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Abstract— For a class of nonlinear systems affine in controls
and with unknown high frequency gain, we develop a hybrid
control strategy that guarantees (practical) global input-to-state
stability (ISS) with respect to measurement noise. We provide
a design procedure for the hybrid controller and apply it to
Freeman’s counterexample and minimum-phase relative degree
one systems.

I. INTRODUCTION

The problem of designing feedback controls for nonlinear
systems to guarantee bounded states when errors in measure-
ments are present is relevant in most industrial applications
since measurements are taken from sensors that are always
corrupted by noise. It is desirable that the feedback law de-
signed for the nominal nonlinear system confers some degree
of robustness to the closed-loop system in the presence of
measurement noise. More precisely, for the nonlinear system

ẋ = f(x, u) (1)

the problem of robust stabilization under measurement noise
consists of finding a feedback law κ so that the trajectories of
the closed-loop system ẋ = f(x, κ(x+e)) remain bounded
for bounded measurement noise e.

An alternative weaker property is when for each compact
set there exists a positive number such that the trajectories
starting from that compact set remain bounded as long as
the measurement noise is bounded by that number. This
property comes for free when f and κ are continuous as
can be shown using Kurzweil’s converse Lyapunov theorem
[10] and techniques in [18]. It can also be induced for any
asymptotically controllable system by means of sampling
and hold (possibly discontinuous) feedback; see for example
[19]. Such feedback laws are nonstandard sample-and-hold
strategies and are a special case of hybrid control laws
with continuous and discrete dynamics. The control of
nonlinear systems by hybrid controllers (controllers with
both continuous and discrete dynamics) with the objective
of enhancing the robustness properties has been recently
addressed in the literature. In [13], the authors propose a
hybrid control strategy for the so-called Artstein’s circles
example that renders the closed-loop system stable and
robust to measurement noise when an explicit bound for the
measurement noise is available. Prieur and Astolfi in [14]
show that global robustness to small enough measurement
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noise, actuator noises, and exogenous disturbances for non-
holonomic chained systems can be obtained by means of a
hybrid controller. Related to this is the work by Liberzon
[11] where a hybrid controller is proposed for systems with
quantized measurements of the state.

When the measurement noise e is not sufficiently small
(bounded with unknown bound), it is usually required for
the closed-loop trajectories to satisfy a bound that depends
on the initial conditions and on the size of the measurement
noise e, an input-to-state stability (ISS) property [16] with
respect to e. Unfortunately, the existence of a continuous
globally stabilizing feedback for the nominal system (1) does
not imply global input-to-state stabilizability with respect
to measurement noise using the same kind of feedback.
Freeman in [5] constructed a nonlinear system that admits
a continuous, time-invariant, memoryless globally stabilizing
feedback law, but for which no feedback law of that type can
prevent finite escape time for arbitrarily small e. Further work
by Freeman [6] and Fah [4] show that time-varying feedback
laws give the ISS property for feedback passive systems and
one-dimensional affine systems, respectively, with unknown
high frequency gain. Alternative to the Nussbaum gain
approach in [12], switching strategies for linear systems
with unknown high frequency gain under linearly bounded
perturbations has been studied in the literature, see Ilchman
and Owens [9] and the references therein.

In this paper, we take a hybrid control approach to the
problem of robust stabilization of nonlinear systems under
measurement noise. With the framework for hybrid systems
discussed in [7], [3], [8], we propose a hybrid controller
for single-input nonlinear systems affine in controls that
have a relative degree one output function with ISS inverse
dynamics and satisfy an additional growth condition with
respect to measurement noise. For the design of the con-
troller, no information about the bound on the measurement
noise is required. The main result we establish is that the
closed loop is practically input-to-state stable with respect to
measurement noise. This result covers, for example, systems
like the counterexample given by Freeman [5] and minimum-
phase relative degree one nonlinear systems.

