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ABSTRACT
We study the problem of designing controllers to track state
trajectories for plants with jumps in the state that are given
by constrained differential equations capturing the contin-
uous dynamics and constrained difference equations (or in-
clusions) capturing the discrete dynamics. The reference
trajectories consist of signals having intervals of flow and
instantaneous jumps, and are generated via a known hybrid
exosystem. The class of controllers considered are hybrid
and are designed to guarantee that the jump times of the
plant coincide with those of the given reference trajecto-
ries. By recasting the tracking problem as the stabiliza-
tion of a set and using asymptotic stability tools for time-
invariant hybrid systems, we derive sufficient conditions for
the closed-loop system that guarantee tracking of reference
trajectories.

Categories and Subject Descriptors
C.1.m [Miscellaneous]: Hybrid systems; I.2.8 [Problem
Solving, Control Methods, and Search]: Control the-
ory—hybrid control.

General Terms
Algorithms, Design, Performance, Theory, Verification.

Keywords
hybrid dynamical systems, tracking control, exosystem, asymp-
totic stability.

1. INTRODUCTION
We consider plants with state jumps given in terms of a

constrained flow equation

ξ̇ = fp(ξ, u) (ξ, u) ∈ Cp (1)

and a constrained jump inclusion

ξ
+ ∈ Gp(ξ, u) (ξ, u) ∈ Dp. (2)
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For this class of systems, which are hybrid systems due to ex-
hibiting both continuous and discrete behavior, we address
the problem of designing a controller that assigns the input
u and measures the plant’s state ξ to enforce that the set of
points where the state ξ and the reference trajectory r coin-
cide is asymptotically stable. In the hybrid system setting
being considered, the reference trajectory may exhibit inter-
vals of continuous evolution or flow as well as instantaneous
jumps. Without being precise about the concept of asymp-
totic stability at this point, a well-posed controller solving
such a tracking problem will guarantee that, when the initial
condition of the plant coincides with the initial value of the
reference r to track, r itself is a solution to the plant. As
a consequence, from such initial conditions, the controller
has to enforce flows and trigger jumps in the plant over the
same flow intervals and jumps instants that the reference
trajectory does, while from other initial conditions, it needs
to guarantee that the trajectories do not go far away from
and converge to the set of points where ξ and r coincide.

A purpose of this paper is to bring to the attention of the
hybrid systems community the difficulties to tracking con-
trol design for hybrid systems. As it will be illustrated in
Section 2, even for very basic plants and reference trajecto-
ries, it is not a trivial task to enforce that the error between
the state and the reference, i.e., the tracking error, is well
behaved. While the tracking problem is highly relevant in
numerous engineering applications, such as bipedal locomo-
tion and juggling systems, only a handful of contributions
to the solution of the general tracking problem of interest
have been proposed in the literature. Noteworthy contribu-
tions on tracking control are the time-warping approach for
mechanical systems undergoing impacts proposed in [1, 2,
3], the methods for systems modeled as measure differential
inclusions used in [4, 5], the techniques for mechanical sys-
tems with unilateral constraints in [6, 7, 8], and the hybrid
approach for juggling systems in [9]. In this paper, we con-
sider reference trajectories exhibiting flows and jumps that
can be generated via a known hybrid exosystem. We re-
cast the tracking problem as the asymptotic stabilization of
a time-invariant set of the state space involving the plant,
controller, and exosystem. In this setting, the set to sta-
bilize may not be compact, but only closed. The proposed
approach leads to the characterization of a class of hybrid
controllers guaranteeing that the jump times of the plant co-
incide with those of the given reference trajectories and that
the set of points with tracking error equal zero is asymptot-
ically stable.



The remainder of this paper is organized as follows. In
Section 2 we present key difficulties in solving tracking con-
trol problems with impulsive reference trajectories and out-
line the proposed approach. Results to establish asymptotic
stability of closed sets in hybrid systems are presented in
Section 3. A general tracking control problem is presented
in Section 4 and then specialized to the full information case
in Section 5, where tools for design of hybrid tracking con-
trollers are proposed. Finally, in Section 6, we exercise in
examples the utility of the controller characterization of Sec-
tion 5.

Notation: We summarize the notation used throughout the
paper. R

n denotes n-dimensional Euclidean space; R real
numbers; R≥0 nonnegative real numbers; N natural numbers
including 0; B the closed unit ball in a Euclidean space.
Given a set S, S denotes its closure. Given a vector x ∈ R

n,
|x| denotes the Euclidean vector norm. Given a set S ⊂ R

n

and a point x ∈ R
n, |x|S := infy∈S |x − y|. A function

α : R≥0 → R≥0 is said to belong to class-K (α ∈ K) if it
is continuous, zero at zero, and strictly increasing and to
belong to class-K∞ (α ∈ K∞) if it belongs to class-K and is
unbounded.

2. MOTIVATIONAL EXAMPLE
AND PROPOSED APPROACH

Consider the fully controlled hybrid scalar plant given by

ξ̇ = u1 (ξ, u) ∈ Cp ⊂ R× R
3

ξ+ = u3 (ξ, u) ∈ Dp ⊂ R× R
3,

(3)

where ξ ∈ R is the state, u = [u1 u2 u3]
⊤ ∈ R

3 is the control
input, the set Cp defines the condition allowing continuous

evolution according to ξ̇ = u1, and the set Dp defines the
condition triggering jumps ξ+ = u3 in the state. Solutions
to (3) can be defined as functions on hybrid time domains,
which are subsets of R≥0 × N and parameterize the trajec-
tories by flow time t and jump time j (see Section 3 for
more details). That is, the evaluation of the solution ξ to
(3) at t units of time and j jumps is denoted ξ(t, j) (sim-
ilarly for u). Consequently, the value of the solution after
a jump at, say, (t′, j′) is given by ξ(t′, j′ + 1), which from
(3), (ξ(t′, j′), u(t′, j′)) ∈ Dp must hold and we will have
ξ(t′, j′ + 1) = u3(t

