ac-
tuators. In Section 6 the results of Section 5 are applied
to the mobile robot stabilization problem of Section 3
as well as to the global asymptotic stabilization prob-
lem for the upright position of a pendulum on a cart.
Conclusions appear in Section 7.

2 Preliminaries

A hybrid system with state x ∈ Rn has the form

ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D .
(1)

This class of models covers hybrid automata, a wide class
of switched systems, sampled-data systems, mechanical
systems with impacts, and many other complex systems.
Some examples appear in Section 6. For more examples,
see [11]. A solution to the hybrid system (1) is a hybrid
arc defined on a hybrid time domain, the latter being a
subset ofR≥0×Z≥0, where R≥0 denotes the nonnegative
real numbers and Z≥0 denotes the nonnegative integers.
In particular, a set E ⊂ R≥0 × Z≥0 is a hybrid time
domain if, for each (T, J) ∈ E, there exist nonnegative
real numbers 0 = t0 ≤ t1 ≤ · · · ≤ tj+1 = T such that

E ∩ ([0, T ]× {0, . . . , J}) =
J⋃

i=0

([ti, ti+1]× {i}) .

A function x : dom x → Rn is a hybrid arc if dom x
is a hybrid time domain and t 7→ x(t, j) is locally ab-
solutely continuous for each j such that the interval
Ij := {t : (t, j) ∈ dom x} has nonempty interior. A hy-
brid arc x is a solution of (1) if x(0, 0) ∈ C ∪D and the
following two conditions hold:

(1) For each j such that Ij has nonempty interior and
for almost all t ∈ Ij , x(t, j) ∈ C and ẋ(t, j) ∈

F (x(t, j));
(2) For each (t, j) ∈ dom x such that (t, j+1) ∈ dom x,

x(t, j) ∈ D and x(t, j + 1) ∈ G(x(t, j)).

For more details about solutions, see [12] or [11].

For a compact setA and a vector x ∈ Rn, define |x|A :=
miny∈A |x−y|, where |·| denotes the Euclidean norm. For
the system (1), the compact set A is said to be globally
asymptotically stable if the following two properties hold:

i. for each ε > 0 there exists δ > 0 such that each so-
lution x of (1) satisfying |x(0, 0)|A ≤ δ also satisfies
|x(t, j)|A ≤ ε for all (t, j) ∈ dom x.

ii. each solution of (1) is bounded and each solu-
tion x with an unbounded time domain satisfies
limt+j→∞ |x(t, j)|A = 0.

Local asymptotic stability – where the second condition
holds only for solutions starting close to A – can be
converted to global asymptotic stability by replacing C
andD in (1) by C∩U andD∩U , respectively, where U is
a sufficiently small neighborhood of A. The asymptotic
stability definition does not insist that each maximal
solution has an unbounded time domain, neither in the
t nor in the j direction. However, if the time domain is
unbounded then the solution must converge to A.

We also consider hybrid systems parametrized by a
small, positive parameter ε, of the form

ẋ ∈ Fε(x) x ∈ Cε

x+ ∈ Gε(x) x ∈ Dε .
(2)

For the hybrid system (2), the compact setA is said to be
semiglobally practically asymptotically stable as ε → 0+

if there exists β ∈ KL 1 and for each ∆ > 0 and δ > 0
there exists ε∗ > 0 such that, for each ε ∈ (0, ε∗], each
solutionx of (2) that satisfies |x(0, 0)|A ≤ ∆also satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) + δ ∀(t, j) ∈ dom x .
(3)

The convergence toward a small neighborhood of A in
the definition of semiglobal, practical asymptotic stabil-
ity is uniform over the set of initial conditions considered,
whereas this attribute is not explicit in the definition of
global asymptotic stability. However, under mild regu-
larity assumptions on the data (C,F,D,G), like those
that appear in Assumption 1 in Section 4, global asymp-
totic stability implies the existence of β ∈ KL such that
each solution x to (1) satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t+j) ∀(t, j) ∈ dom x . (4)

1 β ∈ KL if β : R≥0 × R≥0 → R≥0 is continuous, β(·, r)
is nondecreasing for each r ≥ 0, β(s, ·) is nonincreasing for
each s, and lims→0+ β(s, r) = limr→∞ β(s, r) = 0.
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When β has the form β(s, r) = c1s exp(−c2r) for some
constants c1, c2 > 0, the compact set A is globally expo-
nentially stable. For more details, see [12, Theorem 6.5].

3 Motivating example

Our results are motivated by the possible need to im-
plement a hybrid feedback control algorithm through a
fast, stable, continuous actuator. Consider the problem
of stabilizing a mobile robot to a particular point and
orientation. A simple model of a mobile robot is 2



ż

ζ̇1

ζ̇2


 =




ζu1

ζ2u2

−ζ1u2


 =: fp(ξp, u)





ξp := (z, ζ) ∈ R2 × S1,

(5)
where z ∈ R2 corresponds to the planar position of the
robot, u1 ∈ R denotes its velocity, which is treated as a
control variable, ζ = (ζ1, ζ2) denotes the orientation of
the robot taking values on the unit circle, denoted S1,
and u2 ∈ R denotes angular velocity, which is the other
control variable. The goal is to globally asymptotically
stabilize a point ξ∗p = (0, ζ∗) ∈ R2 × S1. This objective
cannot be achieved with continuous state feedback [7],
nor can it be accomplished robustly with discontinuous
state feedback [28]. However, it can be satisfied using
hybrid feedback, as illustrated in [17], [26], or [11]. The
hybrid state feedback has an internal state q that takes
values in a finite subsetQ of the integers, and the overall
closed-loop hybrid control system has the form

ξ̇p = fp(ξp, u), q̇ = 0

u = κc(ξp, q)

}
(ξp, q) ∈ C

ξ+p = ξp

q+ ∈ Gc(ξp, q)

}
(ξp, q) ∈ D,

(6)

where C and D are closed subsets of R2 × Q that can
be taken to be compact if the position z of the mobile
robot is constrained to a compact set; κc(·, q) is contin-
uous for each q and Gc is outer semicontinuous, locally
bounded, and not empty onD. For more details, see As-
sumption 1 in Section 4.1. The control signal typically
jumps when q jumps. As in [11], it is possible to assume
that, for each q, the function κc(·, q) is bounded. When
the stabilization goal is attained, the closed-loop system
has the compact set A1 :=

{
ξ∗p
}
×Q globally asymptot-

ically stable. The closed-loop system typically exhibits a
solution with time domain {0}×Z, i.e., a purely discrete
solution, from initial conditions in the setA1, which cor-
responds to repeatedly switching between control laws
κc(·, q) without allowing continuous evolution to occur.