II. PROBLEM DESCRIPTION

Consider the nonlinear system

ẋ = f(x, u)
y = x + e

(2)

where x is the state, u is the control input, and e is the
measurement noise. In general, it is desired that there exist
class-K∞ functions σ1, σ2, and σ3 such that for every initial



condition x0 = x(0) and every bounded signal e(·), the
trajectories of ẋ = f(x, κ(x + e)) satisfy

sup
t≥0

|x(t)| ≤ max

{

σ1(|x0|), σ2

(

sup
t≥0

|e(t)|
)}

lim sup
t→∞

|x(t)| ≤ σ3

(

lim sup
t→∞

|e(t)|
)

.

(3)

In words, it is desired that the trajectories do not grow more
than a number that is a function of the initial condition
and of the maximum value of the norm of the measurement
noise, and that they converge to a value that depends on the
asymptotic value of the measurement noise. For continuous-
time systems, it was shown in [17] that such a property is
equivalent to ISS with respect to measurement noise first
introduced by Sontag [16]. In [5], Freeman gave a two-
dimensional input-affine smoothly stabilizable example for
which no continuous state feedback law exists that induces
(3). This motivates considering hybrid feedback controllers.

For a family of nonlinear systems, we propose a novel
hybrid controller that practically achieves (3). Our hybrid
controller can be written in the following general form. The
continuous dynamics of the controller are

ẋc = Γ(y, xc, q)
q̇ = 0

}

when (ωc(xc), q) ∈ Cc

and the discrete dynamics are

x+
c = Gc(y, xc, q)

q+ = Q(y, xc, q)

}

when (ωc(xc), q) ∈ Dc,

where xc is the continuous state, q is the discrete state, y is
the measurement of the state, Cc and Dc are sets that define
when the controller evolves continuously (flows) and when
evolves discretely (jumps), respectively. The output of the
controller is the control input for the nonlinear system

u = κ(xc, q).

More specifically, the controller we propose consists of two
discrete modes q ∈ {−1, 1} and a control law κ with sign
determined by the sign of q. The function κ is designed so
that its magnitude grows as the norm of the measurement
of the state x grows. The basic idea behind our strategy
is that of switching q with the mapping q+ = −q when
the measurements are larger than an auxiliary state that
keeps track of the measurements at switching times. If the
measurement of the state is larger than twice the value of
the auxiliary state, then q is toggled. Since the measurement
noise is bounded, for sufficiently large value of the state x

and for some q, the control law is such that it causes the norm
of the trajectories of the closed-loop system to decrease. We
will show that this strategy is successful even for the case
when the high frequency gain is unknown.

We now introduce notation, the basic concepts, and the
framework for hybrid systems used throughout the paper.

III. PRELIMINARIES

In this paper we consider hybrid systems discussed by
the authors et al. in [7], [8] and later explored in [2], [15]
where converse Lyapunov results and invariance principles

were established. Below, for completeness, we summarize
this framework.

Solutions to hybrid systems, when they exist, can evolve
continuously (flow) and/or discretely (jump) depending on
the continuous and discrete dynamics and the sets where
those dynamics apply. We treat the number of jumps as
an independent variable j and we parameterize the state
by (t, j). A solution is a function defined on subsets of
R≥0 × N≥0 := [0,+∞) × {0, 1, 2, ...}. A subset D ⊂
R≥0 × N≥0 is a compact hybrid time domain if

D =

J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 . . . ≤
tJ . It is a hybrid time domain if for all (T, J) ∈ D,
D ∩ ([0, T ] × {0, 1, . . . J}) is a compact hybrid domain.
A hybrid arc (or hybrid trajectory) is a pair (x,dom x)
consisting of a hybrid time domain dom x and a function
x : dom x → R

n such that x(t, j) is absolutely continuous
in t for a fixed j and (t, j) ∈ dom x. We will not mention
dom x explicitly, and understand that with each hybrid arc
comes a hybrid time domain. A hybrid arc is said to be
complete if dom x is unbounded, Zeno if it is complete but
the projection of dom x onto R≥0 is bounded, and maximal
if there does not exist another hybrid arc x′ such that x is a
truncation of x′ to some proper subset of dom x′.

The state of a hybrid system is often given by a “contin-
uous” variable and a “discrete” one. We will not explicitly
distinguish between the two. The set of potential values of
the discrete variable, often consisting of descriptive elements
like “off” or “on”, can be identified with a subset of integers.
This leads to more compact notation.

