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Abstract—It is well known that controlling the attitude of a
rigid body is subject to topological constraints. We illustrate,
with examples, the problems that arise when using continuous
and (memoryless) discontinuous quaternion-based state-feedback
control laws for global attitude stabilization. We propose a
quaternion-based hybrid feedback scheme that solves the global
attitude tracking problem in three scenarios: full state mea-
surements, only measurements of attitude, and measurements
of attitude with angular velocity measurements corrupted by
a constant bias. In each case, the hybrid feedback isdynamic
and incorporates hysteresis-based switching using a single binary
logic variable for each quaternion error state. When only
attitude measurements are available or the angular rate is
corrupted by a constant bias, the proposed controller is observer-
based and incorporates an additional quaternion filter and
bias observer. The hysteresis mechanism enables the proposed
scheme to simultaneously avoid the “unwinding phenomenon”
and sensitivity to arbitrarily small measurement noise that is
present in discontinuous feedbacks. These properties are shown
using a general framework for hybrid systems and the results
are demonstrated by simulation.

I. I NTRODUCTION

A. Motivation and Background

Achieving robust global asymptotic stability of the attitude
of a rigid body is rife with topological difficulty stemming
from the very structure of the rigid body state space: the
special orthogonal group of order three, denotedSO(3). In
particular,SO(3) is not a vector space–it is a boundaryless
compact manifold, which, as a result of degree theory, implies
that it does not have the topological property of contractibil-
ity [1, Ex. 2.4.6]. Furthermore, the basin of attraction of
an asymptotically stable equilibrium point of a differential
equation with a locally Lipschitz right-hand side is necessarily
contractible [2] and in fact, homeomorphic to some Euclidean
space [3, Theorem V.3.4]. SinceSO(3) is not diffeomorphic
to any Euclidean space (it is not contractible), it isimpossible
for any continuous state-feedback control law to render some
equilibrium point of SO(3) (or its tangent bundle) globally
asymptotically stable [4]. In fact, [5] points out that any
smooth vector field onSO(3) with an attracting equilibrium
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point must have at least one other equilibrium point that is
unstable.

Continuous state-feedback control laws onSO(3) are at
mostalmostglobally stabilizing, where the basin of attraction
necessarily excludes a nowhere dense set of zero Lebesgue
measure. For instance, the controllers proposed in [6]–[8]
vanish at attitudes that are180◦ from the desired attitude
about the principal axes of the rigid body when the angular
velocity is zero, creating three saddle equilibria (or, in the case
of [9], an unstable connected 2-D manifold) and one almost
globally asymptotically stable equilibrium. Thereducedatti-
tude stabilization problem has similar issues as its dynamics
evolve onS2, the unit 2-sphere, which is also compact and
boundaryless. Indeed, the smooth controller proposed in [8]
is almostglobally stabilizing. A similar nonsmooth controller
proposed in [10] makes for a simple description of the basin
of attraction, but is undefined at some attitudes and results
in an unbounded feedback. These topological issues arise in
other applications involving rotational degrees of freedom,
like pendulum systems [11], robotic manipulators [12], and
gimbal-pointing mechanisms (e.g. a pan-tilt camera) [13],
among others (see [4, Table 1] for several examples).

Rigid-body attitude is often parametrized to exploit redun-
dancies in the rotation-matrix description ofSO(3); however,
certain parametrizations face further topological difficulties.
As pointed out in [14], no three-parameter parametrization
of SO(3) is globally nonsingular (i.e., the map from rep-
resentation coordinates toSO(3) is not everywhere a local
diffeomorphism). This creates an inherent obstacle in achiev-
ing global asymptotic stability using control methods based
on Euler angles (e.g. pitch, roll, yaw), (modified) Rodrigues
parameters, and exponential coordinates, among others.

Pursuing a globally nonsingular parametrization, many au-
thors (as well as the authors of this paper) employ unit quater-
nions, which evolve on the three-dimensional unit sphere,
denotedS3. Because there are exactly two antipodal unit
quaternions corresponding to the same attitude inSO(3), the
attitude-control objective inS3 is to stabilize thedisconnected
set of quaternions representing the same physical attitude.
When this double-covering is neglected (e.g., in [15]–[20]),
the resulting controller can induceunwinding, causing the rigid
body to unnecessarily make a full rotation [4], [15]–[17].

The problem of robustly and globally asymptotically sta-
bilizing a disconnectedset of points has its own topological
issues. In fact, [21] shows that it is impossible to accomplish
this task with a (memoryless) discontinuous state-feedback in
a way that is robust to measurement noise. We show here
that when discontinuous control (e.g. [22]–[25]) is used in
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an attempt to break the topological constraints for global
stabilization onSO(3), the introduction of arbitrarily small
measurement noise can destroy any global attractivity property.
This is a common problem for topologically constrained
control problems and has been investigated in [21], [26], for
example. A classic example where dynamics constrain the
state to move along circles inR2 is provided in [27] (discussed
again in [28]), which suffers similar issues.

B. Contributions

In this paper, we propose a quaternion-based hybrid feed-
back that breaks the topological obstructions to global asymp-
totic stability on SO(3) and concurrently defeats problems
induced by measurement noise. The proposed scheme is
applicable to any quaternion-based attitude control problem
and we apply it to three attitude tracking scenarios: full
state measurements, only attitude measurements, and full state
measurements where the angular velocity measurement is
corrupted by an unknown constant bias. In each case, the
hybrid controller maintains a single binary logic variable
per quaternion state to implement hysteresis-based switching
of control laws. When the latter two cases are addressed,
the hybrid controller incorporates an additional quaternion
filter and bias estimate. The price to pay for robust global
asymptotic stabilization with the proposed scheme is a small
region in the state space where the hybrid control law pulls
the rigid body in the direction of a longer rotation, though the
amount is controlled by a user-defined hysteresis width that
is usually selected to be commensurate with the anticipated
noise magnitude.

This paper is organized as follows. Section II gives a brief
review of attitude representations, unit-quaternion algebra, and
rigid body kinematics and dynamics. Section III discusses
how topological constraints arise when using quaternion-based
feedback. Section IV serves to derive the open-loop error
system and pose the tracking objective as a compact set
stabilization problem for an autonomous system. Section V
proposes hybrid control schemes for robust tracking in several
output feedback scenarios, and finally, Section VI shows a
simulation study where the proposed hybrid controller is com-
pared to its discontinuous and unwinding-inducing analogs.

II. R IGID BODY ATTITUDE: REPRESENTATION,
QUATERNION ALGEBRA AND DYNAMICS

The attitude of a rigid body is described by a3 × 3
rotation matrix. The set of3×3 rotation matrices with unitary
determinant is thespecial orthogonal groupof order three,

SO(3) = {R ∈ R
3×3 : R⊤R = RR⊤ = I, det R = 1}.

For anyx ∈ R
3, we let

S(x) =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 ,

so that for two vectorsx, y ∈ R
3, x × y = S(x)y, where×

denotes the vector cross product.

In this paper, the attitude of a rigid bodyR ∈ SO(3) will
denote a rotation of vector coordinates expressed in the body
frame to vector coordinates expressed in an inertial frame.Let
ω ∈ R

3 denote the angular velocity given in the body frame,
let J = J⊤ > 0 denote the inertia matrix of the rigid body,
and letτ denote a vector of external torques. Then, the rigid
body satisfies the kinematic and dynamic equations

Ṙ = RS(ω)

J ω̇ = S(Jω)ω + τ
(R,ω) ∈ SO(3) × R

3. (1)

Let the n-dimensional unit sphere embedded inR
n+1 be

denoted asSn = {x ∈ R
n+1 : x⊤x = 1}. Then an element

of SO(3) can be parametrized by a unit quaternion

q =
[
η ǫ⊤

]⊤ ∈ S3, (2)

through the Rodrigues formulaR : S3 → SO(3) defined as

R(q) = I + 2ηS(ǫ) + 2S(ǫ)2. (3)

We note that mappingR : S3 → SO(3) is everywhere a local
diffeomorphism, but globally two-to-one and satisfiesR(q) =
R(−q). For convenience, we may refer to a unit quaternion
as a pairq = (η, ǫ) rather than as a vector and we note that
η ∈ R and ǫ ∈ R

3 are commonly referred to as the “scalar”
and “vector” components ofq ∈ S3.