′, j′).
Consider the reference trajectory r given by the sawtooth

signal shown in Figure 1 and the problem of designing a
control law

u = κc(ξ, r)

so that ξ tracks r. For the purposes of this motivational dis-
cussion, we consider the attractivity property required for
tracking, that is, the property that, for every initial condi-
tion ξ(0, 0) of (3),

lim
t+j→∞

|ξ(t, j)− r(t, j)| = 0;

see Section 4 for a complete definition involving stability.
A typical approach used in tracking control for continuous-
time and discrete-time plants consists of generating the ref-
erence trajectory via an exosystem, defining the tracking er-
ror, and then analyzing the resulting system. Following this
approach, sawtooth reference trajectories r can be generated

via the exosystem

ẇ = 1 w ∈ Ce := [0, 1]
w+ = 0 w ∈ De := {1}
r = w.

(4)

In particular, the reference trajectory in Figure 1 is gen-
erated from system (4) with initial condition w(0, 0) = 0,
which has domain

⋃
j∈N

([tj , tj+1], j) and is given by

r(t, j) = t− tj ∀t ∈ [tj , tj+1],

where tj = j, j ∈ N. Following the “classical” approach to
tracking control, the dynamics of the tracking error

χ := ξ − r (5)

are given as follows:

• Differentiating (5), the continuous dynamics of the
tracking error are governed by

χ̇ = u1 − 1

when both the flow condition of (3) and of (4) hold
simultaneously, that is, when

(χ+ r, u) ∈ Cp and r ∈ [0, 1] (6)

hold, where we have used the fact that ξ = χ+ r from
(5) and r = w;

• Computing the change of χ when jumps occur, we ob-
tain

χ
+ = g(χ,u3, r) (7)

when either one of the jump conditions of (3) and of
(4) hold, that is, when

(χ+ r, u) ∈ Dp or r = 1 (8)

hold. For such points the jump map g is defined as

g(χ,u3, r) =





u3 − r (χ+ r, u) ∈ Dp, r ∈ [0, 1)
χ+ r (χ+ r, u) 6∈ Dp, r = 1
u3 (χ+ r, u) ∈ Dp, r = 1.
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Figure 1: Reference trajectory for the tracking con-
trol problem in Section 2.

First, note that, in general, the constraints (6) and (8),
and the jump equation (7) cannot be written in terms of
the tracking error solely – hence, the dynamics of the error
system are given by (3)-(8). To illustrate this, consider the
hybrid plant (3) with

Cp = {(ξ, u) : 0 ≤ u2 ≤ 1 } , Dp = {(ξ, u) : u2 = 1 }
(9)
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Figure 2: Jump map g for the error system in track-
ing control problem in Section 2 and trajectories.
The tracking error χ peaks to values close to 1 after
jumps.

and the static controller Hc given by

u = κc(ξ, r) =




1
r

0



 .

While in terms of the tracking error χ we have χ̇ = 0 and
χ+ = 0, the flow condition is ξ − χ ∈ [0, 1] and the jump
condition is ξ − χ = 1, which explicitly depend on ξ.

Second, the jump equation may map the tracking error
to dramatically different values from nearby points, making
it difficult to guarantee that it converges to zero asymptoti-
cally. To see this issue, consider the following choice of flow
and jump sets:

Cp = {(ξ, u) : 0 ≤ ξ ≤ 1 } , Dp = {(ξ, u) : ξ = 1 } . (10)

Then, picking u3 = 0 would make the jump equation (7)
reset the tracking error χ to zero when (ξ, u) ∈ Dp and
r = 1, or equivalently, when χ = 0 and r = 1. However,

from points χ nearby 0 and r = 1, the jump equation (7)
updates χ to a value nearby 1, even when u1 is chosen so
that χ converges to zero during flows. Figure 2(a) depicts
the map g as a function of ξ and r (solid) for u3 = 0 – at
(ξ, r) = (1, 1), g is equal to zero, as ∗ denotes. In fact, for
instance, when jumps occur due to r = 1 with χ = −0.01,
which corresponds to ξ = 0.99 as denoted with • in the
graph, a much larger tracking error results after the jump
(χ+ = 0.99). Therefore, from points close to (ξ, r) = (1, 1),
the value of the error χ after a jump can be nearby 0 or 1,
as seen in Figure 2(b). This “peaking phenomenon” imposes
a difficulty in guaranteeing that the norm of χ converges to
zero as the attractivity property requires.

We propose to design tracking controllers that circum-
vent such a challenging issue by ensuring that jumps of the
plant occur at the same instant as the jumps of the ref-
erence trajectories. For the illustrative example above, a
controller designed with the said approach will assign u so
that the jumps of the plant and exosystem occur jointly.
For this purpose, we recast the tracking control problem as
the stabilization of a closed, perhaps unbounded, set and
exploit sufficient conditions for asymptotic stability of time-
invariant hybrid systems already available in the literature.
With the proposed approach, the obtained results are a first
step in solving the tracking control problem for general hy-
brid systems, and it is the hope that they will spark the
interest of the hybrid systems community.