A hybrid system H will be given on a state space O by
set-valued mappings F and G describing, respectively, the
continuous and the discrete dynamics, and sets C and D

where these dynamics may occur. For definition of solutions
and conditions that F,G,C,D need to satisfy for solutions
to exists consult [8]. Similarly, a hybrid arc x and a
measurement noise signal e are a solution pair (x, e) to the
hybrid system H if dom x = dom e and

(S1) For all j ∈ N and almost all t such that (t, j) ∈ dom x,
x(t, j) ∈ C, ẋ(t, j) ∈ F (x(t, j), e(t, j)) (4)

(S2) For all (t, j) ∈ dom x such that (t, j + 1) ∈ dom x,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j), e(t, j)). (5)

For solutions x(t, j) on the hybrid time domain dom x and
a compact hybrid time domain S := dom x ∩ [0, T ] ×
{0, 1, . . . , J}), (T, J) ∈ dom x, we define by |ω(x)|S∞ :=
sup(t,j)∈S ω(x(t, j)). We also define the norms

|x|∞ = sup
(t,j)∈dom x

|x(t, j)|, |x|a = lim sup
t+j→∞

|x(t, j)|,

where | · | denotes the Euclidean norm.
By input-to-state stability with respect to e for hybrid

systems we mean the following.
Definition 3.1: (ISS with respect to measurement noise)

A hybrid system H is input-to-state stable with respect to e



if there exist functions σ1, σ2, σ3 ∈ K∞ such that for each
x0 ∈ O, each solution pair (x, e) to H satisfies

|x|∞ ≤ max
{

σ1(|x0|), σ2(|e|∞)
}

, |x|a ≤ σ3 (|e|a) . ¥

Note that this property is the same as the one given in (3).
Equivalences between this ISS characterization and other
ISS characterization for hybrid systems are discussed in [1].
In this paper, we are interested in practical input-to-state
stability (pISS) for the family of hybrid systems Hk where
k is a parameter.

Definition 3.2: (pISS with respect to measurement noise)
The family of hybrid systems Hk is practically input-to-state
stable with respect to e if there exist functions σ1, σ2, σ3 ∈
K∞ such that for each ε > 0, each x0 ∈ O, there exists
k > 0 so that every solution pair (x, e) to Hk satisfies

|x|∞ ≤ max
{

σ1(|x0|), σ2(|e|∞), ε
}

|x|a ≤ max {σ3 (|e|a) , ε} ¥

IV. ROBUST HYBRID CONTROLLER

We consider nonlinear systems of the form

ẋ = f(x) + g(x)u
y = x + e

(6)

where x ∈ R
n is the state, u ∈ R is the control input,

f : R
n → R

n and g : R
n → R

n are continuous and f(0) =
0. The output y is the measurement of the state x in the
presence of the measurement noise e.

Assumption 4.1: For the system (6), suppose that there
exist locally Lipschitz functions h : R

n → R≥0 and
h1 : R

n → R; class-K∞ functions α, ρ1, ρ2, ρ3, ρ4; and
ω : R

n → R≥0 that satisfy
1) α(|x|) ≤ max {ω(x), |h1(x)|} for all x ∈ R

n;
2) |〈∇h1(x), g(x)〉| ≥ µ > 0 for almost all x ∈ R

n;
3) |h(x+ e)−|h1(x)|| ≤ max {ρ1(|e|), ρ2(ω(x))} for all

x, e ∈ R
n;

4) Every classical trajectory x of the system (6) starting
at x0 = x(0) ∈ R

n satisfies for all T ≥ 0

|ω(x)|T∞ ≤ max
{

ρ3(|x0|), ρ4(|h1(x)|T∞)
}

|ω(x)|a ≤ ρ4 (|h1(x)|a) ;

5) For some ε > 0, 14(1+ ε)ρ2 ◦ρ4(r) < r for all r > 0.

