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INTERCONNECTIONS OF HYBRID SYSTEMS:

SOME CHALLENGES AND RECENT RESULTS

Ricardo G. Sanfelice
∗†

Abstract. This paper provides an overview of the problem of in-

terconnecting hybrid systems. Hybrid systems are given in terms

of constrained differential and difference equations with inputs and

outputs. Issues on existence of solutions and mismatch of time do-

mains of their solutions are discussed. An input/output stability

notion for such systems is presented and a small gain theorem for

analyzing interconnections of hybrid systems is presented.
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1 Introduction

A supervisory algorithm selecting the most appropriate
control law for the current operating conditions of a plant,
an event-driven transmission of information between net-
worked agents, and an (almost) instantaneous change of
velocities in mechanical systems with impacts are just a
few representative systems that can be studied using hy-
brid systems theory. The prevalent combination of con-
tinuous and discrete dynamics in systems in science and
engineering makes hybrid systems a powerful modeling
framework and setting for analysis, design, and simula-
tion.
The understanding of the dynamical properties of hy-

brid systems has been possible using machinery inspired
from control theory, as it has been demonstrated in
[45, 27, 13]. Particular attention has been paid to the
analysis of closed hybrid systems, that is, those with-
out inputs. Tools for the analysis of such systems have
permitted the study of Lyapunov stability, convergence,
and robustness properties. These are particularly useful
for the analysis of the closed-loop systems resulting from
feedback control, in which the required properties of the
control algorithm are inferred from the desired properties
of the closed-loop system. Open hybrid systems are sys-
tems with inputs, such as disturbances and control inputs,
and outputs. Recent results on input-to-state stability
for hybrid systems [7] permit the study of bounds on the
state trajectories in terms of the initial conditions and in-
puts, similarly to their counterparts for continuous-time
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systems [40], discrete-time systems [21], and switched sys-
tems [28, 44].

Tools for closed systems are applicable for the analysis
of interconnected systems, but typically do not scale with
the size of the interconnection. The understanding of the
properties of open systems are particularly useful in the
study of the properties of their interconnections. For in-
stance, certain properties conferred by a controller to a
closed-loop control system can be determined from the
properties of the individual (interconnected) plant and
controller. Recent results reported in [31] and [10] show
that the small gain theorem in [20] for continuous-time
systems can be formulated in the hybrid setting to assert
that interconnections of input-to-state stable hybrid sys-
tems are input-to-state stable. This motivates the study
of notions relating hybrid inputs and outputs, such as
input-output boundedness [11, 22] and input-to-output
stability [41, 37], as well as the generation of tools for the
analysis of input/output properties of interconnections of
hybrid systems.

The purpose of this paper is to provide an overview
of the problem of interconnecting hybrid systems and
to present some recent results for input/output analysis.
More precisely, given hybrid systems H1 and H2 with cer-
tain stability properties in an input/output (I/O) sense,
we explore tools for the analysis of interconnections of
hybrid systems, such as those in Figure 1. To this end,
we introduce, in a tutorial tone, a framework for hybrid
systems in Section 2 and key issues for the study of their
interconnections in Section 3. Then, in Sections 4 and
5, we present results on input-to-output stability and a
small gain theorem for the analysis of input-to-output
stable interconnections. Examples throughout the paper
illustrate the ideas.

u1 y1

y2
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Figure 1: Series and feedback interconnections of two hy-
brid systems.
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2 Hybrid Systems

Hybrid systems combine continuous behavior, which is
prevalent in physical systems, with discrete behavior,
which is ubiquitous in digital and impulsive systems. Sev-
eral working frameworks have been proposed in the liter-
ature. These include the automaton approach [16, 5, 43,
27] initiated in the computer science literature; switching
systems [4, 25] and impulsive systems [2, 15] motivated by
the field of dynamics and control systems; and more ab-
stract mathematical descriptions such as measure-driven
differential equations and inclusions [30, 36, 6], dynamics
on time scales [3, 29], and differential inclusions [1, 9]. In
this paper, the continuous behavior in hybrid systems is
modeled by constrained differential equations while the
discrete behavior is modeled by constrained difference
equations.1 In this setting, the continuous dynamics de-
fine the flows of the system while the discrete dynamics
define the jumps. Flows and jumps are activated under
certain conditions, which are implemented as constraints
on the state and input of the system. More precisely, a
hybrid system H with state x ∈ R

n, input u ∈ U ⊂ R
m,

and output y ∈ R
p will be modeled as

H





ẋ = f(x, u) (x, u) ∈ C

x+ = g(x, u) (x, u) ∈ D

y = h(x).
(1)