3. STABILITY OF CLOSED SETS
FOR HYBRID SYSTEMS

3.1 Modeling Framework
A hybrid system H with state x, input u, and output y is

modeled as

H





ẋ = f(x, u) (x, u) ∈ C

x+ ∈ G(x, u) (x, u) ∈ D

y = h(x),
(11)

where R
n is the space for the state x, U ⊂ R

m is the space
for inputs u, the set C ⊂ R

n × U is the flow set, the func-
tion f : C → R

n is the flow map, the set D ⊂ R
n × U

is the jump set, the set-valued map G : D ⇉ R
n is the

jump map, and h : Rn → R
p is the output map. The data

of the hybrid system H is given by (C, f,D,G, h), and at
times we use the shorthand notation H = (C, f,D,G, h).
Note that the state x can contain both continuous and dis-
crete state components. That is, the state x can be given
by x := [ξ⊤ q]⊤ where ξ ∈ R

n−1 is the continuous state
and q ∈ {1, 2, . . . , N} ⊂ R is the discrete (or logic) state.
Moreover, as illustrated in [10, 11], hybrid automata can be
modeled in the framework (11).

We remark that the presentation is focused on single-
valued flow maps f due to the control application of interest;
however, the general stability results below also hold for the
case when f is replaced by a set-valued mapping.

Definition 3.1 (hybrid time domain).A set E ⊂ R≥0

× N is a compact hybrid time domain if

E =
J−1⋃

j=0

([tj , tj+1], j)



for some finite sequence of times 0 = t0 ≤ t1 ≤ t2... ≤
tJ . It is a hybrid time domain if for all (T, J) ∈ E, E ∩
([0, T ]× {0, 1, ...J}) is a compact hybrid time domain.

This definition of time domain has similarities with hybrid
time trajectories in [12] and hybrid time sets in [13]. Solu-
tions to hybrid systems H will be given in terms of hybrid
arcs and hybrid inputs. These are parameterized by pairs
(t, j), where t is the ordinary-time component and j is the
discrete-time component that keeps track of the number of
jumps.

Definition 3.2 (hybrid arc and input). A function
φ : domφ → R

n is a hybrid arc if domφ is a hybrid time
domain and, for each j ∈ N, the function t 7→ φ(t, j) is
absolutely continuous on the interval {t : (t, j) ∈ domφ }.
A function u : domu → U is a hybrid input if domu is
a hybrid time domain and, for each j ∈ N, the function
t 7→ u(t, j) is Lebesgue measurable and locally essentially
bounded on the interval {t : (t, j) ∈ domu }.

Purely continuous inputs t 7→ ũ(t) can be converted to a
hybrid input u on a given hybrid time domain S by defining
u(t, j) = ũ(t) for each (t, j) ∈ S.

With the definitions of hybrid time domain, and hybrid
arc and input in Definitions 3.1 and 3.2, respectively, we
define a concept of solution for hybrid systems H.

Definition 3.3 (solution). Given a hybrid input u :
domu → U, a hybrid arc φ : domφ → R

n defines a solution
pair (φ, u) to the hybrid system H = (C, f,D,G, h) if the
following conditions hold:

(S0) (φ(0, 0), u(0, 0)) ∈ C ∪D and domφ = domu;

(S1) For each j ∈ N such that
Ij := {t : (t, j) ∈ dom(φ, u) } has nonempty interior
int(Ij),

(φ(t, j), u(t, j)) ∈ C for all t ∈ int(Ij),

and, for almost all t ∈ Ij,

d

dt
φ(t, j) = f(φ(t, j), u(t, j));

(S2) For each (t, j) ∈ dom(φ, u) such that (t, j + 1) ∈
dom(φ, u),

(φ(t, j), u(t, j)) ∈ D

and

φ(t, j + 1) ∈ G(φ(t, j), u(t, j)).

A solution pair (φ, u) toH is said to be complete if dom(φ,
u) is unbounded, Zeno if it is complete but the projection
of dom(φ, u) onto R≥0 is bounded, discrete if the domain is
{0} × N, and maximal if there does not exist another pair
(φ′, u′) such that (φ, u) is a truncation of (φ′, u′) to some
proper subset of dom(φ′, u′).

3.2 Stability and Sufficient Conditions
In preparation for the analysis of closed-loop systems re-

sulting in tracking control, we define stability and Lyapunov

functions for closed hybrid systems (no inputs and outputs)
given, with some abuse of notation, by

H

{
ẋ = f(x) x ∈ C

x+ ∈ G(x) x ∈ D.
(12)

The following definition introduces stability for subsets of
the state space, e.g., equilibrium points and attractors. Given
φ0 ∈ R

n, SH(φ0) denotes the set of maximal solutions φ to
H with φ(0, 0) = φ0.

Definition 3.4 (stability). A set A ⊂ R
n is said to

be

• uniformly globally stable if there exists α ∈ K∞ such
that each solution φ ∈ SH(φ(0, 0)) satisfies |φ(t, j)|A ≤
α(|φ(0, 0)|A) for all (t, j) ∈ domφ;

• uniformly globally pre-attractive if for each ε > 0 and
r > 0 there exists N > 0 such that, for any solution
φ ∈ SH(φ(0, 0)) with |φ(0, 0)|A ≤ r, (t, j) ∈ domφ and
t+ j ≥ N imply |φ(t, j)|A ≤ ε;

• uniformly globally pre-asymptotically stable if it is
both uniformly globally stable and uniformly globally
pre-attractive.

The definition of pre-attractivity above does not impose that
every solution is complete, though it implies their bounded-
ness relative to A. Completeness of solutions will be of in-
terest in the tracking problem studied here and will need to
be guaranteed separately from asymptotic stability. When
A is uniformly globally pre-asymptotically stable and every
maximal solution to H is complete, the set A is said to be
uniformly globally asymptotically stable.