Remark 4.2: The second condition above guarantees that
the relative degree of the “output” function h1 is equal to one
and the fourth condition combined with the first condition
is a type of minimum phase condition with respect to the
“output” h1. The fifth condition is a small gain-type of
condition where the number “14” is somewhat arbitrary, as
the function ρ2 in the third condition can typically be scaled
arbitrarily. ¥

In this section, we first describe a hybrid controller that
renders the closed-loop system practically ISS with respect
to measurement noise. We provide a step-by-step procedure
for the construction of such controller and discuss the main
properties of the closed-loop system.

A. Hybrid Controller
The hybrid controller, denoted as Hk

c , consists of contin-
uous states z ∈ R, ξ ∈ R≥0, and τ ∈ R≥0, and a discrete
state q ∈ {−1, 1}. The state z asymptotically tracks a filtered
version of the measurement of the state h(x + e) while the
state ξ defines the threshold for |z| where transitions between
both discrete modes q = 1, q = −1 occur. The state τ is a
timer that is reset to zero after every jump and that enables
the jumps after it reaches a given nonzero threshold. The
output of the controller is given by

u = κ(|z|, q) := q
γ−1

x
(|z|)
µ

where γx ∈ K∞ is to be determined and the constant µ > 0
is defined in Assumption 4.1.2.

The continuous dynamics of the controller are given by

ż = − sign (z − h(x + e)) γ−1
z (|z − h(x + e)|)

ξ̇ = 0, τ̇ = −τ + τ∗, q̇ = 0,

where γz ∈ K∞ and τ∗ ∈ R>0 are design parameters. The
continuous evolution of the system will be effective when
(ξ, |z|) is in the set

C :=
{

(α, β) ∈ R
2
≥0

∣

∣

∣

α

2
≤ β ≤ 2α

}

or when (τ, |z|) is in the set

TC :=
{

(α, β) ∈ R
2
≥0 | α ≤ Tk(β)

}

where Tk : R≥0 → R>0 is a continuous, nonincreasing
function to be chosen. This function forces the closed-loop
solutions to flow for at least Tk(|z|) seconds after every jump.
The jump map for the controller is defined as follows. When
(ξ, |z|) satisfies |z| ≥ 2ξ, i.e. (ξ, |z|) belongs to the set

Du :=
{

(α, β) ∈ R
2
≥0 | β ≥ 2α

}

,

(τ, |z|) satisfies τ ≥ Tk(|z|), i.e. (τ, |z|) belongs to the set

TDu
:=

{

(α, β) ∈ R
2
≥0 | α ≥ Tk(β)

}

,

and (ξ, τ, |z|) 6∈ D◦ where

D◦ :=
{

(α, β, λ) ∈ R
3
≥0 | α = λ = 0, β ≥ Tk(0)

}

,

jumps will be enabled with mapping

z+ = h(x + e), ξ+ = |z|, τ+ = 0, q+ = −q.

This jump mapping resets the tracking state z to the current
measurement of the state x, updates the threshold to the
current value of |z| at the jump, resets the timer to zero, and
switches the control law. In the event that (ξ, |z|) satisfies
ξ
2 ≥ |z|, i.e. (ξ, |z|) belongs to the set

Dl :=
{

(α, β) ∈ R
2
≥0

∣

∣

∣

α

2
≥ β

}

,

(τ, |z|) satisfies τ ≥ Tk(|z|)
2 , i.e. (τ, |z|) belongs to the set

TDl
:=

{

(α, β) ∈ R
2
≥0

∣

∣

∣

∣

α ≥ Tk(β)

2

}

,

and (ξ, τ, |z|) 6∈ D◦, jumps will be enabled with mapping
equal to the one above except that the control law is not



switched, i.e. q+ = q. In the situation that (ξ, τ, |z|) ∈ D◦ a
jump will occur with jump mapping

z+ = h(x + e), ξ+ = |z|, τ+ = 0, q+ ∈ {−1, 1},
where the update law for q is set-valued, meaning that the
mode can choose to switch or not.