The set C ⊂ R
n ×U defines the flow set, which is the set

of points (x, u) on which flows according to ẋ = f(x, u)
are allowed, where the function f : C → R

n is the flow

map. Similarly, the set D ⊂ R
n ×U defines the jump set,

which is where jumps are permitted. At jumps, the state
x is updated via the difference equation x+ = g(x, u),
where g : D → R

n is the jump map. The output of the
system is defined by the function h : Rn → R

p, called
the output map. Then, the data of a hybrid system H is
given by (C, f,D, g, h).

The parameterization of the state trajectories or solu-
tions to H will be symmetric and given by two param-
eters. The parameter t will take values in R≥0, which
denotes the nonnegative real numbers, i.e., R≥0 = [0,∞),
and will be used to keep track of the flows. A parameter j
will take values in N, which denotes the natural numbers
including 0, i.e., N = {0, 1, . . .}, an will keep track of the
number of jumps. Then, the “time domain” of the solu-
tions to H will be subsets of R≥0 × N with appropriate
structure, which are called hybrid time domains. A set
E ⊂ R≥0 × N is a compact hybrid time domain if

E =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2... ≤ tJ .
A set E ⊂ R≥0 × N is a hybrid time domain if for all

1We present the ideas in terms of equations, but they also extend
to differential and difference inclusions.

(T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ...J}) is a compact hybrid
time domain.
Solutions to H will be given by pairs of hybrid arcs and

a hybrid inputs. A function x : domx → R
n is a hybrid

arc if domx is a hybrid time domain and, for each j ∈ N,
the function t 7→ x(t, j) is absolutely continuous on the
interval {t : (t, j) ∈ domx }. A function u : domu → U
is a hybrid input if domu is a hybrid time domain and,
for each j ∈ N, the function t 7→ u(t, j) is Lebesgue mea-
surable and locally essentially bounded on the interval
{t : (t, j) ∈ domu }. We will employ the following signal
norm for general hybrid signals, in particular, for hybrid
arcs and hybrid inputs. Denoting the Euclidean vector
norm by | · |, given a hybrid signal r : dom r → R

n, let

Γ(r) := {(t, j) ∈ dom r : (t, j + 1) ∈ dom r } .

Its L∞ norm is given by

‖r‖(t,j) := max

{
ess sup

(t′,j′)∈dom r\Γ(r), t′+j′≤t+j

|r(t′, j′)|,

sup
(t′,j′)∈Γ(r), t′+j′≤t+j

|r(t′, j′)|

}
.

For notational convenience, ‖r‖ denotes
limt+j→N ‖r‖(t,j), where N = sup(t,j)∈dom r t + j ∈
[0,+∞].
With the above definitions, given a hybrid input u :

domu → U and an initial condition ξ, a hybrid arc φ :
domφ → R

n with φ(0, 0) = ξ defines a solution pair (φ, u)
to the hybrid system H if the following conditions hold:2

(S0) (ξ, u(0, 0)) ∈ C ∪D and domφ = domu;

(S1) For each j ∈ N such that Ij :=
{t : (t, j) ∈ dom(φ, u) } has nonempty interior
int(Ij),

(φ(t, j), u(t, j)) ∈ C for all t ∈ int(Ij),

and, for almost all t ∈ Ij ,

d

dt
φ(t, j) = f(φ(t, j), u(t, j));

(S2) For each (t, j) ∈ dom(φ, u) such that (t, j + 1) ∈
dom(φ, u),

(φ(t, j), u(t, j)) ∈ D

φ(t, j + 1) = g(φ(t, j), u(t, j)).