The next result for asymptotic stability of closed sets from
[14] will be instrumental in characterizing hybrid controllers
for tracking; see also [15] and [16] for related sufficient con-
ditions. It is essentially a Lyapunov stability theorem for
hybrid systems for asserting stability that is uniform with
respect to initial conditions. Its proof follows the main ideas
of the standard classical Lyapunov theorem for continuous-
time systems [17] (see also [18]) and is omitted; see [14] for
details.

Theorem 3.5. (Lyapunov theorem) Let H = (C, f,D,G)
be a hybrid system and let A ⊂ R

n be closed. If there exist
a function V : Rn → R that is continuously differentiable
on an open set containing C, functions α1, α2 ∈ K∞, and a
continuous positive definite function ρ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ C ∪D ∪G(D)
(13a)

〈∇V (x), f(x)〉 ≤ −ρ(|x|A) ∀x ∈ C (13b)

V (g)− V (x) ≤ −ρ(|x|A) ∀x ∈ D, g ∈ G(x) (13c)

then A is globally uniformly pre-asymptotically stable for H.

The following result introduces relaxed Lyapunov condi-
tions (see [14]). It states that if each solution jumps an
arbitrarily large number of times or if it flows for an infinite
amount of time, then the conditions in Theorem 3.5 can be
relaxed.



Corollary 3.6. (relaxed Lyapunov conditions) Let H =
(C, f,D,G) be a hybrid system and let A ⊂ R

n be closed. If
there exist a function V : Rn → R that is continuously dif-
ferentiable on an open set containing C, functions α1, α2 ∈
K∞, and a continuous positive definite function ρ such that
(13a) and either A) or B) below holds:

A) Condition (13c) holds,

〈∇V (x), f(x)〉 ≤ 0 ∀x ∈ C , (14)

and for each r > 0 there exist γr ∈ K∞ and Nr ≥ 0
such that for each maximal solution φ to H, |φ(0, 0)|A ∈
(0, r], (t, j) ∈ domφ, t+ j ≥ N imply j ≥ γr(N)−Nr;

B) Condition (13b) holds,

V (g)− V (x) ≤ 0 ∀x ∈ D, g ∈ G(x) , (15)

and for each r > 0 there exist γr ∈ K∞ and Nr ≥ 0
such that for each maximal solution φ to H, |φ(0, 0)|A ∈
(0, r], (t, j) ∈ domφ, t+ j ≥ N imply t ≥ γr(N)−Nr;

then A is uniformly globally pre-asymptotically stable.

4. PROBLEM STATEMENT
We consider plants modeled by hybrid systems Hp with

state ξ ∈ R
np , input u ∈ R

mp , and output y ∈ R
sp given by

Hp





ξ̇ = fp(ξ, u) (ξ, u) ∈ Cp

ξ+ ∈ Gp(ξ, u) (ξ, u) ∈ Dp

y = hp(ξ),
(16)

with data (Cp, fp, Dp, Gp, hp). We consider hybrid arcs r :
dom r → R

se defining reference trajectories to be tracked.
These are generated via hybrid exosystems He of the form

He





ẇ = fe(w) w ∈ Ce

w+ ∈ Ge(w) w ∈ De

r = he(w)
(17)

with state w ∈ R
ne , output r ∈ R

se , and data (Ce, fe, De, Ge,

he). The following class of tracking hybrid controllers with
state η ∈ R

nc and data (Cc, fc, Dc, Gc, κc) is considered:

Hc





η̇ = fc(η, y, r) (η, y, r) ∈ Cc

η+ ∈ Gc(η, y, r) (η, y, r) ∈ Dc

u = κc(η, y, r).

(18)

He HpHc
r u y

Figure 3: The interconnection of Hp, Hc, and He

results in the closed-loop system Hcl.

The input to Hc has been assigned to (y, r) and its output
to the input of the plant Hp. Figure 3 depicts the closed-
loop system obtained from the interconnection of Hp, Hc,
and He. It is denoted Hcl, has state

x := (ξ, w, η) ∈ R
np × R

ne × R
nc ,

and is given by

ξ̇ = fp(ξ, κc(η, y, r))
ẇ = fe(w)
η̇ = fc(η, y, r)





(ξ, κc(η, y, r)) ∈ Cp

and w ∈ Ce

and (η, y, r) ∈ Cc

ξ+ ∈ Gp(ξ, κc(η, y, r))
w+ = w

η+ = η



 (ξ, κc(η, y, r)) ∈ Dp

ξ+ = ξ

w+ ∈ Ge(w)
η+ = η




 w ∈ De

ξ+ = ξ

w+ = w

η+ ∈ Gc(η, y, r)




 (η, y, r) ∈ Dc

(19)

with y = hp(ξ) and r = he(w). Note that the flow set
for Hcl is given by the intersection of the flow sets of Hp,
Hc, and He, while the jump set is given by the union of the
individual jump sets. In this way, flows are enabled when all
of the flow conditions are satisfied while jumps are enabled
when any of the individual jump conditions hold.

With the above definitions, given a hybrid plant Hp and
a hybrid exosystem He, a general tracking control problem
consists of designing the controller’s data

(Cc, fc, Dc, Gc, κc)

such that the set

{x : hp(ξ) = he(w) }

is both stable and attractive. In this paper, we consider the
case when the function hp is the identity, that is, the en-
tire state of the plant is available for control. In this case,
np = sp = se and the reference signals are state trajecto-
ries. We insist on rendering the said set uniformly globally
asymptotically stable. More precisely, we focus on the fol-
lowing problem:

A State Trajectory Tracking Control Problem (⋆):
Given a hybrid plant Hp and a hybrid exosystem He gen-
erating the reference trajectories to track design the data
(Cc, fc, Dc, Gc, κc) of the controller Hc such that the set

{x : ξ = he(w) } (20)

is uniformly globally asymptotically stable.