Summarizing, the controller Hk
c is given by

u = q
γ−1

x
(|z|)
µ

ż = − sign (z − h(x + e)) γ−1
z (|z − h(x + e)|)

ξ̇ = 0, τ̇ = −τ + τ∗, q̇ = 0

(7)

when (ξ, |z|) ∈ C or (τ, |z|) ∈ TC ,

z+ = h(x + e)
ξ+ = |z|
τ+ = 0
q+ = −q















when (ξ, |z|) ∈ Du

and (τ, |z|) ∈ TDu

and (ξ, τ, |z|) 6∈ D◦

(8)

z+ = h(x + e)
ξ+ = |z|
τ+ = 0
q+ = q















when (ξ, |z|) ∈ Dl

and (τ, |z|) ∈ TDl

and (ξ, τ, |z|) 6∈ D◦

(9)

z+ = h(x + e)
ξ+ = |z|
τ+ = 0
q+ ∈ {−1, 1}















when (ξ, τ, |z|) ∈ D◦ . (10)

B. Controller design
We present a procedure of finding functions γx, γz ∈ K∞,

Tk, and τ∗ that define the controller Hk
c .

Step 1 Find a function αx ∈ K∞ satisfying

|〈∇h1(x), f(x)〉| ≤ αx(|x|)
for almost all x ∈ R

n. This function exists since h1 is locally
Lipschitz, f is continuous, and f(0) = 0.

Step 2 Find a function γx ∈ K∞ satisfying

γ−1
x (r) > max {ρ8(4r), ρ6(4r)} for all r > 0,

where ρ6 = αx ◦ α−1, ρ8 = ρ6 ◦ ρ4.
Step 3 Find a function αz ∈ K∞ satisfying
∣

∣

∣

∣

〈∇|h1(x)|, f(x) + g(x)
γ−1

x (|h1(x)| + ζ)

µ
〉
∣

∣

∣

∣

≤ αz(max {|x|, |ζ|})
for almost all x ∈ R

n, ζ ∈ R. Since γ−1
x ∈ K∞; x 7→ |h1(x)|

is locally Lipschitz; f, g are continuous; and f(0) = 0; the
existence of αz is guaranteed.

Step 4 For ε > 0 given in Assumption 4.1.5, find a
function γz ∈ K∞ satisfying

γ−1
z

(

ε

1 + ε
r

)

> ρ7(r) for all r > 0,

where

ρ7(r) = max
{

αz ◦ α−1 ◦ ρ4(14r), αz ◦ α−1(14r), αz(r)
}

.

Step 5 Find a function αy ∈ K∞ and constant k1 ≥ 0
satisfying

|〈∇h1(x), g(x)〉| ≤ αy(|x|) + k1

for almost all x ∈ R
n. This function exists since h1 is locally

Lipschitz and g is continuous.
Step 6 Find a function γy ∈ K∞ satisfying

γ−1
y (r) > max {ρ12(r), ρ13(r)} for all r > 0,

where ρ12 = αy ◦ α−1, ρ13 = ρ12 ◦ ρ4.
Step 7 Pick k > 0 and find a continuous nonincreasing

function Tk : R≥0 → R>0 that is upper bounded by

T̃ (|r|) :=

{

max {T ′(k), T ′(|r|)} if |r| ≤ k

T ′(|r|) otherwise

where

T ′(|r|)= |r|
γ−1

x (k2|r|) + 1
µ

(

k1 + γ−1
y (k3|r|)

)

γ−1
x (k2|r|) + k

where k2 = 5 and k3 = 2. Note that in most cases γ−1
x and

γ−1
y grow faster than linear; in this case lim|r|→∞ Tk(|r|) =

0. Note that for small r, Tk(|r|) is bounded away from zero.
Step 8 Find τ∗ so that τ∗ ≥ Tk(|r|) for all r ∈ R≥0.

C. Analysis of the closed-loop system Hk
cl

The closed-loop (hybrid) system, denoted by Hk
cl, with

state χ := [x, z, ξ, τ, q]T in the state space O := R
n ×

R
3 × QO where QO := (−2, 0) ∪ (0, 2), has continuous

dynamics given by equations (6) and (7) when (ξ, |z|) ∈ C

or (τ, |z|) ∈ TC , and discrete dynamics as defined in (8)-
(10) with the addition of the jump mapping x+ = x.
For clarity in the exposition, the sets where the flows are
enabled (C, TC) and the sets where the jumps are enabled
(Du, TDu