Multiplication between two quaternions,qi = (ηi, ǫi), i ∈
{1, 2}, is defined as

q1 ⊗ q2 =

[
η1η2 − ǫ⊤1 ǫ2

η1ǫ2 + η2ǫ1 + S(ǫ1)ǫ2

]
.

With the identity element1 = (1, 0), eachq = (η, ǫ) ∈ S3

has an inverse,q−1 = (η,−ǫ), so thatq−1⊗q = q⊗q−1 = 1.
Quaternion multiplication is analogous to multiplicationbe-
tween elements ofSO(3), in thatR(q1)R(q2) = R(q1 ⊗ q2).

When representingR with a unit quaternionq, we must
“lift” the kinematic equation (1) ontoS3. Suppose thatω :
R≥0 → R

3 is measurable,R : R≥0 → SO(3) is absolutely
continuous and satisfies (1), and letν : R

3 → R
4 be defined

as the mapping
ν(x) =

[
0 x⊤

]⊤
.

Then, if for everyt ∈ R≥0 an absolutely continuous mapping
q : R≥0 → S3 satisfiesR(q(t)) = R(t), then q̇ satisfies

q̇ =

[
η̇
ǫ̇

]
=

1

2
q ⊗ ν(ω)=

1

2

[
−ǫ⊤

ηI + S(ǫ)

]
ω. (4)

From the path lifting property, we recall that such a trajectory
q is unique up to its initial condition (of which there are two
that satisfyR(q(0)) = R(0)) [29]. We refer the reader to [30]
for a more complete description of attitude representationand
rigid body dynamics, and to [31] for a wealth of information
about unit quaternions.

III. QUATERNION-BASED ATTITUDE CONTROL

To elucidate the topological issues discussed in Section I,we
consider the problem of designing a globally asymptotically
stabilizing control law for the identity element ofSO(3) with a
unit quaternion representation usingω as the control variable.
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One might see (1) as a singular perturbation of the kinematics
or as the start of a backstepping procedure (see e.g. [25],
[32]). The following discussion is of independent interestwhen
quaternion filters are used (as in [20], [23], as well as in this
paper) and also applies to designing a torque feedback, which
we consider in the sequel.

Our goal is to design a velocity feedback to stabilize
q = (η, ǫ) = ±1 = (±1, 0) for the system (4). Suppose one
overlooks the double-cover property indicated above and uses
the Lyapunov function (see, for example, [15]–[20], [33])

V̂1(q) = 2(1 − η) = (1 − η)2 + ǫ⊤ǫ. (5)

It is obvious thatV̂1(q) = 0 if and only if q = 1 and that
V̂1(S3 \ {1}) > 0. Note further that̂V1 achieves its maximum
over S3 at q = −1.

With the feedbackω = φ1(q) := −ǫ, we have
〈
∇V̂1(q),

1

2
q ⊗ ν(φ1(q))

〉
= −ǫ⊤ǫ,

which is negative for allq ∈ S3 \ {±1}. This particular
choice of feedback law generates two closed-loop equilibrium
points: q = −1 (unstable) andq = 1 (stable). Since both
+1 and−1 represent the same point inSO(3), the desired
attitude can be stable or unstable, depending on the controller’s
knowledge of the quaternion representation! Note that using
V̂1(−q) and the control lawφ1(−q) = ǫ has much the same
effect on stability by stabilizing−1 and destabilizing+1. This
point is illustrated in Fig. 1 and discussed further in [4], [15],
[16]. In particular, [4] discusses how this control law leads to
unwinding.

To avoid unwinding, one can employ the Lyapunov function

V̂2(q) = 1 − η2 = ǫ⊤ǫ = 1

4
trace(I −R(q)).

Clearly, V̂2 satisfiesV̂2(q) = 0 if and only if q = ±1 and
V̂2(S3 \ {±1}) > 0. Note thatV̂2(q) = V̂2(−q) and thatV̂2

achieves its maximum value on

M = {q ∈ S3 : η = 0},

which is the connected two-dimensional submanifold ofS3

corresponding to attitudes that are180◦ from the desired
attitude about some rotation axis. This choice of Lyapunov
function naturally leads to the control lawω = φ2(q) := −ηǫ.
Note thatφ2(−q) = φ2(q). With this control law, we have

〈
∇V̂2(q),

1

2
q ⊗ ν(φ2(q))

〉
= −η2ǫ⊤ǫ,

which is negative onS3 \ ({±1} ∪ M). Further analysis
shows thatM is a 2-D unstable invariant manifold, and that
{±1} is attractive fromS3 \M. Moreover, since the vector
field resulting fromφ2 vanishes onM, solutions can take an
arbitrarily long time to converge to±1 as initial conditions
are taken closer and closer toM.

To eliminate the undesired equilibrium manifoldM, some
authors (e.g. [15], [22]–[25], [34]) have used discontinuous
feedback motivated by the locally Lipschitz Lyapunov function

V̂3(q) = 2(1 − |η|), (6)

ǫ⊤ǫ

1

−1 10 η

ω(q) = − sgn(η)ǫ

ω(q) = −ǫ

Noise-induced chattering

Fig. 1. Quaternion-based attitude control: unwinding produced by continuous
control and non-robust global asymptotic stability produced by discontinuous
control. Arrows indicate the direction of rotation – towards η = 1 or η = −1.

which satisfieŝV3(±1) = 0 andV̂3(S3 \{±1}) > 0. Consider
the control law

ω = φ3(q) := − sgn(η)ǫ, where sgn(η) =

{
−1 η < 0

1 η ≥ 0.
(7)

It achieves global asymptotic stability of{±1} in the sense
of classical solutions to differential equations. However, this
stability property is not robust toarbitrarily small measure-
ment noise. In fact, [32] appeals to [21, Theorem 2.6] to
assert the existence of an arbitrarily small piecewise-constant
noise signal that, for initial conditions arbitrarily close to the
discontinuity, keeps the state near the discontinuity, (and away
from {±1}) for all time. Note that the discontinuity lies at
η = 0, which corresponds to attitudes that are a180◦ rotation
from the desired equilibrium.

This point can also be seen through the study of the
generalized solutions to the resulting discontinuous system
(see [35], [36]). With the control law (7), the closed-loop
system becomes

q̇ = 1

2
q ⊗ ν(− sgn(η)ǫ) =: fd(q) q ∈ S3. (8)

We use the following solution concept for solutions to (8).

Definition 3.1 (Carath́eodory Solutions):A Carath́eodory
solution to the systemẋ = f(x), x ∈ R

n, on an interval
I ⊂ R≥0 is an absolutely continuous functionx : I → R

n

that satisfiesẋ(t) = f(x(t)) for almost everyt ∈ I. Given a
measurable functione : I → R

n, a Carath́eodory solution to
the systemẋ = f(x + e) on I is a functionx : I → R

n that
satisfiesẋ(t) = f(x(t) + e(t)) for almost allt ∈ I.

The solution obtained by taking the limit of a sequence of
Carath́eodory solutions{xi}∞i=1 to ẋ = f(x + ei) with mea-
surable functions{ei}∞i=1 having the property that, for eacht,
limi→∞ ei(t) = 0 is called aHermes solutionto ẋ = f(x);
see [35]. The functionei plays the role of measurement noise.
As shown in [35, Corollary 5.6], whenf is locally bounded,
every Hermes solution to the systeṁx = f(x) is a solution
to its Krasovskii regularization [37].

The Krasovskii regularization of (8) is given as

q̇ ∈ f̄d(q) :=
⋂

δ>0

cofd((q + δB) ∩ S3) q ∈ S3,
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where co denotes the closed, convex hull. Let⇉ denote a
set-valued assignment and definêsgn : R ⇉ [−1, 1] as

ŝgn(s) =

{
sgn(s) |s| > 0

[−1, 1] s = 0.

Then, the regularized closed-loop system can be written as

q̇ ∈ 1

2
q ⊗ ν (−ŝgn(η)ǫ) q ∈ S3.