Remark 4.1. The attractivity property of the set (20) in
Problem (⋆) implies that each solution to Hcl satisfies

lim
t+j→∞

|ξ(t, j)− r(t, j)| = 0.

Moreover, it implies that solutions to the plant with initial
conditions ξ(0, 0) = w(0, 0), if they exist, satisfy

ξ(t, j) = r(t, j) for all (t, j) ∈ dom ξ.

Note that even after intersecting it with the region of oper-
ation of the closed-loop system, in general, the set (20) is
not necessarily bounded. The asymptotic stability property
required in Problem (⋆) implies completeness of solutions to
the closed-loop system, and hence, completeness of the ref-
erence trajectories generated by the hybrid exosystem.



5. A CLASS OF HYBRID CONTROLLERS
FOR TRACKING KNOWN REFERENCE
STATE TRAJECTORIES

5.1 Main Approach
The proposed approach consists of generating the refer-

ence trajectories via an exosystem and designing hybrid con-
trollers Hc that, with the knowledge of the reference trajec-
tories, guarantee that the jumps of the plant and of the ref-
erence trajectory happen simultaneously. For instance, for
the hybrid plant in (3) with data as in (10) and reference
trajectory r generated by (4), a controller Hc guaranteeing
that jumps of the plant and r occur simultaneously enforces,
in particular,

ξ(t, j) = 1 ⇐⇒ r(t, j) = 1,

(t, j) ∈ domx. In general, with a hybrid controller designed
so that the jumps of the plant and of the reference tra-
jectory happen simultaneously, the closed-loop system Hcl

becomes1

ξ̇ = fp(ξ, κc(η, ξ, he(w)))
ẇ = fe(w)
η̇ = fc(η, ξ, he(w))





(ξ, κc(η, ξ, he(w))) ∈ Cp

and w ∈ Ce

and (η, ξ, he(w)) ∈ Cc

ξ+ ∈ Gp(ξ, κc(η, ξ, he(w)))
w+ ∈ Ge(w)
η+ = η





(ξ, κc(η, ξ, he(w)))∈Dp

and w ∈ De

ξ+ = ξ

w+ = w

η+ ∈ Gc(η, ξ, he(w))



 (η, ξ, he(w)) ∈ Dc

(21)

We denote this closed-loop system as H⋆
cl. Its data is given

by

C := {x : (ξ, κc(η, ξ, he(w))) ∈ Cp,

w ∈ Ce, (η, ξ, he(w)) ∈ Cc},

f(x) :=




fp(ξ, κc(η, ξ, he(w)))

fe(w)
fc(η, ξ, he(w))



 ,

D := D1 ∪D2,

D1 := {x : (ξ, κc(η, ξ, he(w))) ∈ Dp, w ∈ De } ,
D2 := {x : (η, ξ, he(w)) ∈ Dc } ,

1Note that for such a hybrid controller, the jump conditions

(ξ, κc(η, ξ, he(w)))∈Dp

and

w ∈ De

are equivalent. For completeness, both conditions are in-
cluded in the closed-loop system (21).

G(x) :=






G1(x) :=




Gp(ξ, κc(η, ξ, he(w)))

Ge(w)
η





x ∈ D1 \D2,

G2(x) :=




ξ

w

Gc(η, ξ, he(w))


 x ∈ D2 \D1,

{G1(x),G2(x)} x ∈ D1 ∩D2.

Then, asymptotic stability of the set

A :=
{
x ∈ C ∪D : ξ = he(w)

}

can be established using the sufficient conditions in Theo-
rem 3.5 and Corollary 3.6. After more details on the hybrid
exosystem, these sufficient conditions applied to our track-
ing problem are presented in Section 5.3. A discussion on
conditions guaranteeing the simultaneous jump property as
well as properties involving the solution sets of He and H⋆

cl

are also given in Section 5.3.

5.2 Hybrid Exosystem
The data (Ce, fe, De, Ge, he) of the exosystem He in (17)

can be defined to generate the reference trajectories to be
tracked. For instance:

• The system in (4) generates a unique periodic sawtooth
reference signal that starts at w(0, 0) and oscillates be-
tween 0 and 1;

• The hybrid exosystem

ẇ1 = w2

ẇ2 = −γ

}
w1 ≥ 0

w+

1 = w1

w+

2 = −w2

}
w1 = 0, w2 ≤ 0

r = w1,

(22)

where γ > 0 is the gravity constant, generates a unique
periodic reference signal corresponding to the height of
a ball bouncing on the ground without energy dissipa-
tion at bounces.

Note that the solutions to He may not be unique, in par-
ticular, when capturing a family of reference signals. For
example, the hybrid exosystem

ẇ1 = 1
ẇ2 = 0

}
w1 ∈ [0,∆]

w+

1 = 0
w+

2 = 1− w2

}
w1 ∈ [δ,∆]

r = w2

(23)

with initial condition w1(0, 0) = 0, w2(0, 0) ∈ {0, 1} gener-
ates a family of square signals with semi-period taking value
in the set [δ,∆], where 0 < δ < ∆.

To guarantee that achieving completeness of the solutions
to the closed-loop system, which is required in Problem (⋆),
is not prevented by the hybrid exosystem itself, we impose
the following condition on He.

Assumption 5.1. Every maximal solution to He is com-
plete. The function he : Rne → R

np is continuous.

It is straightforward to check that the construction of the
hybrid exosystems in (4), (22), and (23) are such that As-
sumption 5.1 holds. In fact, completeness of the solutions to



these systems follows from [19, Proposition 2.4] since maxi-
mal solutions from Ce∪De are bounded and can either flow
for some finite time or jump and stay in it.