, Dl, TDl
) are subsets of R

2
≥0 rather than of O, but

they can be easily rewritten as such. Moreover, since the
temporal regularization introduced by the function Tk in the
sets TC , TDu

, and TDl
forces the flows to occur after every

jump for Tk(|z|) > 0 seconds, bounded solutions to Hk
cl are

non-Zeno. We now state the main result.
Theorem 4.3: (pISS of Hk

cl) The family of hybrid systems
Hk

cl is practically input-to-state stable with respect to mea-
surement noise e, i.e. there exist functions σ1, σ2, σ3 ∈ K∞
such that for each ε > 0, each x0 ∈ O, there exists k > 0
so that every solution pair (χ, e) to Hk

cl satisfies

|χ|∞ ≤ max
{

σ1(|χ0|), σ2(|e|∞), ε
}

|χ|a ≤ max {σ3 (|e|a) , ε} . ¥

This theorem not only states that our hybrid control
strategy guarantees practical input-to-state stability with re-
spect to measurement noise without knowing explicit bounds
on its norm, but also establishes robustness with respect
to uncertainty in the high frequency gain of the system.
Moreover, note that the parameter k is a design parameter
that has to be chosen in Step 7 and it can be picked arbitrarily
small.

In the next section we illustrate by examples the applica-
bility of this hybrid controller followed by a sketch of the
proof of Theorem 4.3.



V. EXAMPLES

Example 5.1: (Freeman’s counterexample) We now con-
sider the example given by R. Freeman in [5] where the
author presents a single-input second order nonlinear system
affine in controls that admits a continuous, time-invariant,
memoryless globally stabilizing feedback law, but it is the
case that no feedback law of the same type can prevent
the state of the system from remaining far away from its
equilibrium point for arbitrarily small measurement noise.
Freeman’s system is given by

ẋ = f(x) + g(x)u :=
(

I + 2Θ
(

π
2

)

xxT
)

Θ(xT x)
([

−1 0
0 xT x

]

Θ(−xT x)x +

[

0
1

]

u

)

, y = x + e
(11)

where x := [x1, x2]
T ∈ R

2 is the state, Θ(θ) =
[

cos θ − sin θ

sin θ cos θ

]

, and e is the measurement noise.

For this system, we design the hybrid controller Hk
c

presented in Section IV-B. Such a controller renders the
closed loop pISS with respect to e. To the best of our
knowledge, no other controller that bestows such property
for Freeman’s counterexample has been proposed before.

We proceed as in [5] and perform the change of co-
ordinates η(x) = Θ(−xT x)x where x 7→ Θ(−xT x)x is
a diffeomorphism with the properties η(x)T η(x) = xT x

and x = Θ(η(x)T η(x))η(x). Thus, the system (11) can be
written in η(x) := [η1(x) η2(x)]T coordinates as

η̇(x) =

[

−η1(x)
(η1(x)2 + η2(x)2)η2(x) + u

]

.

We now check that Assumption 4.1 is satisfied. Let h(x) =
|η(x)|, h1(x) = η2(x), α(r) = 1√

2
r, ρ1(r) = ρ2(r) = 2r,

ρ3(r) = |η1(r)|, ρ4 ≡ 0, ω(x) = |η1(x)|, and µ = 1. Then
1) α(|x|) = 1√

2
|x| ≤ max {|η1(x)|, |η2(x)|} =

max {ω(x), |h1(x)|} for all x ∈ R
n;

2) |〈∇h1(x), g(x)〉| = 1 for all x ∈ R
n;

3) |h(x + e) − |h1(x)|| = ||x + e| − |η2(x)|| ≤ ||η(x)| +
|e| − |η2(x)|| ≤ |η1(x)| + |e| ≤ 2max {|e|, |η1(x)|} =
max {ρ1(|e|), ρ2(ω(x))} for all x, e ∈ R

n;
4) For every trajectory x of the system (11) starting at

x0 = x(t0) ∈ R
n, |ω(x)|∞ = |η1(x)|∞ ≤ |η1(x

0)| =
max

{

ρ3(|x0|), ρ4(|h1(x)|∞)
}

for all t ≥ t0 and
lim supt→∞ |ω(x(t))| = 0;

5) For every ε > 0, 14(1+ ε)ρ2 ◦ρ4(r) = 0 < r ∀r > 0.
Since Assumption 4.1 is satisfied, we proceed to design the
hybrid controller following the steps given in Section IV-B.