2 The equivalent notation [x⊤ y⊤]⊤, [x y]⊤, and (x, y) is
used for vectors.

Our goal is to provide general stability results that en-
able making conclusive statements about the behavior
of the closed-loop hybrid control system when the sig-
nals u are generated by a fast but continuous actuator.
In particular, we are interested in inferring, from the as-
sumed properties of the system (6), the properties of the
closed-loop system resulting frompassing the control law
through a system with state ξa that has fast continuous-
time dynamics. The overall dynamical system has state
x := (ξq, q, ξa) and is given by




ξ̇p

q̇

εξ̇a


=




fp(ξp, ξa)

0

−ξa+κc(ξp, q)


=:F (x)





((ξp, q), ξa)∈C×MB,




ξ+p

q+

ξ+a


∈




ξp

Gc(ξp, q)

ξa


 =: G(x)





((ξp, q), ξa)∈D×MB.

(7)
The value M > 0 bounds the Euclidean norm of κc(·, ·),
MB is the closed ball of radiusM in the Euclidean norm
centered at the origin, and ε > 0 is a small parameter.We
will establish that the compact setA1×MB is semiglob-
ally, practically asymptotically stable as ε → 0+.

4 A singular perturbation result

4.1 Setting and assumptions

We consider a hybrid system with state x = (x1, x2) ∈
Rn1+n2 = Rn of the form

diag(In1
, εIn2

)ẋ ∈ F (x) x ∈ C × X2

x+ ∈ G(x) x ∈ D × X2,
(8)

where ε > 0 is small and Ini
denotes the ni × ni iden-

tity matrix. We are motivated by the situation where
x1 corresponds to the state of a hybrid control system,
perhaps containing continuous variables, logic/discrete
variables, timers, and counters; x2 evolves in a compact
set X2 and corresponds to the state of a fast actuator,
hence ε > 0 is small; the actuator state cannot change
instantaneously, so x+

2 = x2 (this is not necessary for our
result however); the jumps of the hybrid control system
do not depend on the actuator state, so x+

1 does not de-
pend on x2 (again, this is not necessary) andC,D ⊂ Rn1 ;
and when the actuator is infinitely fast, the state x1 of
the hybrid control system evolves in a desirable man-
ner. For the mobile robot example above, x1 represents
(ξp, q), x2 represents ξa, and X2 represents MB.

As in [12], we impose basic assumptions on (8).

Assumption 1 (Regularity of System’s Data)
The set X2 ⊂ Rn2 is compact and the sets C,D ⊂ Rn1
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are closed. The set-valued mappings F,G : Rn ⇉ Rn are
outer semicontinuous 3 and locally bounded 4 . For each
x ∈ C × X2, F (x) is nonempty and convex. For each
x ∈ D × X2, G(x) is a nonempty subset of Rn1 × X2.

We assume that X2 is compact because, for simplicity,
we wish to deal with compact attractors and, if jumps
dominate the behavior of (8) and x+

2 = x2, then x2 will
not converge to a compact set unless it is constrained to
a compact set a priori.

We give conditions for semiglobal practical asymptotic
stability as ε → 0+ of a compact setA1×X2. These con-
ditions are expressed in terms of a set-valued mapping
H : Rn1 ⇉ Rn2 , which plays the role of the quasi-steady
state manifold in classical singular perturbation prob-
lems, a family of boundary layer systems parameterized
by a parameter ρ, and a reduced system.

Manifold: The quasi-steady state equilibrium manifold
of classical singular perturbation theory appears here as
a set-valued mapping H : Rn1 ⇉ Rn2 . Continuity in the
single-valued case is relaxed to outer semicontinuity plus
local boundedness for the set-valued case.

Assumption 2 (Regularity of “Manifold”) The
set-valued mapping H : Rn1 ⇉ Rn2 is outer semicontin-
uous and locally bounded, and for each x1 ∈ C, H(x1) is
a nonempty subset of X2.

A special case of Assumption 2 is whenH is a continuous
function, that is, a single-valued mapping, from C to X2.
In this case, it can be extended to a set-valued mapping
satisfying Assumption 2 by takingH to be empty outside
of the set C. The mobile robot in Section 3 provides an
example of this special case. For the mobile robot,

H(ξp, q) =

{
κc(ξp, q) (ξp, q) ∈ C

∅ (ξp, q) /∈ C .

Boundary layer system:The family of boundary layer
systems is given by

ẋ ∈ diag(0, In2
)F (x) x ∈ (C ∩ ρB)× X2, (9)

where the family is parameterized by the real number
ρ > 0 which renders the flow set compact, since X2 is

3 A set-valued mapping F : Rn
⇉ Rn is said to be outer

semicontinuous if each sequence (xi, fi) ∈ Rn × Rn that
satisfies fi ∈ F (xi) for each i and converges to a point
(x, f) ∈ Rn × Rn has the property that f ∈ F (x).
4 A set-valued mapping F : Rn

⇉ Rn is said to be locally
bounded if, for each compact set K1 ⊂ Rn, there exists a
compact setK2 ⊂ Rn such that F (K1) := ∪x∈K1

F (x) ⊂ K2.

compact. The boundary layer system ignores jumps and,
during flows, the state x1 remains constant. The flow
dynamics (9) are obtained by scaling ordinary time by
1/ε in the original system (8) and then setting ε = 0.

For the mobile robot example, the family of boundary
layer systems is given by

ξ̇p = 0, q̇ = 0

ξ̇a = −ξa + κc(ξp, q)

}
((ξp, q), ξa) ∈ (C ∩ ρB)×MB .

(10)

Assumption 3 (Stability of boundary layer) For
each ρ > 0, the boundary layer system (9) is such that
the compact set

Mρ := {(x1, x2) : x1 ∈ C ∩ ρB, x2 ∈ H(x1)}

is globally asymptotically stable.

If 0 < ρ1 < ρ2 and the set Mρ2
is globally asymp-

totically stable for system (9) with ρ = ρ2 then the
set Mρ1

is globally asymptotically stable for the same
system with ρ = ρ1. This observation follows from the
fact that the solutions to (9) with ρ = ρ1 are a sub-
set of the solutions to (9) with ρ = ρ2. When C is
compact, C ∩ ρB = C for all large ρ. In this case, As-
sumption 3 is verified by checking asymptotic stability
of M := {(x1, x2) : x ∈ C, x2 ∈ H(x1)} for

ẋ ∈ diag(0, In2
)F (x) x ∈ C × X2 . (11)

The mobile robot’s boundary layer system (10) satisfies
Assumption 3.

Reduced system: The reduced system associated with
(8) is given by

ẋ1 ∈ Fr(x1) x1 ∈ C

x+
1 ∈ Gr(x1) x1 ∈ D,

(12)

where

Fr(x1) :=

co {v1 ∈ Rn1: (v1, v2)∈F (x1, x2), x2 ∈ H(x1), v2 ∈ Rn2}

Gr(x1) :=

{v1 ∈ Rn1 : (v1, v2)∈G(x1, x2), (x2, v2) ∈ X2 × X2} .
(13)

The reduced system’s jump map is not expressed
in terms of x2 ∈ H(x1) since the boundary layer
system ignores jumps. In the simplest situation,
diag(In1

, 0)G(x1, x2) does not depend on x2, so that the
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reduced system ignores x2 when determining jumps.