For everyq ∈ M, it follows that0 ∈ f̄d(q). Thus,M := {q ∈
S3 : η = 0} is an equilibrium set of the regularized system.
The equivalence between Krasovskii and Hermes solutions
indicates that when measurement noise is present, solutions to
the unregularized system can approximate such an equilibrium
solution.

Theorem 3.2: Letφ3(q) = − sgn(η)ǫ. Then, for eachα > 0
and eachq0 ∈ (M + αB) ∩ S3, there exist a measurable
function e : [0,∞) → αB and a Carath́eodory solutionq :
[0,∞) → S3 to q̇ = 1

2
q ⊗ ν (φ3(q + e)) satisfyingq(0) = q0

and q(t) ∈ (M + αB) ∩ S3 for all t ∈ [0,∞).

Proof: This result can be seen as a consequence of [35,
Corollary 5.6] or [21, Theorem 2.6]; however, we provide an
alternative proof by explicitly constructing a noise signal e.
Let α > 0 and definee to be the function of the statee =
(−α sgn(η), 0). Then, it follows that

q̇ =

{
1

2
q ⊗ ν(sgn(η)ǫ) 0 ≤ |η| ≤ α

1

2
q ⊗ ν(− sgn(η)ǫ) |η| > α.

Solutions to this system yield a measurable functione :
[0,∞) → αB. We defineV̂M(q) = η2, which has the property
that V̂M(S3 \M) > 0 and V̂M(M) = 0. It follows that, for
0 ≤ |η| ≤ α,

〈
∇V̂M(q), 1

2
q ⊗ ν(− sgn(η − α sgn(η))ǫ)

〉
= −|η|ǫ⊤ǫ.

Standard Lyapunov theory yields the desired result.
Interestingly, this result directly contradicts the assertion of
[24] that definingsgn without a zero value at zero, as we
have in (7), avoids the regularization-induced equilibrium.

While some might dismiss this development since the
regularization-induced equilibrium set has measure zero in
the space of unit quaternions, the fact remains that such
a discontinuous control produces global asymptotic stability
without robustness. One can imagine that oscillating noise
could, at the very least,degrade performance as a fickle
discontinuous feedback changes its “mind” on which way
to rotate. Referring to Fig. 1, one can visualize how noise
affecting the measurement ofη can cause chattering at the
discontinuity (η = 0). We now show how one can add
decisiveness with a hysteretic memory state encapsulated in
a hybrid feedback.

To solve the various issues in the control laws above, we
propose the strategy suggested in Figure 2: adynamicfeedback
that uses a memory state to select which pole ofS3 to
regulate in ahysteretic fashion. Let δ ∈ (0, 1) denote the
hysteresis half-width and letsgn : R ⇉ {−1, 1} be the outer

Hysteresis
region

ǫ⊤ǫ

1

h = 1h = −1

−1 10−δ δ η

Fig. 2. Hysteretic regulation of unit quaternions to the set{±1}. The
state space forη and ǫ⊤ǫ is represented by the semicircle. The value of
h determines ifq = (η, ǫ) should be regulated to1 or −1. The parameterδ
determines the hysteresis half-width.

semicontinuous set-valued map

sgn(s) =

{
sgn(s) |s| > 0

{−1, 1} s = 0.
(9)

Consider the feedbackω = φ4(q, h) = −hǫ, where h ∈
{−1, 1} and the dynamics ofh are

ḣ = 0 when (q, h) ∈ {hη ≥ −δ}
h+ ∈ sgn(η) when (q, h) ∈ {hη ≤ −δ},

whereh+ denotes the value of the logic variable after being
updated. This is a hybrid feedback in whichh selects the
desired rotation direction to moveq to either+1 or −1. The
inequalities dictating whetherh remains constant or changes
value are designed to switchh only when a “significant” sign
mismatch occurs betweenη and h. Note that whenhη ≥ 0,
the feedback−hǫ is pulling in the direction of the shortest
rotation to alignq with ±1. On the other hand, whenhη ≤ 0,
the feedback is pulling in the direction of a longer rotation.
Hence, the desired direction of rotation changes only when
there is a significant benefit in switching it, where “significant”
is defined precisely by the selection ofδ.

The hybrid feedbackφ4 generalizes the feedbacksφ1 and
φ3, as φ4(q, sgn(η)) = φ3(q) and φ4(q, h) = hφ1(q). The
hysteresis widthδ manages a trade-off between robustness to
measurement noise and a small amount of hysteresis-induced
inefficiency. Whenδ ≥ 1, the value of the logic variable
cannot change and our strategy reduces to a static feedback
that induces unwinding. Whenδ = 0, the resulting control
becomes discontinuous.

This similarity is also present in the Lyapunov analysis. For
notational convenience, we let

f(q, h) =

[
1

2
q ⊗ ν(φ4(q, h))

0

]
g(q, h) =

[
q

sgn(η)

]

Now, we consider the Lyapunov function

V̂4(q, h) = 2(1 − hη) = V̂1(hq),

which satisfieŝV4(q, h) = 0 if and only if q = h1, while it is
positive otherwise. Sinceh2 = 1, it follows that

〈
∇V̂4(q, h), f(q, h)

〉
= −ǫ⊤ǫ,

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: January 18, 2011 20:37:59 PST



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

which is negative wheneverhη ≥ −δ andq 6= h1. That is,V̂4

decreases along flows of the closed-loop system. Furthermore,
we have that

V̂4(g(q, h)) − V̂4(q, h) = 4hη,

which is negative wheneverhη ≤ −δ, that is, V̂4 decreases
over jumps of the closed-loop system. This analysis implies
that the compact and invariant setA = {(q, h) ∈ S3 ×
{−1, 1} : q = h1} is globally asymptotically stable for the
closed-loop system sincêV4 is strictly decreasing along all
trajectories, except of those starting fromA. Finally, we note
that the hysteresis makes the scenario described in Theorem
3.2 impossible. In the coming sections, we will find that these
ideas extend naturally to the dynamic setting whereω is a
state variable and torque is an input.

As a final remark, the correctness of any convergence or
stability result written for rigid body attitude control using
quaternions fundamentally depends on using a measurement
of q that satisfies the quaternion kinematic equation (4). Here,
we quote the seminal paper [16].

“In many quaternion extraction algorithms, the sign
of η is arbitrarily chosen positive. This approach is
not used here, instead, the sign ambiguity is resolved
by choosing the one that satisfies the associated
kinematic differential equation. In implementation,
this would probably imply keeping some immediate
past values of the quaternion.”

We note that additionally, such a discontinuous quaternion
selection method is inherently non-global, asη can easily
be zero (destroying a main purpose of quaternion use). In-
stead, as the quotation above suggests, properly implemented
quaternion-based control laws areinherently dynamicand
require an extra quaternion memory state to properly “extract”
the measurement ofq from a measurement ofR. We assume
that this mechanism is working in the background and omit it
from the analysis.

IV. T RACKING ERRORDYNAMICS

The tracking objective is to designτ so that R and ω
asymptotically track a desired bounded reference trajectory.
To pose this tracking problem in terms of a compact attractor
for an autonomous system, we utilize an exogenous system
to generate any useful reference trajectory. LetM > 0 and
Ω ⊂ R

3 be compact. Then, we generate such desired reference
trajectories with the system

Ṙd = RdS(ωd)

ω̇d ∈ MB

}
(Rd, ωd) ∈ SO(3) × Ω, (10)

where MB denotes the closed ball of radiusM . Since
0 ∈ MB, SO(3)× Ω is always viable (see [38]). Then, since
SO(3)×Ω is compact, every maximal solution (i.e., it is not
a proper truncation of another solution) to (10) is complete
(i.e., has an unbounded domain–see, e.g., [39, Proposition
2.4]). Additionally, any possible solution componentωd of
(10) is Lipschitz continuous with Lipschitz constantM , but
not necessarily differentiable. This formulation also allows
for non-periodicωd and includes the regulation problem as

well. We will assume thatω̇d can be measured. We note
that the inclusion formulation of the generator system (10)is
autonomous; hence, invariance principles for hybrid systems
can be used to assert convergence of solutions.