5.3 Characterization of Hybrid Controllers for
Reference Tracking

The data (Cc, fc, Dc, Gc, κc) of Hc is designed to guar-
antee the following three properties, which, when satisfied,
provide a solution to Problem (⋆).

5.3.1 Matching jumps of reference and plant
Motivated by the discussion in Section 2, the proposed

approach consists of designing a controller Hc that, with full
knowledge of the exosystem He, guarantees that the jumps
of the reference and of the plant occur simultaneously. As
pointed out in Section 5.1, for this property to hold, it is
required to have that the state is in De if and only if it is in
Dp when the plant is controlled by Hc, that is,

(ξ, κc(η, ξ, he(w)))∈Dp ⇐⇒ w ∈ De, (24)

and that from points in

Ce ∩De

or

{x : (ξ, κc(η, ξ, he(w))) ∈ Cp }∩

{x : (ξ, κc(η, ξ, he(w))) ∈ Dp } =: X̃p

only jumps are possible. The conditions insisting on hav-
ing jumps only from the intersection of the respective flow
and jump sets guarantee that from points in De and Dp,
respectively, only jumping is possible.

To illustrate the approach, consider the hybrid scalar plant
in (3) with sets given by (9). Let a static state-feedback con-
troller assign u1 = 1 and u2 = r(= w), which define the first
two components of the vector-valued function κc. Then, the
plant Hp under the effect of such a controller is given by

ξ̇ = 1 0 ≤ r ≤ 1
ξ+ = u3 r = 1.

Trivially, the jumps of the plant and of the exosystem (4)
occur simultaneously. Moreover, flows from points in

Ce ∩De = {w : w = 1 }

or

X̃p = {x : w = 1 }

are not possible since the respective flow maps point outward
the interior of these sets.

5.3.2 Preservation of reference trajectory
The interconnection between Hp, He, and Hc has to be

such that a hybrid arc w : domw → R
se is the component of

a solution of the interconnection if and only if it is a solution
to the hybrid exosystem He itself. This property will be
guaranteed when the plant dynamics are such that, due to
the action of the controller, the given reference trajectory is
induced in the plant. It amounts to guarantee the following
two conditions:

P1) For each initial condition

x(0, 0) = (ξ(0, 0), w(0, 0), η(0, 0))

and each solution

x = (ξ, w, η) ∈ SH⋆
cl
(x(0, 0))

we have that

w̃ ∈ SHe
(w(0, 0)),

where w̃ is the hybrid arc w without the jumps due
only to the controller, that is, given the w-component
of a solution x to SH⋆

cl
, w̃ is constructed from w by

removing the points w(t′, j′) such that x(t′, j′) ∈ D2 \
D1;

P2) For each initial condition w(0, 0) and each solution

w ∈ SHe
(w(0, 0))

we have that, for each ξ(0, 0) and η(0, 0),

x = (ξ, w′
, η) ∈ SH⋆

cl
(x(0, 0)),

where x(0, 0) = (ξ(0, 0), w(0, 0), η(0, 0)) and w′ is equal
to w when the jumps due only to the controller are
removed.

Conditions P1) and P2) establish an equivalence between
the solutions to H⋆

cl and He as they imply that the w-
components of the solutions to the closed-loop system H⋆

cl

are solutions to the exosystem He, and that every solution
to the exosystem is the w-component of a solution to the
closed-loop system (after appropriate matching of the jumps
potentially added by the controller).

5.3.3 Asymptotic Stability of Closed-loop System
The hybrid controller Hc will be designed to guarantee

that the closed set A is uniformly globally asymptotically
stable. Following Theorem 3.5, this property can be asserted
with a function V : Rnp × R

ne × R
nc → R that is continu-

ously differentiable on an open set containing C, functions
α1, α2 ∈ K∞, and a continuous positive definite function ρ

such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A)
∀x ∈ C ∪D ∪G(D);

(25)

〈∇V (x), f(x)〉 ≤ −ρ (|x|A)
∀x ∈ C;

(26)

V (g)− V (x) ≤ −ρ (|x|A)
∀x ∈ D1 \D2, g ∈ G1(x);

(27)

V (g)− V (x) ≤ −ρ (|x|A)
∀x ∈ D2 \D1, g ∈ G2(x);

(28)

V (g)− V (x) ≤ −ρ (|x|A)
∀x ∈ D1 ∩D2, g ∈ {G1(x),G2(x)}.

(29)

While the conditions above could have been expressed in
terms of the tracking error χ, it is rarely the case that its
dynamics can be written as a function of χ and η only – see
Section 2. The data of the hybrid controller has to be chosen
so that (25)-(29) hold. In particular, condition (26) depends
on fc, Cc and κc; (27) depends on κc; and (28) depends on
Gc and Dc.

The conditions above imply that solutions to the closed-
loop system are such that |x(t, j)|A → 0, that is, |ξ(t, j) −
he(w(t, j))| → 0. This includes all possible solutions gener-
ated by He. Furthermore, when combined with the condi-
tions in Section 5.3.2, it implies that ξ(t, j) = he(w(t, j)) on



the domain of definition of solutions starting from ξ(0, 0) =
he(w(0, 0)), that is, the controller induces the reference tra-
jectory as a solution to the plant.

The following theorem summarizes the result outlined
above.