For the mobile robot example the reduced system is
given by the ideal system (6).

Assumption 4 (Stability for reduced system)
For the reduced system (12)-(13), the compact set
A1 ⊂ Rn1 is globally asymptotically stable.

For the mobile robot, due to the properties induced by
the hybrid control algorithm with infinitely fast actua-
tors, the reduced system satisfies Assumption 4.

4.2 Result and proof

The conditions contained in Assumptions 1-4 will guar-
antee for the system (8) that the compact set A1 × X2

is semiglobally, practically asymptotically stable as ε →
0+. In contrast to classical results for differential equa-
tions, we do not conclude additionally that x converges
to a small neighborhood of {x ∈ Rn : x2 ∈ H(x1)}. This
conclusion is not possible since we have not imposed any
conditions on the jumps of (8) that guarantee conver-
gence of x to a small neighborhood of this set.

Theorem 1 Under Assumptions 1-4 for the system (8),
the compact setA1×X2 is semiglobally practically asymp-
totically stable as ε → 0+.

Remark 1 Convergence, rather than practical conver-
gence, to A1 × X2 can be guaranteed for sufficiently
small ε in some instances. For example, if A1 ∩ D = ∅
so that jumps do not occur near A1 then appropriate
results from the singular perturbation literature for dif-
ferential equations may apply to guarantee convergence.
For example, see [20, Theorem 11.3] and [33, Theorem
1.1]. This idea is illustrated later when discussing global
asymptotic stabilization for the upright position of a
pendulum on a cart. �

Proof of Theorem 1. Using converse Lyapunov theo-
rems for hybrid dynamical systems [8], we construct a
smooth function – the function W that appears in (29),
expressed in terms of the function V in (26) – that is ra-
dially unbounded, decreases exponentially during flows
and jumps and, modulo a small offset that decrease to
zero as ε → 0, is positive definite with respect to A1.

Because of Assumption 4 and the main results of [8],
there exist a smooth function V1 : Rn1 → R≥0 and class-
K∞ functions α1 and α1 such that

α1 (|x1|A1
) ≤ V1(x1) ≤ α1 (|x1|A1

) ∀x1 ∈ Rn1 (14)

and

〈∇V1(x1), f1〉 ≤ −V1(x1) ∀x1 ∈ C, f1 ∈ Fr(x1)

V1(g1) ≤ e−1V1(x1) ∀x1 ∈ D, g1 ∈ Gr(x1).

(15)
Define

β(s, r) := α−1
1 (exp(−s)α1(r)) ∀(s, r) ∈ R≥0 × R≥0 .

(16)
Let ∆ > 0 be arbitrary. Define ρ := α−1

1 (α1(∆) + 1).
Because of Assumption 3 and the main results of [8],
there exist a smooth function V2,ρ : Rn → R≥0 and class-
K∞ functions α2,ρ and α2,ρ such that, for all x ∈ Rn,

α2,ρ

(
|x|Mρ

)
≤ V2,ρ(x) ≤ α2,ρ

(
|x|Mρ

)
(17)

and, for all x ∈ (C ∩ ρB)× X2 and f ∈ diag(0, In2
),

〈∇V2,ρ(x), f〉 ≤ −V2,ρ(x) . (18)

Without loss of generality, we can assume that

∇V2,ρ(x) = 0 ∀x ∈ ((C ∩ ρB)× X2) ∩Mρ . (19)

Claim 1 For each η > 0 there exists ν > 0 such that

x ∈ (C ∩ ρB)× X2 , |x|Mρ
≤ ν ,

f = (f1, f2) ∈ diag(In1
, 0)F (x)



 =⇒

〈∇V1(x1), f1〉+ |〈∇V2,ρ(x), f〉| ≤ −V1(x1) +
η
2 .

(20)
Proof of claim. Suppose the claim is false. Then,
there exists η > 0 such that for each positive integer i
there exist xi ∈ (C ∩ ρB) × X2 and fi = (f1,i, f2,i) ∈
diag(In1

, 0)F (xi) such that |xi|Mρ
≤ 1/i and

〈∇V1(x1,i), f1,i〉+ |〈∇V2,ρ(xi), fi〉| > −V1(x1,i) +
η

2
.

(21)
Due to the compactness of (C ∩ ρB) × X2 and
the local boundedness of F , the sequence xi, fi ∈
diag(In1

, 0)F (xi) has a subsequence converging to a
point (x∗, f∗) such that x∗ ∈ ((C ∩ ρB) × X2) ∩ Mρ.
Due to the outer semicontinuity of H and F , we also
have x∗

2 ∈ H(x∗
1) and f∗ ∈ diag(In1

, 0)F (x∗) so that
f∗
1 ∈ Fr(x

∗). Then, using the continuous differentiabil-
ity of V1 and V2,ρ, and (19), it follows from (21) that
〈∇V1(x

∗
1), f

∗
1 〉 ≥ −V1(x

∗
1) +

η
2 , which contradicts the

first inequality in (15). �

Let µ ≥ 1 be such that

V2,ρ(x)≤ µ ∀x ∈ ρB× X2 , (22)

V2,ρ(g)≤ µ ∀x ∈ (D ∩ ρB)× X2 , g ∈ G(x) (23)
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and for all x ∈ (C ∩ ρB) × X2, f = (f1, f2) ∈
diag(In1

, 0)F (x),

〈∇V1(x1), f1〉+ V1(x1) + |〈∇V2(x), f〉| ≤ µ (24)

Let δ > 0 be arbitrary, let η ∈ (0, 1) satisfy η ≤ α1(δ)/2,
and let ν > 0 satisfy (20). Define

ε∗ :=

(
min

{
(1− e−1)η, α2,ρ(ν)

}

µ

)2

. (25)

Note that ε∗ < 1 since η < 1 and µ ≥ 1. Then consider
ε ∈ (0, ε∗] and the definition

V (x) := V1(x1) +
√
ε V2,ρ(x) . (26)

It follows from (14), the lower bound in (17), the upper
bound in (22), and (25) that

α1(|x1|A1
) ≤ V (x) ≤ α1(|x1|A1

) + η ∀x ∈ ρB×X2 .
(27)

Consider x = (x1, x2) ∈ (D∩ρB)×X2 and g = (g1, g2) ∈
G(x). From the definition of Gr, we have that g1 ∈
Gr(x1). Using (15), (23), ε ∈ (0, ε∗], and (25), we have

V (g) = V1(g1) +
√
εV2,ρ(g) ≤ e−1V1(x1) +

√
εµ

≤ e−1V (x) + (1− e−1)η .

For all x ∈ (C ∩ ρB) × X2 and f ∈ Rn such that
diag(In1

, εIn2
)f ∈ F (x) we consider the two cases

|x|Mρ
≤ ν and |x|Mρ

≥ ν. Also, we write f as

f = fa + fb ,

{
fa ∈ diag(In1

, 0)F (x) ,

fb ∈ diag(0, ε−1In2
)F (x).