To express the difference between the reference trajectory,
(Rd, ωd), and the actual rigid body trajectory,(R,ω), we
employ a common coordinate transformation that resolves the
angular velocity error in the body frame (see [5], [7], [20],
[23], [40], [41]). In this direction, we define the attitude error
coordinatesR̄ = R⊤

d R ∈ SO(3). Using the property that
x 7→ S(x) is linear and that for everyx ∈ R

3 andR ∈ SO(3),
R⊤S(x)R = S(R⊤x), it follows that the attitude error system
evolves according to

˙̄R = R̄S(ω − R̄⊤ωd). (11)

We define
ω̄d = R̄⊤ωd, ω̄ = ω − ω̄d. (12)

Then, defining

Σ(ω̄, ω̄d) := S(J ω̄) + S(J ω̄d) − (S(ω̄d)J + J S(ω̄d)),

following [20], [23], [40], [41] yields the error dynamics

˙̄R = R̄S(ω̄)

J ˙̄ω = Σ(ω̄, ω̄d)ω̄ − S(ω̄d)J ω̄d − J R̄⊤ω̇d + τ
(13)

The salient features of this transformation are thatΣ(ω̄, ω̄d)
is skew symmetric for every value of its argument and that,
assuming the inertia matrixJ is known, S(ω̄d)J ω̄d and
J R̄⊤ω̇d can be inferred through measurement ofR.

The error system (13) can be expressed in terms of unit
quaternions as well. Lettingqd = (ηd, ǫd) ∈ S3 denote the
desired quaternion, wherėqd = 1

2
qd ⊗ ν(ωd), we define the

tracking error quaternion as̄q = q−1

d ⊗ q = (η̄, ǭ). Then, per-
forming the same coordinate transformation,ω̄d = R(q̄)⊤ωd,
it follows that

˙̄q = 1

2
q̄ ⊗ ν(ω̄). (14)

We define thefeedforwardtorque term as

τff (q̄, ω̄d, ω̇d) = JR(q̄)⊤ω̇d + S(ω̄d)J ω̄d. (15)

Finally, we letxp = (q, ω, qd, ωd), x̄p = (q̄, ω̄, qd, ωd), and
Xp = S3 × R

3 × S3 × Ω, so that, with this formulation,
the tracking objective is to robustly, globally asymptotically
stabilize the compact set

Ap = {x̄p ∈ Xp : R(q̄) = I, ω̄ = 0}
= {x̄p ∈ Xp : q̄ = ±1, ω̄ = 0} (16)

for the autonomous system

˙̄xp =




˙̄q
˙̄ω
q̇d

ω̇d


 ∈ Fp(x̄p, τ) :=




1

2
q̄ ⊗ ν(ω̄)

fω(x̄p, τ)
1

2
qd ⊗ ν(ωd)

MB


 x̄p ∈ Xp,

(17)
where

fω(x̄p, τ) = J−1 (Σ(ω̄, ω̄d)ω̄ − τff (q̄, ω̄d, ω̇d) + τ) .
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V. ATTITUDE TRACKING CONTROL

We now consider three attitude tracking control scenarios:

1) measurements ofq andω are available;
2) only measurements ofq are available;
3) measurements ofq andω + b are available, whereb is

an unknown constant bias.

Our solution to 1) is an extension of [32] and the hybrid
feedback of Section III to the tracking problem, for which we
employ the error coordinates of Section IV and feedforward
compensation. It uses a single binary logic variable as de-
scribed in Fig. 2 to achieve global asymptotic attitude tracking
that is robust to measurement noise.

To solve 2), we build on our solution to 1) by employing
the results of [20] that use an extra quaternion filter to provide
damping that would otherwise be accomplished by negative
feedback of angular-velocity error terms. In [20], a Lyapunov
function based on (5) is used for both the tracking error
quaternion and the extra quaternion filter state. We remove
the unwinding caused by this choice of Lyapunov function by
introducing another binary logic variable for the quaternion
filter and implementing the ideas in Fig. 2.

Finally, our solution to 3) uses the ideas of [23], which,
based on the observer design of [22], employ a coupled
quaternion filter similar to the one in [20] and a bias observer
to achieve asymptotic tracking. Unlike [20], the works [23]and
[22] use a Lyapunov function based on (6) and its resulting
non-robust discontinuous control to avoid unwinding. Here, we
directly build on our solution to 2) by adding a bias observer.
In fact, our solution to 2) can be seen as a special case of our
solution to 3) without the bias observer and extra feedback
term.

To summarize, our proposed controllers are dynamic and
employ hysteretically switched logic variables for each quater-
nion error state. The solutions to 2) and 3) employ an addi-
tional quaternion filter to achieve damping and the solution
to 3) uses an additional bias observer. We note that 2) has
been solved using a linear attitude filter in [19] and [42]. It
may be possible to extend these methods to solve 3). Because
the present paper is primarily concerned with the quaternion
representation, we have chosen to employ quaternion filters,
although the use of a linear filter would obviate the need for
an additional logic variable.

In what follows, we will make use of comparison functions
and a function that removes energy from the system. A
continuous functionγ : R≥0 → R≥0 is said to beclass-K
if γ(0) = 0 and it is strictly increasing. A continuous function
β : R≥0 → R≥0 is said to beclass-KL if for each fixed
r, the maps 7→ β(s, r) is class-K and if for each fixeds,
the mapr 7→ β(s, r) is decreasing andlimr→∞ β(s, r) = 0.
A continuous functionΦ : R

n → R
n is strongly passive

if there exist class-K functions γi, i ∈ {1, 2}, such that
γ1(‖ω‖) ≤ ω⊤Φ(ω) ≤ γ2(‖ω‖) for all ω ∈ R

n. Finally, we
work within the hybrid systems framework of [43] in which a
hybrid system is denoted asH = (F,G,C,D) and given by

H
{

ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D,

whereF : R
n

⇉ R
n is the flow mapgoverning continuous

evolution of the statex on theflow setC, while G : R
n

⇉ R
n

is the jump mapgoverning the discrete evolution of the state
on the jump setD. For details, see [39], [43].

In the following sections, we will make several divisions of
the state space by notation to precisely indicate where mea-
surement noise enters the closed-loop systems, As a notational
guide, a bar or tilde embellishment indicates an error state, a
numbered subscript indicates the problem number (e.g.i = 1:
full state measurements), ap subscript indicates the plant state,
a c subscript indicates the controller state, and a subscriptk
indicates the “known” states.

A. Full state measurements

We assume the output of the system (17) is given as

y1 = (q, ω). (18)

The proposed controller has a single state,h̄ ∈ {−1, 1}, so we
partition the state space as follows. We define the controller
state and state space asxc,1 := h̄ ∈ Xc,1 := {−1, 1}. For
consistency in indexing and notation throughout the following
sections, we letxp,1 := xp, x̄p,1 := x̄p, Xp,1 := Xp, x̄c,1 := h̄,
x1 := (xp,1, xc,1), x̄1 := (x̄p,1, x̄c,1), andX1 := Xp,1 × Xc,1.
Finally, we letxk,1 = (qd, ωd, xc,1).

The goal is to globally asymptotically stabilize the set

A1 =
{
x̄1 ∈ X1 : q̄ = h̄1, ω̄ = 0

}
. (19)

That is,q should be regulated tōhqd andω should be regulated
to ωd. Note thatProjXp

A1 = Ap, where ProjY X is the
projection of the setX onto the setY .

Given a gainc̄ > 0, a strongly passive functionΦ : R
3 →

R
3, andδ ∈ (0, 1), our hybrid controller is

˙̄h = 0 x̄1 ∈ C1 := {x̄1 ∈ X1 : h̄η̄ ≥ −δ}
h̄+ ∈ sgn(u1) x̄1 ∈ D1 := {x̄1 ∈ X1 : h̄η̄ ≤ −δ},

(20)

where the vector of inputsU1 = (τ, u1) is specified by defining

τfb,1(y1, xk,1) = −c̄h̄ǭ − Φ(ω̄), κ1(y1, xk,1) = η̄, (21)

and settingU1 = K1 = (τff + τfb,1, κ1).
The torque feedback termτfb,1 is quite similar to other

works. The “proportional” term−c̄h̄ǭ essentially implements a
spring force that pulls the rigid body along the axis of rotation.
As discussed in Section III,̄h determines the orientation
of the spring force and that because of the hysteresis, this
spring force may sometimes pull in the direction of the
longer rotation. Damping is provided by−Φ(ω̄). The whole
torque input is comprised of the feedback partτfb,1 and the
feedforward partτff,1, which is model dependent when either
ω̄d or ω̇d is nonzero.