Theorem 5.2. Let Assumption 5.1 hold and let the solu-
tions φe to He generate the reference trajectories to track.
If there exists a hybrid controller Hc guaranteeing that the
jumps of He and Hp occur simultaneously, and conditions
P1) and P2) hold, and if there exist a Lyapunov function
candidate V : Rnp × R

ne × R
nc → R for H⋆

cl with respect to

A =
{
x ∈ C ∪D : ξ = he(w)

}
,

functions α1, α2 ∈ K∞, and a positive definite and continu-
ous function ρ such that (25)-(29) hold, then A is uniformly
globally pre-asymptotically stable. Moreover, if the closed-
loop system is such that every maximal solution is complete
then Hc provides a solution to Problem (⋆).

Remark 5.3. The stability conditions in Theorem 5.2 can
be relaxed according to items A) and B) of Corollary 3.6.

6. EXAMPLES
Below we exercise the proposed techniques in academic

examples. For a first order hybrid plant, we consider the
problem of tracking a sawtooth signal and a square wave
signal, while, for a double-integrator system with impulsive
input, we consider the problem of tracking a triangular sig-
nal for the “position” state, which leads to tracking a square
wave for the “velocity” state. Due to the reference trajec-
tories having jumps, tools for tracking control design in the
literature are not applicable.

• First-order hybrid plant: Consider the system

ξ̇ = aξ + b+ u1 (ξ, u) ∈ Cp

ξ+ = c+ u3 (ξ, u) ∈ Dp
(30)

defining the hybrid plant to control, where a, b, c ∈ R, ξ ∈ R,
u = [u1 u2 u3]

⊤,

Cp = {(ξ, u) : 0 ≤ u2 ≤ 1 } , Dp = {(ξ, u) : u2 = 1 }

and the static controller Hc given by

u = κc(ξ, r) =



λ1 + λ2ξ + λ3r

r

λ4 + λ5ξ + λ6r


 . (31)

To track sawtooth reference trajectories generated by the
exosystem (4), let λ1 = 1 − b, λ2 < −a, λ3 = −a − λ2,
λ4 = −c, |λ5| ∈ (0, 1), and λ6 = −λ5. This static control
law forces the jumps of the plant when the reference jumps.
It results in a closed-loop system with state x := (ξ, w) and
dynamics

ξ̇ = (a+ λ2)ξ + b+ λ1 + λ3w

ẇ = 1

}
0 ≤ w ≤ 1 (32)

ξ+ = c+ λ4 + λ5ξ + λ6w

w+ = 0

}
w = 1. (33)

Assumption 5.1 holds. In fact, note that the jump map Ge

evaluated at De takes the state back to points in Ce from

where flow is possible until De is reached, which implies
completeness of maximal solutions to He. Furthermore, the
solutions to the closed-loop system (32),(33) are bounded.
Conditions P1) and P2) hold by inspection.

To show that the set

A =
{
(ξ, w) ∈ C ∪D : ξ = w

}

is uniformly globally asymptotically stable, take

V (x) =
1

2
(ξ − w)2,

which satisfies V (A) = 0, V ((C ∪ D) \ A) > 0. Note that
H⋆

cl has C = R × [0, 1], f given by the right-hand side of
(32), D = R × {1}, and g given by the right-hand side of
(33). Then, we have

〈∇V (x), f(x)〉 = −2λ3V (x) ∀x ∈ C (34)

and

V (g(x))− V (x) = −(1− λ
2
5)V (x) ∀x ∈ D. (35)

Since λ3 > 0 and |λ5| ∈ (0, 1), and the properties above,
Theorem 5.2 implies that A is uniformly globally asymptoti-
cally stable. Figure 4 depicts a simulation of the closed-loop
system with the proposed controller. Figure 4(a) shows a
plant trajectory converging to the reference asymptotically.
The tracking error decreases both during flows and jumps
as Figure 4(b) indicates.

0 1 2 3 4 5

0

0.5

1

1.5

ξ, r

t

(a)

0 1 2 3 4 5
−0.25

0

0.25

0.5

t

χ

(b)

Figure 4: Plant’s state ξ (solid) and reference trajec-
tory r (dashed) to the closed-loop system (32)-(33).
Initial conditions: ξ(0, 0) = 0.5, w(0, 0) = 0. Param-
eters: a = −1, b = 1

2
, c = 1, λ1 = λ2 = λ3 = λ5 = 1

2
,

λ4 = −1, and λ6 = − 1

2
. In (a), the state of the plant

is shown in solid lines and the reference trajectory is
shown in dotted lines. The tracking error converges
to zero asymptotically as (b) shows.

Now, for the same hybrid plant, consider the problem of
tracking square reference trajectories generated by the ex-
osystem

ẇ1 = 0
ẇ2 = 1

}
0 ≤ w2 ≤ T

w+

1 = −w1

w+

2 = 0

}
w2 = T

r = w1,

where w2 ∈ [0, T ] is a timer used to change the sign of the
discrete state w1 ∈ {−1, 1}. The timer w2 is reset when
reaches the parameter T > 0, which denotes the semi-period
of the square wave reference signal.



We consider the static controller in (31) with parameters
λ1 = −b, λ2 < −a, λ3 = −a−λ2, λ4 = −c, |λ5| ∈ (0, 1), and
λ6 = −λ5−1. This static control law forces the jumps of the
plant when the reference jumps, and results in a closed-loop
system with state x := (ξ, w) and dynamics given by

ξ̇ = (a+ λ2)ξ + b+ λ1 + λ3w1

ẇ1 = 0, ẇ2 = 1

}
0 ≤ w2 ≤ T (36)

ξ+ = c+ λ4 + λ5ξ + λ6w1

w+

1 = −w1, w+

2 = 0

}
w2 = T. (37)

As above, it can be shown that Assumption 5.1, conditions
P1)-P2) hold, and that every maximal solution to the closed-
loop system is bounded and complete.
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Figure 5: Plant’s state ξ (solid) and reference trajec-
tory r (dashed) to the closed-loop system (36)-(37).
Initial conditions: ξ(0, 0) = 0.5, w(0, 0) = (1, 0). Pa-
rameters: T = 1, a = 1, b = 1, c = 1, λ1 = −1, λ2 = −2,
λ3 = 1, λ4 = −1, λ5 = − 1

2
and λ6 = − 1

2
. In (a), the

state of the plant is shown in solid lines and the
reference trajectory is shown in dotted lines. The
tracking error converges to zero asymptotically as
(b) shows.