(28)

In the case |x|Mρ
≤ ν, using the definition of V in (26),

(18), (20) and the fact that ε ∈ (0, 1), we have

〈∇V (x), f〉

= 〈∇V1(x1), fa,1〉+
√
ε (〈∇V2(x), fa〉+ 〈∇V2(x), fb〉)

≤ 〈∇V1(x1), fa,1〉+ |〈∇V2(x), fa〉|+
√
ε〈∇V2(x), fb〉

≤ −V (x) + η.

In the case |x|Mρ
≥ ν, using (18), (24), (25), (26), and

ε ∈ (0, 1), we have

〈∇V (x), f〉

= 〈∇V1(x1), fa,1〉+
√
ε (〈∇V2(x), fa〉+ 〈∇V2(x), fb〉)

≤ 〈∇V1(x1), fa,1〉+ |〈∇V2(x), fa〉|+
√
ε〈∇V2(x), fb〉

≤ −V1(x1) + µ− 1√
ε
V2,ρ(x)

≤ −V (x) + η + µ− 1√
ε
α2,ρ(|x|Mρ

)

≤ −V (x) + η + µ− 1√
ε
α2,ρ(ν) ≤ −V (x) + η .

Define
W (x) := V (x) − η . (29)

Then we have, for all x ∈ (C ∩ ρB) × X2 and f ∈ Rn

such that diag(In1
, εIn2

)f ∈ F (x),

〈∇W (x), f〉 = 〈∇V (x), f〉 ≤ −V (x) + η = −W (x)

and for all x ∈ (D ∩ ρB)× X2 and g ∈ G(x),

W (g) = V (g)− η ≤ e−1V (x) + (1− e−1)η − η = e−1W (x) .

We conclude that each solution ξ of

diag(In1
, εIn2

)ξ̇ ∈ F (ξ) ξ ∈ (C ∩ ρB)× X2

ξ+ ∈ G(ξ) ξ ∈ (D ∩ ρB)× X2

(30)

satisfies, for all (t, j) ∈ dom ξ,

W (ξ(t, j)) ≤ exp(−t− j)W (ξ(0, 0)) .

Therefore

V (ξ(t, j)) ≤ exp(−t− j)(V (ξ(0, 0))− η) + η .

In turn, it follows from (27) that

α1(|ξ1(t, j)|A1
) ≤ exp(−t− j)α1(|ξ1(0, 0)|A1

) + η .

Since η < 1, it follows from the definition of ρ that

|ξ1(0, 0)|A1
≤∆ =⇒ |ξ1(t, j)|A1

<ρ ∀(t, j) ∈ dom ξ.
(31)

Now consider a solution x to (8) with initial condition
satisfying |x1(0, 0)|A1

≤ ∆. Suppose there exists (t, j) ∈
dom x such that |x1(s, i)|A1

≤ ρ for all (s, i) ∈ dom x
satisfying s+ i ≤ t+ j and either

(1) (t, j + 1) ∈ dom x and |x1(t, j + 1)|A1
> ρ, or, else

(2) there exists a monotonically decreasing sequence ri
with limi→∞ ri = t such that (ri, j) ∈ dom x and
|x1(ri, j)|A1

> ρ for each i.

The solution x must agree with a solution ξ of (30) up
to time (t, j), and thus must satisfy |x1(t, j)|A1

< ρ. By
the continuity of x1(·, j), the second case does not occur.
The first case cannot occur either since, if it did, there
would exist a solution ξ to (30) with ξ(s, i) = x(s, i) for
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all s + i ≤ t + j and ξ(t, j + 1) = x(t, j + 1), which
contradicts (31).

Thus, x is also a solution of (30) and, for all (t, j) ∈
dom x,

|x1(t, j)|A1
≤ α−1

1 (exp(−t− j)α1(|x1(0, 0)|A1
) + η) .

Therefore, for all (t, j) ∈ dom x,

|x1(t, j)|A1

≤ α−1
1 (2 exp(−t− j)α1(|x1(0, 0)|A1

)) + α−1
1 (2η)

= β(|x1(0, 0)|A1
, t+ j) + δ .

(32)
Finally note that there are no solutions from initial con-
ditions such that x2 /∈ X2, and also solutions cannot
leave Rn1 × X2 according to Assumption 1. Therefore,
each solution x satisfies |x(t, j)|A1×X2

= |x1(t, j)|A1
.

Thus, the condition (32) establishes the result. �

4.3 An academic example

The purpose of this section’s example is to illustrate
further the meaning of our assumptions.

Consider the hybrid system with state x := (x1, x2) ∈
R2×{−1, 1}×R, which is partitioned as x1 := (ξ1, ξ2, ξ3)
and x2 := ξ4, where

ξ̇1 = ξ2, ξ̇2 = −cξ1 + ξ4

ξ̇3 = 0, εξ̇4 = −(ξ4 + ξ3ξ1)

}
x ∈ C × X2

ξ+1 = ξ1, ξ
+
2 = ξ2

ξ+3 = −ξ3, ξ
+
4 = g(ξ1, ξ2, ξ3, ξ4)

}
x ∈ D × X2,

(33)
with c > 0, X2 = [−100, 100], C = {x1 : ξ1ξ2ξ3 ≥ 0},
D = {x1 : (ξ3 = 1 & ξ2 = 0) or (ξ3 = −1 & ξ1 = 0)},
and g : D × X2 → X2 an arbitrary continuous function.
Note that the fast variable ξ4 affects the stability of the
slow variables (ξ1, ξ2, ξ3) through the flow map. More-
over, since the jumps may have a destabilizing effect on
the fast variable ξ4, there is the potential for the jumps
of ξ4 to effect the slow variables (ξ1, ξ2, ξ3) adversely.

Theorem 1 provides a tool to assess (semiglobal, prac-
tical) asymptotic stability of the compact set A1 × X2

with A1 := {0} × {−1, 1} for the system (33) with g
an arbitrary, continuous function and with ε > 0 small.
Assumption 1 holds for (33) by construction. With the
partition of the state x above, H is given by

H(x1) =

{
−ξ3ξ1 x1 ∈ C

∅ x1 /∈ C

and satisfies Assumption 2. The boundary layer system
associated with (33), for each ρ > 0, becomes

ξ̇1 = 0, ξ̇2 = 0, ξ̇3 = 0

ξ̇4 = −(ξ4 + ξ3ξ1)

}
x ∈ (C ∩ ρB)× 100B

(34)
and has the set Mρ defined in Assumption 3 globally
asymptotically stable. Hence, Assumption 3 holds. The
last assumption to check is Assumption 4, which pertains
to the reduced system associated with (33), given by

ξ̇1 = ξ2

ξ̇2 = −cξ1 − ξ3ξ1

ξ̇3 = 0





=: Fr(x1) x1 ∈ C

ξ+1 = ξ1

ξ+2 = ξ2

ξ+3 = −ξ3





=: Gr(x1) x1 ∈ D.