B. Only attitude measurements available

Here, we assume the output of the system (17) is given as

y2 = q. (22)

We append two states to the hybrid controller outlined in
Section V-A: a quaternion filter state,̂q ∈ S3, and an
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accompanying hysteresis variable,h̃. The control law in this
instance is additionally parametrized by a gainc̃ > 0 and a
matrix gainK̃ = K̃⊤ > 0. The state and state space of the
controller isxc,2 = (xc,1, h̃, q̂) ∈ Xc,2 := Xc,1×{−1, 1}×S3.
The quaternion error between̂q and q̄ is

q̃ = q̂−1 ⊗ q̄. (23)

Now, we letxp,2 := xp,1, Xp,2 := Xp,1, x̄c,2 := (x̄c,1, h̃, q̃),
x2 := (xp,2, xc,2), x̄2 := (x̄p,2, x̄c,2), X2 = Xp,2 × Xc,2, and
finally, xk,2 = (qd, ωd, xc,2). Now, we can state the goal of
our proposed controller as globally asymptotically stabilizing
the compact set

A2 = {x̄2 ∈ X2 : x̄1 ∈ A1, q̃ = h̃1}. (24)

As before,h̃ decides to regulatêq to q̄ or −q̄ and we have
ProjXp

A2 = Ap, whereAp was defined in (16).
For this task, we propose the hybrid controller (again

expressed in terms of inputs)



˙̄h
˙̃
h
˙̂q


 =




0
0

1

2
q̂ ⊗ ν(u2)


 x̄2 ∈ C2 := {x̄2 ∈ X2 : h̄η̄ ≥ −δ

and h̃η̃ ≥ −δ}



h̄+

h̃+

q̂+


 ∈




sgn(u1)
sgn(u3)

q̂


 x̄2 ∈ D2 := {x̄2 ∈ X2 : h̄η̄ ≤ −δ

or h̃η̃ ≤ −δ},
(25)

where the vector of inputsU2 = (U1, u2, u3) is defined by

τfb,2(y2, xk,2) := −c̄h̄ǭ − c̃h̃ǫ̃ κ2(y2, xk,2) := h̃K̃ǫ̃

κ3(y2, xk,2) := η̃,
(26)

and settingU2 = K2 := (τff + τfb,2, κ1, κ2, κ3). Here,
much is the same as [20], where the extra quaternion filter
exploits passivity to introduce damping. The primary and
crucial difference between [20] and our approach above is our
addition of logic variables for each quaternion state.

Compared to the full state feedback controller of Sec-
tion V-A, the quaternion filter statêq and logic variableh̃
introduced in this design necessitates some additional structure
in the flow and jump sets. Conditions are included in the jump
and flow sets to updatẽh when there is a significant amount
of sign mismatch betweeñη and h̃, and otherwise, keep it
constant. Note that (25) guarantees that, wheneither jump
condition is met,both logic variables̄h and h̃ are reset to the
sign of their respectiveη’s.

C. Biased angular velocity measurements

In this section, we append a constant bias state,b ∈ Ω ⊂
R

3 to the plant:xp,3 := (xp,2, b) ∈ Xp,3 := Xp,2 × Ω with
dynamicsḃ = 0. We assume the output of (17) is given as

y3 = (q, ω + b). (27)

We append a bias observer state,b̂ ∈ R
3, to the controller

state asxc,3 := (xc,2, b̂) ∈ Xc,3 := Xc,2 × R
3. We define the

bias observer error as

b̃ = b̂ − b. (28)

Now, we let x̄c,3 := (x̄c,2, b̃), x3 := (xp,3, xc,3), x̄3 :=
(x̄p,3, x̄c,3), X3 = Xp,3 × Xc,3, and finally, xk,3 =
(qd, ωd, xc,3). Our goal is to stabilize the compact set

A3 = {x̄3 ∈ X3 : x̄2 ∈ A2, b̃ = 0}, (29)

which satisfiesProjXp
A3 = Ap.

Let ω̂ = ω + b − b̂ denote the estimate of the unbiased
angular velocity measurement. Then, for this task, we propose
the hybrid controller




˙̄h
˙̃
h
˙̂q
˙̂
b


 =




0
0

1

2
q̂ ⊗ ν(u2)

u4




x̄3 ∈ C3 := {x̄3 ∈ X3 : h̄η̄ ≥ −δ

and h̃η̃ ≥ −δ}




h̄+

h̃+

q̂+

b̂+


 ∈




sgn(u1)
sgn(u3)

q̂

b̂




x̄3 ∈ D3 := {x̄3 ∈ X3 : h̄η̄ ≤ −δ

or h̃η̃ ≤ −δ}

(30)
where the vector of inputsU3 = (U2, u4) is defined by

τfb,3(y3, xk,3) := −c̄h̄ǭ − c̃h̃ǫ̃ − Φ(ω̂ − ω̄d),

κ4(y3, xk,3) := Φ(ω̂ − ω̄d)
(31)

and settingU3 = K3 := (τff + τfb,3, κ1, κ2, κ3, κ4). Here,
the estimated value of̄ω is used in certainty equivalence
fashion. The termΦ(ω̂ − ω̄d) in κ4 acts to estimateb by
exploiting the passivity of feedback loops withb̃, ω̄ andq̃. The
addition of the bias state and its observer requires no additional
complexity in terms of logic variables (and accompanying flow
and jump conditions) over the output feedback case considered
in Section V-B. This is due to the fact that the bias and its
estimate evolve inR3, free of topological constraints.

D. Closed-loop error system and main results

In this section, we combine the results of previous sections
and prove global asymptotic stability ofAi for the ith closed-
loop error system,i ∈ {1, 2, 3}. Below, we show the open-loop
error system fori = 1, 2, 3 by displaying the evolution of all
error states with nontrivial dynamics (i.e.,ẋ 6= 0, x+ 6= x).
We slightly abuse notation to save space by writingx̄i ∈ Ci,
even when the states listed below may not belong to the state
space of whichCi is a closed subset. In terms of the input
vectorsUi, the error system is

˙̄q = 1

2
q̄ ⊗ ν(ω̄)

J ˙̄ω = Σ(ω̄, ω̄d)ω̄ − τff (q̄, ω̄d, ω̇d) + τ

q̇d = 1

2
qd ⊗ ν(ωd)

ω̇d ∈ MB

˙̃q = 1

2
q̃ ⊗ ν(ω̄ −R(q̃)⊤u2)

˙̃
b = u4︸ ︷︷ ︸

x̄i ∈ Ci

h̄+ ∈ sgn(u1)

h̃+ ∈ sgn(u3)︸ ︷︷ ︸
x̄i ∈ Di,

(32)
which we abbreviate as

Hi(Ui)

{
˙̄xi ∈ Fi(x̄i, Ui) x̄i ∈ Ci

x̄+

i ∈ Gi(x̄i, Ui) x̄i ∈ Di.
(33)
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We note that the evolution for̃b is calculated trivially from
the definition b̃ = b̂ − b and that the evolution for̃q can be
derived in much the same way asq̄ in (11), (12), and (14).

Closing the loop by settingUi = Ki(yi, xk,i, ω̇d), we have

˙̄xp ∈ Fp(x̄p, τff + τfb,i)

˙̃q = 1

2
q̃ ⊗ ν

(
ω̄ −R(q̃)⊤K̃ǫ̃

)

˙̃
b = Φ(ω̂ − ω̄d)︸ ︷︷ ︸

x̄i ∈ Ci

h̄+ ∈ sgn(η̄)

h̃+ ∈ sgn(η̃)
︸ ︷︷ ︸

x̄i ∈ Di

(34)
which we abbreviate by definingHi = (F i, Gi, Ci,Di) :=
Hi(Ki). Before commencing our stability analysis, we note
that our closed-loop systems satisfy the following properties.