Step 1: From the definitions of h1 and f

|〈∇h1(x), f(x)〉| = |(η1(x)2 + η2(x)2)η2(x)| ≤ |x|3

for almost all x. Then, we choose αx(r) = r3.
Step 2: Since α−1(r) =

√
2r and

ρ6(r) = αx ◦ α−1(r) = 2
√

2r3, ρ8 = ρ6 ◦ ρ4 ≡ 0

we have that max {ρ8(r), ρ6(r)} = 128
√

2r3. Then we

choose γx(r) =
(

1
kx

r
)

1

3 where kx > 128
√

2.
Step 3: The following holds

|〈∇|h1(x)|, f(x) + g(x)γ−1
x (|h1(x)| + ζ)〉|

≤ |(η1(x)2 + η2(x)2)η2(x)| + kx|η(x)|3

≤ (1 + kx) |x|3 + kx|ζ|3 ≤ 2 (1 + kx) max {|x|, |ζ|}3

for almost all x. Then, we pick αz(r) = 2 (1 + kx) r3.
Step 4: First compute ρ7

ρ7(r) = max
{

αz ◦ α−1 ◦ ρ4(14r), αz ◦ α−1(14r), αz(r)
}

= 2(1 + kx)(14
√

2)3r3.

Then, γz must satisfy γ−1
z (r) > 2(1 + kx)(14)3 (1+ε)3

ε3
r3.

Then, we design γz to be γz(r) =
(

1
kz

r
)

1

3 for kz > 2(1 +

kx)(14)3 (1+ε)3

ε3
.

Step 5: By Assumption 4.1.2, |〈∇h1(x), g(x)〉| = 1 for
almost all x ∈ R

n. Then αy ≡ 0 and k1 = 1.
Step 6: Since αy ≡ 0, then ρ12 ≡ ρ13 ≡ 0. Then γy ≡ 0.
Step 7: From the previous steps we get

T ′(|r|) =
|r|

(kxk2
2 + k1kxk3

3)|r|3 + k

where kx > 128
√

2, k > 0, k1 = 1, k2 = 5, k3 = 2. For a
given k > 0, T̃ (|r|) is given by

T̃ (|r|) :=

{

max {T ′(k), T ′(|r|)} if |r| ≤ k

T ′(|r|) otherwise

A continuous nonincreasing function Tk that is up-
per bounded by T̃ (|r|) is obtained as Tk(|r|) =
minv∈[0,|r|] T̃ (v).

Step 8: Pick τ∗ = maxv∈[0,k] {T ′(k), T ′(v)}.
Then, the hybrid controller Hk

c is completely designed. We
implement the closed-loop system in Simulink with param-
eters kx = 128

√
2, kz = 3 · 106, ε = 1000, k = 1, and τ∗ =

0.02. We present a simulation of the closed-loop system for
initial condition [x0, z0, ξ0, τ0, q0]T = [[2, 0.1], 0, 1, 0,−1]T .
The noise has normal distribution with variance σ = 0.001.
We plot h(x+e) = |x+e|, ξ, and the set C in the (ξ, h(x+e))
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Fig. 1. Closed-loop solution starts at (1, 2) and approaches the dotted box.
plane since it is easy to visualize the evolution of the
solutions. Since ξ is constant during flows and changes only
on jumps, vertical lines describe the flows while horizontal



lines describe jumps. Once the trajectory has reached the
dotted box, it stays jumping and evolving around it due to
the measurement noise. Note that every time that the solution
leaves the set C, flows are still enabled due to the temporal
regularization. ¥