(35)

Global asymptotic stability of A1 can be established
through the invariance principle in [31] using the
Lyapunov-Krasovskii function V (x1) = cξ21 + ξ22 , which
satisfies, ∀x1 ∈ C, 〈∇V (x1), Fr(x1)〉 = −ξ1ξ2ξ3 ≤ 0
and, ∀x1 ∈ D, V (Gr(x1)) = V (x1). Hence, despite the
potential destabilizing effect of the state ξ4, the compact
set A1 × X2 is semiglobally practically asymptotically
stable as ε → 0+; that is, when ε > 0 is small, the effect
of the fast variable on the slow variables is small com-
pared to the stability properties of the reduced system.

To appreciate the perils associated with allowing the
jump map for the slow variables to depend on the fast
variables in a nontrivial way, consider the system (33)
but with g specified as

g(ξ1, ξ2, ξ3, ξ4) = sat±100((1 + π/2)ξ4) ,

where sat±100(s) = s · min{1, 100/|s|}, and with the
jump map for (ξ1, ξ2) =: z changed to

z+ = [(1 + g̃(x))I +R(g̃(x))] z,

where R(θ) =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
and g̃ : (R2 \ {0}) ×

R2 → [0, π/2] is continuous, g̃(x) = 0 when ξ4+ξ3z1 = 0
and g̃(x) = π/2 when |ξ4 + ξ3z1| > |z|. With the defini-
tion z+ = 0 for z = 0, we get a continuous jump map
defined on R4. Note that when the fast variable is con-
strained to the quasi-steady state equilibrium manifold
ξ4 + ξ3z1 = 0, the modified jump map reduces to the
original jump map. However, for the overall modified
system, with x initialized in D arbitrarily close to the
origin and with 5|z| < ξ4 ≤ 10|z| (therefore, off of the
quasi-steady manifold defined by H), the unique solu-
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tion jumps an arbitrarily large number of times, without
ever flowing, and 5|z(0, j)| < ξ4(0, j) ≤ 10|z(0, j)| and
ξ4(0, j) = (1+π/2)jξ4(0, 0) until |ξ4(0, j)| = 100, so that
|z(0, j)| ≥ 10. In particular, there is no semiglobal prac-
tical asymptotic stability of the set {0} × {−1, 1} × X2

as there is for the system (33).

4.4 Switched systems

Inspired by [23,24], we consider systems of the form

diag(In1
, εIn2

)ż = F σz σ ∈ {1, . . . , N} (36)

where N is a positive integer and σ may vary with time.
For the example n1 = n2 = 1, N = 2, F 2 = (F 1)⊤ and
F 1 = [−1 0; 5 − 1], it is shown in [23] (cf. [24]) that
for each ε > 0 there exists a periodic switching signal
t 7→ σ(t) that destabilizes the origin of (36). Instability
also follows from Filippov’s lemma [10] and relaxation
theorems [5,19], which establish that the solutions of (36)
under arbitrarily fast switching are arbitrarily close to
solutions of the differential inclusion

diag(1, ε)ż ∈
{
∪λ∈[0,1]

([
λF 1 + (1− λ)F 2

]
z
)}

. (37)

These dynamics include diag(1, ε)ż = 0.5(F 1 + F 2)z,
which is unstable for all ε > 0 since the determinant
of diag(1, ε−1)0.5(F 1 + F 2) is negative for all ε > 0.
Due to this instability, any attempt to apply Theorem
1 to (37) will fail. Assumptions 1, 2, and 3 hold with
x1 = z1, z2 = x2, C = [−µ, µ], the flow map F given by
the right-hand side of (37),X2 = [−5µ, 5µ], andH(x1) ={
h : 0 ≤ hx1 ≤ 5x2

1

}
, where µ > 0 is arbitrary. Since

x2 ∈ H(x1) includes x2 = 2.5x1, the reduced dynamics
contain ẋ1 = −x1 + 2.52x1, implying that Assumption
4 is not satisfied.

Theorem 1 is applicable to the example when the switch-
ing signal σ satisfies an average dwell-time constraint
[16]. In this case, we get a hybrid system with state
x = (σ, τ, z) where

σ̇ = 0, τ̇ ∈ [0, δ] τ ∈ [0,M ]

σ+ ∈ {1, . . . , N} , τ+ = τ − 1 τ ∈ [1,M ] ,
(38)

with δ > 0 and M a positive integer, which define the
average dwell-time parameters, and z with dynamics
given by (36). For more details, see [11]. The variables
σ and τ are lumped with z1 to form the slow states
x1 = (σ, τ, z1) whereas z2 is the fast state x2. For the
example, Assumption 1 is satisfied by construction with
C = {1, 2}×[0,M ]×[−µ, µ],D = {1, 2}×[1,M ]×[−µ, µ]
and X2 = [−5µ, 5µ], where µ > 0 is arbitrary, and the
flow map F and jump map G obtained from (36) and
(38).

Moreover, Assumptions 2 and 3 hold with H(x1) = 5z1
for σ = 1 and H(x1) = 0 for σ = 2. Assumption 4 is
satisfied since the reduced dynamics are (38) combined
with ż1 = −z1, z

+
1 = z1, which has the compact set

A1 = {1, 2} × [0,M ] × {0} exponentially stable. We
conclude for the example that, for arbitrary δ > 0 and
positive integerM , the system (38),(36) has the setA1×
{0} exponentially stable for ε > 0 sufficiently small. We
are able to pass from semiglobal practical asymptotic
stability ofA1×X2 to global exponential stability ofA1×
{0} because of the homogeneity properties of (38), (36)
(see [13]) and the average dwell-time condition, which
allows z2 to converge to the origin by flowing. The result
can be extended to general systems of the form (38),(36).
We use the partition F σ = [F σ

11 F σ
12; F

σ
21 F σ

22], where
F σ
ii ∈ Rni×ni for i ∈ {1, 2}, and the definition F σ

s :=
F σ
11 − F σ

12(F
σ
22)

−1F σ
21.

Corollary 1 Suppose that F σ
22 is Hurwitz for each σ ∈

{1, . . . , N} and that for given δ > 0 and positive integer
M the system (38) combined with

ż1 = F σ
s z1 , z+1 = z1 (39)

has the compact set A1 = {1, . . . , N} × [0,M ] × {0}
exponentially stable. Then there exists ε∗ > 0 such that,
for all ε ∈ (0, ε∗], the system (38), (36) has the compact
set A1 × {0} exponentially stable.

Thus, if each F σ
22 is Hurwitz then stability under average

dwell-time switching for (36) with ε > 0 small follows
from stability under average dwell-time switching for the
reduced system (39). (Cf. [1]).

For arbitrary switching in (36) we must consider

diag(In1
, εIn2

)ẋ ∈ co
(
∪σ∈{1,...,N}F

σx
)
. (40)

LMI-based sufficient conditions for stability appear in
[23,24]. As the example above (taken from [23]) shows, in
general it is not enough to establish exponential stability
for the systems

ẋ1 ∈ co
(
∪σ∈{1,...,N}F

σ
s x1

)

ẋ2 ∈ co
(
∪σ∈{1,...,N}F

σ
22x2

)
.