Lemma 5.1: Fori = 1, 2, 3, the closed-loop systemHi

corresponding to(34) satisfies the following properties1:
(A1) Ci and Di are closed sets.
(A2) F i : R

n
⇉ R

n is outer semicontinuous, locally
bounded, convex-valued, andF i(x) 6= ∅ for all x ∈ Ci.

(A3) Gi : R
n

⇉ R
n is outer semicontinuous, locally

bounded, andGi(x) 6= ∅ for all x ∈ Di.

Proof: The following statements hold fori ∈ {1, 2, 3}.
The setsCi and Di are obviously closed by inspection. The
flow equation for every state except forωd is continuous
and locally bounded. SinceMB has no dependence on̄xi,
it is outer semicontinuous. Moreover,MB is convex and
bounded.Gi(x̄i) is nonempty for everȳxi ∈ Di. Moreover,
since s 7→ sgn(s) is outer-semicontinuous,Gi(x̄i) is outer-
semicontinuous for all̄xi ∈ Di.

Our analysis is based on Lyapunov’s method and the func-
tions Vi : Xi → R≥0, defined as

V1(x̄1) = 2c̄(1 − h̄η̄) + 1

2
ω̄⊤J ω̄ (35a)

V2(x̄2) = V1(x̄1) + 2c̃(1 − h̃η̃) (35b)

V3(x̄3) = V2(x̄2) + 1

2
b̃⊤b̃ (35c)

Theorem 5.2: Let̄c > 0, c̃ > 0, K̃ = K̃⊤ > 0, δ ∈ (0, 1),
and letΦ : R

3 → R
3 be strongly passive. Then, the compact

setAi ((19), (24), (29)) is globally asymptotically stable for
the closed-loop hybrid systemHi (34), for eachi ∈ {1, 2, 3}.

Proof: Consider the functionsVi : Xi → R≥0 in (35).
For i = 1, 2, 3, Vi satisfiesVi(Xi \ Ai) > 0, Vi(Ai) = 0, and
for any a > 0, the set{x̄i ∈ Xi : V (x̄i) ≤ a} is compact. Let
σ = −τff + c̄h̄ǭ+ c̃h̃ǫ̃+ τ . Now, written in terms of the input
vectorUi, we have that

〈∇Vi(x̄i), Fi(x̄i, Ui)〉 =



ω̄⊤σ i = 1

−c̃h̃ǫ̃⊤u2 + ω̄⊤σ i = 2

−c̃h̃ǫ̃⊤u2 + ω̄⊤σ + b̃⊤u3 i = 3.

(36)

To see this, we note from (4) and (14) that2c̄(1 − h̄ ˙̄η) =
c̄h̄ω̄⊤ǭ. Furthermore, recalling thatx⊤Sx = 0 for anyx ∈ R

3

1A set-valued mappingF is outer semicontinuousif its graph, the set
{(x, y) : y ∈ F (x)}, is closed. LetB ⊂ R

n denote the closed unit ball
centered at the origin, thenF is locally boundedif for any compact set
K ⊂ R

n, there existsm > 0 such thatF (K) ⊂ mB.

and any skew-symmetric matrixS, it follows that ω̄⊤Σω̄ = 0.
Finally, sinceS(x)x = 0 for anyx ∈ R

3, we have the property
that R(q)ǫ = ǫ, for any q = (η, ǫ) ∈ S3. It follows that
2c̃(1 − h̃ ˙̃η) = c̃h̃ǫ̃⊤(ω̄ − u2).

Now, sinceω̄ = ω̄+ b̃− b̃ = ω+b− b̂− ω̄d + b̃ = ω̂− ω̄d + b̃,
settingUi = Ki yields

〈
∇Vi(x̄i), F i(x̄i)

〉
=




−ω̄⊤Φ(ω̄) ≤ 0 i = 1

−c̃ǫ̃⊤K̃ǫ̃ ≤ 0 i = 2

−c̃ǫ̃⊤K̃ǫ̃ − (ω̂ − ω̄d)
⊤Φ(ω̂ − ω̄)− ≤ 0 i = 3

(37)

So, we have that
〈
∇Vi(x̄i), F i(x̄i)

〉
≤ 0 for all x̄i ∈ Xi ⊃ Ci.

Now, we examine the change inVi over jumps. Since
xsgn(x) = |x|, for every x̄i ∈ Di and everyg ∈ Gi(x̄i),

Vi(g) − Vi(x̄i) =

{
2c̄(h̄η̄ − |η̄|) i = 1

2c̄(h̄η̄ − |η̄|) + 2c̃(h̃η̃ − |η̃|) i = 2, 3.
(38)

Then, by virtue ofx̄i ∈ Di, it follows that wheni = 1,
h̄η̄ ≤ −δ and −|η̄| ≤ −δ, so 2c̄(h̄η̄ − |η̄|) ≤ −4c̄δ. For,
i = 2, 3, we have either that2c̄(h̄η̄ − |η̄|) ≤ −4c̄δ or that
2c̃(h̃η̃−|η̃|) ≤ −4c̃δ, and the other term can be upper bounded
by zero. So, it follows that for alli ∈ {1, 2, 3}, x̄i ∈ Di and
g ∈ Gi(x̄i), we haveVi(g) − Vi(x̄i) ≤ −4min{c̄, c̃}δ < 0.

So far, we have established that the functionVi is mono-
tonically nonincreasing along flows of the closed-loop system
and is strictly decreasing along jumps. Applying [44, Theorem
7.6] asserts thatAi is stable forHi.

To complete the proof, we will apply an invariance principle
for hybrid systems. In this direction, let

Wi = {x̄i ∈ Ci :
〈
Vi(x̄i), F i(x̄i)

〉
= 0} ⇔

W1 = {x̄1 ∈ X1 : ω̄ = 0, h̄η̄ ≥ −δ}
W2 = {x̄2 ∈ X2 : ǫ̃ = 0, h̄η̄ ≥ −δ, h̃η̃ ≥ −δ}
W3 = {x̄3 ∈ X3 : ǫ̃ = ω̂ − ω̄d = 0, h̄η̄ ≥ −δ, h̃η̃ ≥ −δ}.

(39)
SinceVi is nonincreasing along flows and strictly decreasing
over jumps of theith closed-loop system for everyi ∈
{1, 2, 3}, applying [44, Theorem 4.7] asserts thatx̄i must
converge to the largest invariant set inWi. We proceed with
this argument fori = 3, as it is the most involved and note
that the cases fori = 1, 2 are quite similar.

Constrainingǫ̃ ≡ 0 implies thatq̃ = ±1. Sinceh̃η̃ ≥ −δ,
it must follow that q̃ = h1. Continuing, we must have that
˙̃q ≡ 0. Then, sinceR(q̃)⊤ = R(h1)⊤ = I, from (34), we see
that this can only occur when̄ω ≡ 0 and so, ˙̄ω = 0. But, since
ω̂− ω̄d ≡ 0 andω̂− ω̄d = ω̄− b̃, it follows that b̃ ≡ 0. Finally,
from the evolution ofω̄, it follows that ǭ ≡ 0, and since
h̄η̄ ≥ −δ, we haveq̄ = h̄1. This proves thatA3 is globally
attractive and hence, globally asymptotically stable. Similarly,
it follows that A1 and A2 are also globally asymptotically
stable for their respective closed-loop systems.

Solutions to hybrid systemsH are parametrized in terms of
both t, the amount of time spent flowing, andj, the number
of jumps; hence the value of the solution at(t, j) is given
by x(t, j). The domain of a solutionx is a subset ofR ×
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{0, 1, 2, . . . } and is called ahybrid time domainwhile the
function defining the value of the solution is called ahybrid
arc. We denote the set of solutions starting from a pointx0 or
a compact setK asSH(x0) andSH(K), respectively. Zeno
solutions–those with an infinite number of jumps in a finite
amount of time–do not appear in the controllers designed here.
In fact, for any solution, the number of jumps is bounded.