To prove that the set

A =
{
(ξ, w) ∈ C ∪D : ξ = w1

}

is uniformly globally asymptotically stable, consider the Lya-
punov function

V (x) =
1

2
(ξ − w1)

2
,

which satisfies the conditions V (A) = 0, V ((C∪D)\A) > 0.
Then, (34) and (35) hold with this Lyapunov function and
the resulting data of the closed-loop system. Then, Theo-
rem 5.2 implies that A is uniformly globally asymptotically
stable. Figure 5 depicts a simulation of the closed-loop sys-
tem with the proposed controller showing convergence of the
plant trajectory to the reference.

• Second-order impulsive plant: Consider the plant

ξ̇1 = ξ2, ξ̇2 = aξ1 + bξ2 + u1 (38)

where a, b ∈ R and the input u ∈ R has a Lebesgue integrable
part u1 and an impulsive part u2. This plant can be modeled
as a hybrid system with flows given by (38) and with jumps
governed by

ξ+1 = ξ1, ξ+2 = ξ2 + u2

at every time instant that the input u has an impulse. Sup-
pose that the goal is to have ξ = [ξ1 ξ2]

⊤ track the reference
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Figure 6: Plant’s state ξ (solid) and reference tra-
jectory r (dashed) to the closed-loop system (39)-
(40). Initial conditions: ξ(0, 0) = (0.5, 0.5), w(0, 0) =
(1,−1, 0). Parameters: T = 1, a = 1, b = 1, λ1 = −1,
λ2 = −2. The top graphs show the state of the plant
in solid lines and the reference trajectory in dotted
lines. The bottom graphs show the tracking error
converging to zero asymptotically.

signal r = [w1 w2]
⊤ generated by a hybrid exosystem

ẇ1 = w2, ẇ2 = 0,
ẇ3 = 1

}
w ∈ Ce := {w : 0 ≤ w3 ≤ T }

w+

1 = w1, w+

2 = −w2

w+

3 = 0

}
w ∈ De := {w : w3 = T } ,

which defines a triangular wave for w1 and a square wave
for w2 with semi-period T > 0. Consider the case when
the jumps of the plant are triggered by the jumps of the
exosystem and the controller is given by

u = κc(ξ, r) =

[
−aξ1 − bξ2 + λ1(ξ1 − r1) + λ2(ξ2 − r2)

−2r2

]
,

where λ1, λ2 ∈ R. To stabilize the set

A =
{
(ξ, w) ∈ C ∪D : ξ = [w1 w2]

⊤
}
,

pick λ1 and λ2 so that

[
0 1
λ1 λ2

]
is Hurwitz. It is straight-

forward to show that for the resulting closed-loop system,
which is given by

ξ̇1 = ξ2

ξ̇2 = λ1(ξ1 − w1) + λ2(ξ2 −w2)
ẇ1 = w2, ẇ2 = 0, ẇ3 = 1



 0 ≤ w3 ≤ T (39)

ξ+1 = ξ1, ξ+1 = ξ2 − 2w2

w+

1 = w1, w+

2 = −w2, w+

3 = 0

}
w3 = T, (40)

we have that for

V (x) =
1

2

(
ξ −

[
w1

w2

])⊤

P

(
ξ −

[
w1

w2

])
,

P = P⊤ > 0, there exists Q > 0 such that, for all x ∈ C,

〈∇V (x), f(x)〉 = −

(
ξ −

[
w1

w2

])⊤

Q

(
ξ −

[
w1

w2

])
< 0

and V (g(x)) − V (x) = 0 for all x ∈ D. Then, using The-
orem 5.2 and Corollary 3.6, the set A is uniformly glob-
ally asymptotically stable. Plant trajectories showing that
asymptotic tracking is achieved are shown in Figure 6.



7. FINAL REMARKS
We stated a general tracking control problem for impul-

sive reference signals. For the full information case, sufficient
conditions useful for the design of tracking controllers were
proposed. These rely on an approach consisting of generat-
ing the reference trajectories via an exosystem and designing
a control algorithm that guarantees that jumps of the refer-
ence system and plant match. The sufficient conditions for
asymptotic stability were obtained from Lyapunov stability
theorems for time-invariant hybrid systems in [14].

The results in Section 5 are applicable to hybrid plants and
exosystems for which a (potentially hybrid) tracking con-
troller inducing simultaneous jumps can be designed. The
academic examples in Section 6 suggest that this is possible
when the control input enters through the flow and jump set.
The challenge in such cases is essentially to stabilize the re-
sulting error system, for which Lyapunov functions that are
function of the error seem suitable.

A more explicit (and tighter) set of conditions to those in
Section 5.3.1 can be derived. This is possible by writing (24)
as a set condition and by computing the sets of points from
where, under the effect of the controller, flows of Hp and
He are possible, and then insisting on these to be disjoint
from the respective jump sets. These conditions will involve
the given data of Hp and He, and of Hc, which is to be
determined, in particular, the tangent cones of the flow sets.

The obtained results are an initial step in solving the
tracking control problem for general hybrid systems. The
authors hope that the difficulties to tracking control design
for hybrid systems pointed out in this paper will spark in-
terest in the hybrid systems community and lead to general
design methods.
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