(41)

Yet, an interesting special case follows from Theorem 1.

Corollary 2 If either (F σ
22)

−1F σ
21 or F σ

12(F
σ
22)

−1 is in-
dependent of σ and the origin of (41) is exponentially sta-
ble then there exists ε∗ > 0 such that, for all ε ∈ (0, ε∗],
the origin of the system (40) is exponentially stable.

When (F σ
22)

−1F σ
21 does not depend on σ, stability for the

second system in (41) implies that Assumptions 2 and 3
hold withH(x1) = −(F σ

22)
−1F σ

21x1, and stability for the
first system in (41) implies that Assumption 4 holds. The
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result for the case where F σ
12(F

σ
22)

−1 does not depend
on σ follows from duality results [6,14], in particular the
fact that the origin of (40) is exponentially stable if and
only if exponential stability of the origin holds for

diag(In1
, εIn2

)ẋ ∈ co
(
∪σ∈{1,...,N}(F

σ)⊤x
)
.

Theorem 1 may apply to (40) when the origin of the
second system in (41) is exponentially stable even
when neither (F σ

22)
−1F σ

21 nor F σ
12(F

σ
22)

−1 is indepen-
dent of σ. For example, modify the example at the
beginning of this section so that F 1 = (F 2)⊤ =
[−5 1; 2 − 1]. In this case, Assumptions 2 and 3 hold
with H(x1) =

{
h : x2

1 ≤ hx1 ≤ 2x2
1

}
. The reduced sys-

tem is ẋ1 ∈ co {−4x1,−x1}, which has the origin expo-
nentially stable so that Assumption 4 is satisfied. It fol-
lows from Theorem 1 that the origin of (40) with N = 2
and these F 1 and F 2 matrices is exponentially stable.

5 Hybrid control with fast, linear actuators

As an application of Theorem 1, consider controlling a
nonlinear plant

ξ̇p = fp(ξp, u) ξp ∈ Cp, (42)

where ξp ∈ Rnp is the state, u ∈ Rmp is the control input,
fp : Cp × Rmp → Rnp is a continuous function, and
Cp ⊂ Rnp is a closed set. A hybrid controller, denoted
as Hc, is designed to accomplish the stabilization goal.
It assumes the form

ξ̇c = Fc(uc, ξc) (uc, ξc) ∈ Cc

ξ+c ∈ Gc(uc, ξc) (uc, ξc) ∈ Dc ,
(43)

where ξc ∈ Rnc , uc ∈ Rnp , Cc, Dc ⊂ Rnp × Rnc are
closed sets, Fc : Cc → Rnc is continuous, and Gc :
Rnp × Rnc ⇉ Rnc is an outer semicontinuous, locally
bounded set-valued mapping with the property that, for
each (uc, ξc) ∈ Dc, Gc(uc, ξc) is nonempty. Note that
ξc can contain continuous variables, logic/discrete vari-
ables, timers, and counters. The input uc to the hybrid
controller is taken to be the plant’s state ξp. The out-
put of the hybrid controller is given by the function
κc : C → Rmp , where

C :=
{
(ξp, ξc) ∈ Rnp+nc : (ξp, ξc) ∈ Cc, ξp ∈ Cp

}
.

(44)
The function κc is assumed to be bounded and continu-
ous. The boundedness assumption on κc is not restrictive
since we are pursuing a semiglobal result. In this case,
we can take the set Cc in (43) to be arbitrarily large but
compact, so that the boundedness of κc follows from its
continuity. The output of the controller is connected to
the plant input u through the output Laξa of an actua-

tor with fast, linear dynamics

εξ̇a = Aaξa +Baκc(ξp, ξc) ξa ∈ Xa ⊂ Rna , (45)

where ε is a positive small parameter, Aa ∈ Rna×na is
Hurwitz, −LaA

−1
a Ba = Ina

, and Xa ⊂ Rna is a forward
invariant, compact set for

ξ̇a = Aaξa +Baκc(ξp, ξc) (46)

with (ξp, ξc) arbitrary but constant. Such a set Xa exists
since Aa is Hurwitz and κc is bounded. The property
of Xa implies that −A−1

a Baκc(ξp, ξc) ∈ Xa since the
trajectories of (46) with (ξp, ξc) constant converge to
−A−1

a Baκc(ξp, ξc).

The closed-loop system resulting from controlling the
nonlinear system (42) with the hybrid controller (43)
through a fast actuator. The closed loop is a hybrid sys-
tem with state x := (ξp, ξc, ξa) that can be written as

diag(Inp+nc
, εIna

)



ξ̇p

ξ̇c

ξ̇a


=




fp(ξp, Laξa)

Fc(ξp, ξc)

Aaξa +Baκc(ξp, ξc)


=:F (x)

x ∈ C × Xa,

ξ+p
ξ+c
ξ+a


∈




ξp

Gc(ξp, ξc)

ξa


 =: G(x) x ∈ D × Xa,

(47)
where C is defined in (44) and D = Dc. For the mobile
robot control problem in Section 3, we have that np = 3,
nc = 1, na = 2, mp = 2, the set Cp of the plant in (42)
is given by Cp = R2 × S1, the hybrid controller in (43)
has ξc = q and Fc ≡ 0, and the actuator model in (45)
is such that

La = Ba := I2, Aa := −I2, Xa := MB. (48)

We summarize the assumptions we have made so far.

Assumption 5 For the system (47), the sets C and D
are closed, the set Xa is compact, the function F : C ×
Xa → Rnp+nc+na is continuous, the set-valued mapping
G : Rnp+nc+na ⇉ Rnp+nc+na is outer semicontinuous,
locally bounded, and such that G(x) is nonempty for each
x ∈ D × Xa, and κc : C → Rmp is bounded.

Assumption 5 is the counterpart of Assumption 1 in Sec-
tion 4.1. As shown in [32], the regularity conditions inAs-
sumption 5 are tantamount to assuming that the asymp-
totic stability induced by the hybrid controller (43) is
robust to arbitrarily small measurement noise, which is
a baseline requirement for any practical controller.

Assumption 6 The matrix Aa is Hurwitz and the set
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Xa is forward invariant for the system (46) with (ξp, ξc)
arbitrary but constant.

Assumption 6 guarantees that Assumptions 2 and 3 of
Section 4.1 hold with the definitions x1 = (ξp, ξc), x2 =
ξa, and X2 = Xa, and H(x1) := −A−1

a Baκc(x1) for all
x1 ∈ C, H(x1) = ∅ for x1 /∈ C. Assumption 3 is satisfied
since the Hurwitz property of Aa implies that, for each
ρ > 0, the compact set Mρ in Assumption 3 is globally
asymptotically stable for the boundary layer system of
(47). This system is given by



ξ̇p

ξ̇c

ξ̇a


=




0

0

Aaξa+Baκc(ξp, ξc)


 (ξp, ξc, ξa)∈(C∩ρB)×Xa.

(49)

The final assumption we make pertains to the closed-
loop system with actuator dynamics neglected, that
is, with infinitely fast actuators; the assumption corre-
sponds to Assumption 4 of Section 4.1.