Theorem 5.3: For anyi = 1, 2, 3, and any compact set
Ki ⊂ Xi, there existsJi ∈ Z≥0 such that for anyx̄i ∈
SHi

(Ki), dom x̄i ⊂ R≥0 × {0, 1, . . . , Ji}.

Proof: SinceVi is continuous andKi is compact for each
i ∈ {1, 2, 3}, let V ∗

i = max Vi(Ki). Then, it follows from (37)
and (38) that for anȳxi ∈ SHi

(Xi) and any(t, j) ∈ dom x̄i,

0 ≤ Vi(x̄i(t, j)) ≤ Vi(x̄i(0, 0)) − 4δ min{c̄, c̃}j.
It follows that for anyx̄i ∈ SHi

(Ki) and any(t, j) ∈ dom x̄i,

j ≤ Ji :=
⌈

V ∗

i

4δ min{c̄,c̃}

⌉
,

where⌈·⌉ denotes the ceiling function.
Theorem 5.3 gives a uniform bound on the number of jumps

occurring along solutions that begin from a given compact
set. The number of jumps is linked to initial kinetic energy
of the system: as initial bias and angular velocity errors cause
the rigid body to rotate,̄q and q̃ can make many revolutions
aroundS3. During each revolution, it is possible for̄η or η̃
to initiate jumps. After some of the kinetic energy has been
dissipated, the rigid body can no longer rotate past180◦ and
cause jumps to occur.

We now state a theorem asserting the robustness of the
asymptotic stability property asserted in Theorem 5.2 to a
general “outer” (see [39]) perturbation that includes both
measurement and modeling error. We perturbHi as follows,
resulting in a hybrid inclusion. Letxu,i denote theunknown
states for eachi = 1, 2, 3, i.e., xu,1 = ∅, xu,2 = ω, xu,3 = b.
Then, letTi : Xi → Xi denote the invertible transformation
satisfyingTi(xi) = x̄i for eachi = 1, 2, 3. Now, we define,
Hα

i = (F
α

i , G
α

i , Cα
i ,Dα

i ), whereα > 0 and

F
α

i (x̄i) = coFi(x̄i,Ki(yi + αB, xk,i, ω̇d) + αB)

G
α

i (x̄i) = {z ∈ Xi : z ∈ Gi(x̄i,Ki(yi + αB, xk,i, ω̇d))}
Cα

i = {x̄i ∈ Xi : Ti(yi + αB, xu,i, xk,i) ∩ Ci 6= ∅}
Dα

i = {x̄i ∈ Xi : Ti(yi + αB, xu,i, xk,i) ∩ Di 6= ∅}.
(40)

Theorem 5.4: LetVi be defined as in(35) and let the
conditions of Theorem 5.2 hold. Then, for eachi = 1, 2, 3,
there exists a class-KL functionβi such that for each compact
setKi ⊂ Xi and everyγi > 0, there existsα∗

i > 0 such that
for all α ∈ (0, α∗

i ], every solution̄xα
i ∈ SH

α

i
(Ki) satisfies

Vi(x̄
α
i (t, j)) ≤ βi(Vi(x̄

α
i (0, 0)), t+j)+γi ∀(t, j) ∈ dom x̄α

i .

Moreover, if γ < 4δ min{c̄, c̃}, then there existsJi ∈ Z≥0

such thatdom x̄α
i ⊂ R≥ × {0, 1, . . . , Ji}.

Proof: Given Lemma 5.1 and Theorem 5.2, [39, Theorem
6.5] asserts the existence ofβi ∈ KL such that for allx̄i ∈
SHi

(Xi),

Vi(x̄i(t, j)) ≤ βi(Vi(x̄i(0, 0)), t + j) ∀(t, j) ∈ dom x̄i.

Then, since the family of perturbed systemsHα

i satisfies the
convergence property [39, (CP)], we invoke [39, Theorem
6.6] to arrive at theKL bound onVi(x̄

α
i (t, j)). Then, since

Vi(x̄
α
i (t, j)) → [0, γ] ⊂ [0, 4δ min{c̄, c̃}) as t + j → ∞, we

can use similar arguments to Theorem 5.3 to arrive at a bound
on the number of jumps.

Note that we can always chooseK to include the entirety
of S3 for the statesqd, q̄, andq̃; hence, theKL estimate holds
for any initial orientation of the rigid body. On the other hand,
K cannot be chosen to include all initial angular velocities,
since they evolve inR3 which is not compact.

E. Measurement Noise and Chattering

When the hybrid controller is subjected to measurement
noise, it is possible for chattering to occur, which manifests in
the closed-loop hybrid system as the possibility of multiple
jumps occurring at the same time. This is possible when
jumps can map the state back into the jump set, that is, when
G(D) ∩ D 6= ∅. To eliminate the possibility of chattering
for a bounded noise signal, we compute a lower bound on
the distance betweenG

α

i (Dα
i ) and Dα

i , defined in (40). We
provide these bounds fori = 1, 2, 3, but only provide the proof
for i = 2, 3, as the case fori = 1 is similar and simpler. We
state these bounds in the following theorem.

Theorem 5.5: For everyα ∈ [0, 1

2
) and everyδ ∈ (2α, 1),

Dα
i ∩ G

α

i (Dα
i ) = ∅.

Proof: (i = 2, 3) First, we note a helpful characterization
of G

α

i (Dα
i ). Using properties of quaternions, a calculation

shows that

Dα
i = {x̄i ∈ Xi : h̄η̄ ≤ −δ + α or h̃η̃ ≤ −δ + α}.

Since states other than̄h, h̃, q̄ and q̃ do not enter into the
constraints definingDα

i and sincēq and q̃ do not change over
jumps, we only examine the jump equations forh̄ andh̃ when
perturbed by measurement noise. As before, we can employ
basic properties of quaternions to arrive at

h̄+ ∈ sgn(η̄ + αB) h̃+ ∈ sgn(η̃ + αB). (41)

It is helpful to note that (41) is equivalent to writinḡh+η̄ ≥
−α and h̃+η̃ ≥ −α.

With this observation, we can writeG
α

i (Dα
i ) as

G
α

i (Dα
i ) = {x̄i ∈ Xi : h̄η̄ ≥ −α and h̃η̃ ≥ −α}

∩ {x̄i ∈ Xi : |η̄| ≥ δ − α or |η̃| ≥ δ − α}.
In preparation for computing dist(Dα

i , G
α

i (Dα
i )), we decom-

poseDα
i andG

α

i (Dα
i ) into the unions

Dα
i = ∆α

i,1 ∪ ∆α
i,2 G

α

i (Dα
i ) = Γα

i,1 ∪ Γα
i,2,

where

∆α
i,1 = {x̄i ∈ Xi : h̄η̄ ≤ −δ + α}

∆α
i,2 = {x̄i ∈ Xi : h̃η̃ ≤ −δ + α}

Γα
i,1 = {x̄i ∈ Xi : h̄η̄ ≥ −α and h̃η̃ ≥ −α}

∩ {x̄i ∈ Xi : |η̄| ≥ δ − α}
Γα

i,2 = {x̄i ∈ Xi : h̄η̄ ≥ −α and h̃η̃ ≥ −α}
∩ {x̄i ∈ Xi : |η̃| ≥ δ − α}.
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Intending to break the distance computation into simpler
pieces, we note that

dist(Dα
i , G

α

i (Dα
i )) = min

j,k∈{1,2}
dist(∆α

i,j ,Γ
α
i,k).

Let

Γα
i = {x̄i ∈ Xi : h̄η̄ ≥ −α and h̃η̃ ≥ −α}.

Then, it follows thatG
α

i (Dα
i ) ⊂ Γα

i and

dist(Dα
i , G

α

i (Dα
i )) ≥ dist(Dα

i ,Γα
i ) = min

j∈{1,2}
dist(∆α

i,j ,Γ
α
i ).