Example 5.2: (minimum-phase, rel. degree one system)
Given the system

ẋ = f(x) + g(x)u :=

[

f0(x)
f1(x) + g1(x)u

]

y = x2 + e

where x := [x1, x2]
T ∈ R

n; f0 : R
n → R

n−1; f1 : R
n → R;

f is locally Lipschitz continuous and f(0) = 0; g1 : R
n → R

is continuous and |g1(x)| ≥ µ > 0 for all x ∈ R
n; the

system ẋ1 = f0(x) is input-to-state stable with respect to
x2, i.e. given ρ3, ρ4 ∈ K∞, for every x0

1 ∈ R
n−1 and every

x2(·)
|x1|S∞ ≤ max

{

ρ3(|x0
1|), ρ4(|x2|S∞)

}

lim sup
t→∞

|x1(t)| ≤ ρ4

(

lim sup
t→∞

|x2(t)|
)

;

u is the control input; and e is the measurement noise.
Let h(x) = |x2|; h1(x) = x2; α(r) = 1√

2
r; ρ1(r) = r;

ρ2 ≡ 0; ω(x) = |x1|; and ρ3, ρ4 satisfy the ISS condition
above. Assumptions 4.1.1, 4.1.3, and 4.1.5 can be checked as
in Example 5.1. Assumption 4.1.2 is satisfied since |g1(x)| ≥
µ > 0, and Assumption 4.1.4 holds since the system ẋ1 =
f0(x) is ISS with respect to x2. The design of the hybrid
controller closely follows Step 1 - 8 as in Example 5.1. ¥

VI. SKETCH OF THE PROOF OF THEOREM 4.3
Let χ be a maximal solution to Hk

cl and note that any
truncation to a compact hybrid time domain S := dom χ ∩
[0, T ] × {0, . . . , J}, (T, J) ∈ dom χ, is bounded. There-
fore, any signal of the closed-loop system Hk

cl restricted
to S is bounded. Define c1 := |〈∇h1(x), f(x)〉|S∞, c2 :=

|z − |h1(x)||S∞, and c3 := 1
µ
|〈∇h1(x), g(x)〉|S∞−1. Observe

that with this definition, |z| ∈ |h1(x)| + c2B on S, where B

denotes the unit ball in R. Then, the properties of the function
h1 let us rewrite the dynamics of h1(x) on S as follows

ḣ1(x) ∈ c1B + qΩγ−1
x ((|h1(x)| + c2B) ∩ R≥0)

where Ω is a compact connected subset of Ω− ∪ Ω+ where
Ω− := [−1 − c3,−1] and Ω+ := [1, 1 + c3]. Similarly, the
continuous and discrete dynamics of the other states can be
derived as function of c2. The closed-loop system Hk

cl can
be rewritten with these dynamics that are enabled on sets
that depend on c2 as well. It turns out that the solutions
to the truncated closed loop can be easily studied in the
(ξ, |h1(x)|) plane since during flows ξ remains constant and
the trajectories |h1(x)| are vertical lines, and at jumps ξ is
mapped to a point in |h1(x)| + c2B and |h1(x)| remains
constant. It can be shown that |χ|S∞ is upper-bounded by a
class-K∞ function that depends on the initial state, c1, c2,
and k. Using inequalities in Step 1 - 8 of the controller design
procedure, the bound on |χ|S∞ depends only on |χ0|, the size
of the measurement noise, and k. Assuming that the noise is

bounded, the bound on |χ|S∞ can be extended to the entire
domain of χ. By Proposition 2.1 in [8], χ being maximal and
bounded implies that it is also complete. Then |χ|a is well-
defined and using again the design procedure, it is bounded
by a class-K∞ function that depends on |e|a and k. ¥

VII. CONCLUSIONS

We presented a novel hybrid control strategy that can be
applied to a large class of nonlinear systems affine in controls
and with unknown high frequency gain. The main property
that our controller achieves is practical input-to-state stability
with respect to measurement noise of the closed-loop hybrid
system. The design of our controller does not require the
knowledge of explicit bounds on the measurement noise.
Our controller is of high-gain type which is common in the
control of minimum phase system with limited information
of the system. By examples, we have shown the methodology
for the design of the hybrid controller and provided simu-
lations results. A version of this paper with detailed proofs
and the simulation files for Example 5.1 can be found at the
first author’s website.
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