Assumption 7 (Hybrid Controller) The intercon-
nection between the plant (42) and the hybrid controller
Hc in (43), with the interconnection conditions uc = ξp,
u = κc(ξp, ξc), is such that a compact set A1 ⊂ Rnp+nc

is globally asymptotically stable.

With this underlying stability property induced by Hc,
the next result, which follows from Theorem 1, estab-
lishes a stability property for the closed-loop systemwith
fast actuators.

Corollary 3 Under Assumptions 5-7, the compact set
A1 ×Xa is semiglobally practically asymptotically stable
as ε → 0+ for the system (47).

For the mobile robot in Section 3 and the pendulum on a
cart in the next section, the control law κc can be taken
to be bounded while satisfying Assumption 7. When κc

is continuous but not bounded, the plant dynamics can
be constrained to a compact subsetKp of the state space,
thereby defining a reasonable region of operation. Then,
Assumption 7 holds and, restricting the definition of κc

to Kp so that κc is bounded, Assumption 5 is satisfied.

6 Examples

We demonstrate the effect of the fast actuator dynam-
ics (45), (48) on hybrid feedback algorithms that, in the
absence of actuator dynamics, globally asymptotically
stabilize the inverted position of a pendulum on a cart
and the position and orientation of a mobile robot, re-
spectively. We emphasize that our results are applicable
to any stabilizing hybrid feedback that satisfies the weak
regularity conditions developed in [12].

6.1 Pendulum on a cart

The model of the cart-pendulum system is given by



ζ̇1

ζ̇2

ż


 =




ζ2z

−ζ1z

φ(ζ, z, ν)


 =: fp(ξp, ν) ξp = (ζ, z) ∈ Cp,

(50)
where Cp := S1 × R,

φ(ζ, z, ν) =
1

I
mℓ

+ ℓ− mℓζ2
2

m

(
γζ1 −

mℓ

m
z2ζ2ζ1 +

ζ2
m

ν

)
,

(51)
ζ is the orientation and z the angular velocity of the
pendulum, which has mass m, length ℓ, and moment
of inertia I; γ is the gravitational constant; ν is the
force applied to the cart; and m is the total mass of
the cart plus pendulum. The cart dynamics have been
ignored in this model. The point ζ = (0, 1) corresponds
to the inverted position of the pendulum while the point
ζ = (0,−1) indicates the down position. The angular
velocity state z is positive for clockwise motion.

We implement through fast actuators a hybrid feedback
ν with state q ∈ {1, 2, 3} := Q that, in the absence of ac-
tuator dynamics, globally asymptotically stabilizes the
point (ξp, q) = (ξ∗p , 3) where ξ∗p = (0, 1, 0). The hybrid
feedback is specified as follows (see also [11, Example 36]
or [34]): ρ1 < δ1, ρ21 < δ21, ρ22 < δ22, k1, k2, k3 > 0, are
design parameters;

V (ζ1, z) =
[
ζ1 z

]
P

[
ζ1

z

]
, W (ζ, z) =

I
mℓ

+ ℓ

2γ
z2 + 1 + ζ2;

where

[
0 1

k2 k3

]⊤
P + P

[
0 1

k2 k3

]
< 0, P = P⊤ > 0;

C =∪q∈Q (Cq × {q}) , C1 = {(ζ, z) : W (ζ, z) ≤ δ1}(52)
C2 = {(ζ, z) : W (ζ, z) ≥ ρ1} ∩

({(ζ, z) : V (ζ, z) ≥ ρ21} ∪ {(ζ, z) : 1− ζ2 ≥ ρ22})
C3 = {(ζ, z) : V (ζ1, z) ≤ δ21, 1− ζ2 ≤ δ22} ;

q̇ = 0

ν = mℓz2ζ1 −
mγℓ
I
mℓ

+ ℓ
ζ1ζ2 +

( I
mℓ

+ ℓ− mℓζ22
m

)
κq(ξ);

κ1(ξ) = k1, κ2(ξ) = −ζ2z(W (ζ, z)− 2),

κ3(ξ) = m

(
− γ

I
mℓ

+ ℓ

ζ1
ζ2

− k2ζ1 − k3zζ2

)
;
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D= ∪q∈QDq × {q} , Dq = ∪j∈{1,2,3}\{q}Dqj (53)

D12 = {(ζ, z) : W (ζ, z) ≥ δ1} , D13 = ∅
D21 = {(ζ, z) : W (ζ, z) ≤ ρ1} , D31 = ∅
D23 = {(ζ, z) : V (ζ1, z) ≤ ρ21, 1− ζ2 ≤ ρ22}
D32 = {(ζ, z) : V (ζ, z) ≥ δ21}∪{(ζ, z) : 1− ζ2 ≥ δ22} ;

q+ ∈ Gq(ξ), Gq(ξ) = ∪j∈Q\{q}Gq,j(ξ)

Gq,j(ξ) =

{
{j} ∀ξ ∈ Dqj

∅ ∀ξ /∈ Dqj .

(54)
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1

−1
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0
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u ε5
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(b)

Fig. 1. Closed-loop solutions for the pendulum on a cart
problem starting from −ξ∗p. Solutions for the case of an in-
finitely fast actuator (nominal) and with dynamics as in (45)
with ε given by ε1 = 0.001, ε2 = 0.01, ε3 = 0.02, ε4 = 0.03,
and ε5 = 0.05 are depicted: (a) pendulum’s orientation ζ
and (b) control input applied to the plant.

As shown in [11, Example 36], these control laws ren-
der the compact set A1 := {ξ∗p} × {3} globally asymp-
totically stable for the closed-loop system without ac-
tuator dynamics. Assumptions 5 and 7 are satisfied by
construction. Now, consider the case in Section 5 of an
implementation with a fast actuator. Figure 1 depicts
a simulation for the case of an infinitely fast actuator
and for an actuator with dynamics as in (45) with the
values given in (48) and with different values of the pa-
rameter ε > 0. For simulations, the following param-

eters were used: m = 1,m = 1, γ = 2, ℓ = 1, I =
1, k1 = 1, k2 = 1, k3 = 10, δ1 = 0.04, ρ1 = 0.02, δ21 =

0.23, ρ21 = 0.2, δ22 = 0.13, ρ22 = 0.1, P =

[
5.1 0.5

0.5 1

]
,

and σ(s) = Proj[−5,5](s), where Proj[−5,5] denotes the

projection onto [−5, 5]. Figure 1(a) shows the orientation
of the pendulum ζ. Figure 1(b) shows the control input
u for the considered values of ε. Since A1 ∩D = ∅, for ε
sufficiently small the solutions eventually stop jumping.
In fact, the results mentioned in Remark 1 can be used
to establish asymptotic convergence of the closed-loop
state to A1 even under the presence of actuator dynam-
ics with ε > 0. While Theorem 1 does not address con-
vergence – on compact time domains as ε tends to zero
– of solutions under fast actuation to solutions with in-
finitely fast actuation, this trend is evident in Figure 1.