Using the norm|h1 − h2| for elementsh1, h2 ∈ H and
‖q1 − q2‖2 for q1, q2 ∈ S3, it follows that for q1 = (η1, ǫ1)
and q2 = (η2, ǫ2), ‖q1 − q2‖2 ≥ |η1 − η2|. Then, it follows
that

dist(∆α
i,1,Γ

α
i ) ≥ min

h,k∈{−1,1}
−1≤h̄η̄≤−δ+α

−α≤k̄ξ̄≤1

|h̄ − k̄| + |η̄ − ξ̄|

dist(∆α
i,2,Γ

α
i ) ≥ min

h̃,k̃∈{−1,1}

−1≤h̃η̃≤−δ+α

−α≤k̃ξ̃≤1

|h̃ − k̃| + |η̃ − ξ̃| (42)

Note that the right-hand sides of the expressions in (42)
are identical. In this direction, we examine only one of them.
Since h̄, k̄ ∈ {−1, 1}, we break the minimization into four
cases. First, suppose thath̄ = k̄. It follows that−2 ≤ h̄(η̄ −
ξ̄) ≤ −δ + 2α. Now suppose that̄h ∈ sgn(η̄ − ξ̄) so that
−2 ≤ |η̄ − ξ̄| ≤ −δ + 2α, in which case,

min
−2≤|η̄−ξ̄|≤−δ+2α

|h̄ − k̄| + |η̄ − ξ̄| =

{
∅ δ > 2α

0 δ ≤ 2α.

Now supposing that̄h ∈ −sgn(η̄− ξ̄), it follows that2α−δ ≤
|η̄ − ξ̄| ≤ 2 and

min
2α−δ≤|η̄−ξ̄|≤2

|h̄ − k̄ + |η̄ − ξ̄| = max(0, 2α − δ).

We handle the other two cases in a similar fashion. Let
h̄ = −k̄ and suppose that̄h ∈ sgn(η̄ − ξ̄), then−1 − α ≤
|η̄ − ξ̄| ≤ 1 + α − δ and

min
−1−α≤|η̄−ξ̄|≤1+α−δ

|h̄ − k̄| + |η̄ − ξ̄| = 2.

Similarly, whenh̄ ∈ −sgn(η̄ − ξ̄), it follows thatδ − 1−α ≤
|η̄ − ξ̄| ≤ 1 + α and

min
δ−1−α≤|η̄−ξ̄|≤1+α

|h̄ − k̄| + |η̄ − ξ̄| = 2.

Finally, since

dist(Dα
i , G

α

i (Dα
i )) ≥ min

j∈{1,2}
dist(∆α

i,j ,Γ
α
i )

≥ min(max(0, 2α − δ), 2)

= max(0, 2α − δ),

selectingδ > 2α yields dist(Dα
i , G

α

i (Dα
i )) > 0 and Dα

i ∩
G

α

i (Dα
i ) = ∅.

VI. SIMULATION STUDY

In this section, we present a simulation study contrasting
the proposed hybrid control scheme with both a discontinuous
controller and a controller that induces unwinding. We contrast
these controllers in two scenarios that illustrate how unwinding
can cause undesirable behavior and how the discontinuous
controller is sensitive to measurement noise. The following
simulations correspond to the full-state-measurement case,
where bothq and ω are measured without any additive bias
on ω, as in Section V-A. In each case, the rigid body is
commanded to come to rest at a specified attitude. In particular,
we let qd(0) = 1, ωd(0) = 0, and ω̇d ≡ 0 (note thatq̄ = q
here). Further, let~v = [1 2 3]⊤, v = ~v/‖~v‖2. Then, the inertia
matrix and control parameters are given asJ = diag(10v),
c̄ = 1 and Φ(ω) = ω. The simulations were conducted
in MATLAB /Simulink using a variable-step solver (ode45)
constrained to a maximum step size of1/1000s. While the
norm of quaternion states may drift from1 in a numerical im-
plementation, the effects of numerical drift were negligible in
the following simulations. Regardless, all quaternion variables
corresponding to an attitude were projected toS3 before used
in any manner.

Each plot in the following simulations is labeled as either
hybrid, discontinuous, or unwinding. For each plot labeled
hybrid, the hysteresis half-width is chosen asδ = 0.4. When
the hysteresis width becomes zero (δ = 0), the control reduces
to the discontinuous scheme, essentially replacingh̄ with
sgn(η̄). When δ > 1, jumps are completely disabled, since
|η| ≤ 1. In this case,̄h is a constant corresponding to its initial
condition. In each of the following simulations,̄h(0) = 1,
which, whenδ > 1, has the effect of stabilizinḡq = +1 only.
In this direction, plots labeled as discontinuous haveδ = 0
and plots labeled as unwinding haveδ > 1.

Finally, each figure has 4 plots:̄hη̄, θ(q̄), ‖ω̄‖2, and√∫ t

0
τ⊤τdt. The plot of h̄η̄ is shown to illustrate its con-

vergence towards1 and jumps inh̄. In the unwinding case,
becausēh ≡ h̄(0) = 1, this corresponds to a plot of̄η. The plot
of θ(q̄) = 2 cos−1 |η̄| is the angle between the current attitude

and the desired attitude. The plots of‖ω̄‖2 and
√∫ t

0
τ⊤τdt

show convergence of angular rate error and the use of control
effort, respectively.

Fig. 3 illustrates noise sensitivity whenδ = 0 (i.e. for
discontinuous feedback including terms likesgn(η̄)ǭ). In this
simulation,q(0) = (0, v) andω(0) = 0. The measured value
of q is qm = (q + me)/‖q + me‖2, wheree = ~e/‖~e‖2, each
element of~e was drawn from a zero-mean Gaussian distri-
bution with unit variance, andm was drawn from a uniform
distribution on the interval[0, 0.2]. This causes a chattering
behavior, visible in the plot of̄hη̄ for the discontinuous control
law. In this case, the excessive chattering causes a lag in
response and unnecessarily wasted control effort. On the other
hand, the hybrid controller is largely impervious to the noise
(concerning the decision of which way to rotate), owning to
the sufficiently large selection ofδ. In this simulation, the
unwinding controller is not shown, as the resulting trajectory
is identical to the hybrid controller (this is becauseh̄ doesn’t
change in this simulation and̄h(0) = 1).
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Fig. 3. Noise sensitivity.
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Fig. 4. Effects of unwinding.

Fig. 4 shows how control laws that exhibit unwinding can
resist a “beneficial” initial angular velocity. In this simulation,
q(0) = (−0.2,

√
1 − 0.22v) and ω(0) = 0.5v. So, the initial

angular velocity is in a direction thatdecreasesthe angle
between the initial rigid body attitude and the desired attitude,
i.e., η (and alsoη̄ in this case) will initially decrease from
−0.2 towards−1. In this simulation, the discontinuous control
law immediately pulls the attitude towards̄q = −1. Due to
the hysteresis and the fact thath̄ = 1, the hybrid control law
initially pulls the attitude towardsq = +1, but after the initial
angular velocity pushes the attitude past the hysteresis width
(at approximately 2s), its value ofh̄ switches and then pulls the
attitude towardsq = −1. On the other hand, the unwinding-

inducing control lawalwayspulls the attitude towards̄q = +1

and in this simulation, expends more control effort doing so.

VII. C ONCLUSION

We reviewed the topological problems associated with
global attitude control and illustrated how quaternion-based
discontinuous control laws that are intended to solve the
global asymptotic stabilization problem are susceptible to
measurement noise. In fact, we illustrated how malicious
measurement noise can enter into the closed-loop system and
have an asymptotically stabilizing effect on the manifold of
180◦ rotations.

We proposed a hybrid control solution to these problems
that achieves robust global asymptotic tracking for several
measurement scenarios. Drawing on previous work, the hybrid
control scheme employs a logic variable that defines the
desired direction of rotation. By using a hysteretic switching
law, the hybrid scheme can mitigate the unwanted effects of
unwinding and chattering due to measurement noise. More-
over, the hybrid scheme allows the control designer to choose
the hysteresis width, which effectively manages a trade-off
between robustness to measurement noise and hysteresis-
induced inefficiency.

These results were supported by simulation, where the pro-
posed hysteretic controller was compared to a discontinuous
controller and a controller that induces unwinding. As desired,
the proposed hybrid controller was seen to avoid unwinding
and eliminated extreme measurement noise sensitivity present
in discontinuous feedbacks that can delay control responseand
waste energy.
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