6.2 Mobile robot

To emphasize that our results are applicable to con-
trollers that induce purely discrete solutions, we consider
a particular hybrid feedback consisting of five modes for
stabilization of the mobile robot in Section 3 to the point
ξ∗p = (0, ζ∗), where ζ∗ = (1, 0) without loss of gener-
ality. Following the controller in [11, Example 35], two
modes combine to decreases |z| to a small value. Based
on ideas in [27,17] three additional modes are used to
keep |z| small while steering the mobile robot system to
the desired equilibrium.

The state of the hybrid controller defines a feedback u =
(u1, u2) and has state q ∈ {1, 2, 3, 4, 5} =: Q. The flow
set is defined to be (52) on which q̇ = 0 while the jump
set and jump map are given as in (53) and (54). Let
ε2 > ε1 > 0, ν2 > ν1 > 0, µ > 2, and ki > 0 for each
i ∈ {1, 2, 3, 4}. For each ν > 0, define

K(ν) :=
{
(z, ζ) : |z2 − 0.5ζ2z1| ≤ ν2

(
z21 + ζ22

)}
.

Let σ be a continuous and bounded function satisfying

σ(0) = 0, sσ(s) > 0 for all s 6= 0. Let J :=

[
0 −1

1 0

]
and,

for each (z, ζ) ∈ (R2 \ {0})× S1, define a function ϕ as

ϕ(z, ζ) := − 1
|z|

[
z⊤

z⊤J⊤

]
ζ. Define

P1 = {(z, ζ) : |z| ≥ ε1} , P2 = {(z, ζ) : |z| ≤ ε2}
P3 =

{
(z, ζ) : (z, ζ) ∈ (R2 × S1) \K(ν1)

}

P4 = {(z, ζ) : ζ1 ∈ [−1, 0.5]} , P5 = P3 ∪ P4

P6 =
{
(z, ζ) : (z, ζ) ∈ (R2 × S1) \K(ν2)

}

P7 = {(z, ζ) : ζ1 ∈ [−1, 0.25]} , P8 = P6 ∪ P7

(55)
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and Pc
i to be the closure of the complement of Pi on

R2 × S1.

C1 = P1 ∩ {(z, ζ) : ϕ1(z, ζ) ≥ −2/3}
C2 = P1 ∩ {(z, ζ) : ϕ1(z, ζ) ≤ −1/3}
C3 = P2 ∩ P5 ∩ {(z, ζ) : ζ1 ≥ −2/3}
C4 = P2 ∩ P5 ∩ {(z, ζ) : ζ1 ≤ −1/3}
C5 = P2 ∩ {(z, ζ) : (z, ζ) ∈ K(ν2), ζ1 ∈ [0.25, 1]}

D12 = P1 ∩ {(z, ζ) : ϕ1(z, ζ) ≤ −2/3}
D13 =D14 = D15 = Pc

1

D21 = P1 ∩ {(z, ζ) : ϕ1(z, ζ) ≥ −1/3}
D23 =D24 = D25 = Pc

1 , D31 = D32 = Pc
2

D34 = P2 ∩ P5 ∩ {(z, ζ) : ζ1 ≤ −2/3}
D35 = P2 ∩ {(z, ζ) : (z, ζ) ∈ K(ν1), ζ1 ∈ [0.5, 1]}
D41 =D42 = Pc

2 , D43 = P2 ∩ P5 ∩ {(z, ζ) : ζ1 ≥ −1/3}
D45 =D34, D51 = D52 = Pc

2 , D53 = D54 = P2 ∩ P8

Let ζ̃2 := z2 − 0.5ζ2z1. Then, the feedback law u =
(u1, u2) is given by

u1 =






−σ(z⊤ζ) q ∈ {1, 2}
|z| q ∈ {3, 4}

−0.5ζ1z1 −
2µζ2ζ̃2
z21 + ζ22

q = 5,

u2 =






σ(z⊤ζ)
|z|2

((
z z⊤

|z|2 − I
)
ζ
)⊤

Jz + k1ϕ2(z, ζ) q = 1

σ(z⊤ζ)
|z|2

((
z z⊤

|z|2 − I
)
ζ
)⊤

Jz + k2ϕ1(z, ζ) q = 2

k3ζ2 q = 3

k4ζ1 q = 4

(1− 0.5ζ1)ζ2 −
2µz1ζ̃2
z21 + ζ22

q = 5.

Global asymptotic stability of ξ∗p for the closed-loop
system is guaranteed from the stability properties in-
duced by modes 1 and 2, which follow from [11, Ex-
ample 35], and by modes 3-5, as established in [27,17].
The closed-loop system is such that Assumptions 5 and
7 are satisfied with A1 =

{
ξ∗p
}
× Q, ξ∗p = (0, ζ∗), be-

ing the asymptotically stable compact set. Figure 2 de-
picts solutions to the resulting closed-loop system with
this hybrid control strategy, as well as the control in-
puts, for the case ζ∗ = (1, 0); ε1 = 0.4, ε2 = 0.44;
µ = 4; ν1 = 1.1, ν2 = 1.2; k1 = k2 = 10, k3 = k4 = 1;
σ(s) = 10Proj[−3,30](s), where Proj[−3,30] denotes the

projection onto [−3, 30]. Solutions for the case of in-
finitely fast actuators and for actuators with dynamics
as in (45) with the values given in (48) and with differ-
ent values of the parameter ε > 0 are shown. The hybrid
control steers the vehicle to a neighborhood of z = 0,
and then utilizes a local stabilizer to drive the position
to zero and the orientation to (1, 0). For the chosen con-
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Fig. 2. Closed-loop solutions for the stabilization of the mo-
bile robot in (5) to ξ∗p = (0, ζ∗), ζ∗ = (1, 0). (a) Solutions
for the case of infinitely fast actuators (nominal) and for
actuators dynamics as in (45) with ε given by ε1 = 0.005,
ε2 = 0.015, ε3 = 0.02, and ε4 = 0.03; (b) control inputs.

troller parameters, simulations suggest that convergence
to ξ∗p is not possible for ε larger than ≈ 0.034.

7 Conclusions

Semiglobal practical asymptotic stability has been es-
tablished for a class of singularly perturbed hybrid sys-
tems. The stability result applies to hybrid control sys-
tems that are singularly perturbed by fast, continuous
actuators. This singular perturbation result justifies hy-
brid control design based on a simplified plant model
that ignores stable, fast actuator dynamics. Two exam-
ples, a mobile robot and a pendulum on a cart, were used

12



to illustrate the results. For the mobile robot, the ideal
closed-loop system exhibits solutions that always jump
and never flow when starting in the desired equilibrium
configuration. Nevertheless, our results apply. For the
pendulum on a cart, there are no jumps near the set that
is asymptotically stable for the ideal closed-loop system.
In this case, results for differential equations guarantee
that asymptotic stability, more than practical asymp-
totic stability, is achieved when the actuator dynamics
are sufficiently fast.
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