Above, int(Ij) denotes the interior of the interval Ij .
A solution pair (φ, u) to H is said to be complete if

dom(φ, u) is unbounded, Zeno if it is complete but the
projection of dom(φ, u) onto R≥0 is bounded, discrete if

2Given a set S, S denotes its closure.
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its domain is {0}×N, and maximal if there does not exist
another pair (φ, u)′ such that (φ, u) is a truncation of
(φ, u)′ to some proper subset of dom(φ, u)′. Given ξ ∈ R

n,

SH(ξ) denotes the set of maximal solution pairs (φ, u) to
H with φ(0, 0) = ξ and u with finite ‖u‖. For a solution
pair (φ, u) ∈ SH(ξ), we denote by φ(t, j; ξ, u) its value at
(t, j) ∈ dom(φ, u).
A concept of stability for hybrid systems H is intro-

duced next. It is stated for general compact sets A of the
state space. For a given set A ⊂ R

n and a point x ∈ R
n,

|x|A := infy∈A |x − y|. A compact set A ⊂ R
n is said to

be

• stable if for each ε > 0 there exists δ > 0 such that
each solution pair (φ, u) ∈ SH(ξ) with |ξ|A ≤ δ sat-
isfies |φ(t, j; ξ, u)|A ≤ ε for all (t, j) ∈ dom(φ, u);

• 0-input stable if it is stable with u ≡ 0;

• pre-attractive if there exists µ > 0 such that ev-
ery solution pair (φ, u) ∈ SH(ξ) with |ξ|A ≤
µ is bounded and if it is complete satisfies
lim(t,j)∈dom(φ,u),t+j→∞ |φ(t, j; ξ, u)|A = 0;

• 0-input pre-attractive if it is pre-attractive with u ≡
0;

• pre-asymptotically stable if stable and pre-attractive;

• 0-input pre-asymptotically stable if 0-input stable and
0-input pre-attractive.

The following mild assumptions on the data of H will
be imposed in some of the results in this paper. In such
results, the data (C, f,D, g, h) of the hybrid system H
will satisfy

(A1) C, D, and U are closed sets,

(A2) f : C → R
n, g : D → R

n, and h : Rn → R
p are

continuous.

These conditions assure that closed hybrid systems H are
well posed in the sense that they inherit several good
structural properties of their solution sets. These include
sequential compactness of the solution set, closedness of
perturbed and unperturbed solutions, among others. We
refer the reader to [13, 14] (see also [12]) and [35] for
details on and consequences of these conditions.

3 On Interconnections of

Hybrid Systems

An interconnection of several hybrid systems consists of
an assignment relating the inputs and outputs of the in-
dividual systems. For example, the series interconnection
in Figure 1 corresponds to the assignment

u2 = y1 (2)

while the feedback interconnection therein corresponds to

ũ1 = y2 and ũ2 = y1, (3)

where the input to the first system is decomposed as
[u⊤

1 ũ⊤
1 ]

⊤ and the input to the second system as [u⊤
2 ũ⊤

2 ]
⊤.

(For notational simplicity, at times we will use (u1, ũ1) in-
stead of [u⊤

1 ũ⊤
1 ]

⊤.) The dynamics of the resulting inter-
connection are governed by the “composed” dynamics of
the individual systems. Since H1 allows flows from points
x1 that belong to C1 (for given input) and H2 allows flows
from points x2 that belong to C2, flows of the entire inter-
connection are only allowed when both conditions hold.
Jumps of H1 are possible from points x1 that belong to
D1 while jumps of H2 are possible from points x2 that
belong to D2 (for given input). When jumps of H1 occur,
x1 is updated via the jump map g1 while the update of x2

depends on whether x2 belongs to D2 or not (for given
input). Since updates of x2 via g2 are only allowed on
D2, then the jump map has to capture all the possibil-
ities for the update of x1 and x2. Then, for the hybrid
system H1 and H2 interconnected via (3), the resulting
interconnection is denoted by H1,H2 and has dynamics

ẋ1 = f1(x1, h2(x2), u1)

ẋ2 = f2(x2, h1(x1), u2)

}
(x1, h2(x2), u1) ∈ C1 &

(x2, h1(x1), u2) ∈ C2

x+
1 = g1(x1, h2(x2), u1)

x+
2 = x2

}
(x1, h2(x2), u1) ∈ D1 &

(x2, h1(x1), u2) 6∈ D2

x+
1 = x1

x+
2 = g2(x2, h1(x1), u2)

}
(x1, h2(x2), u1) 6∈ D1 &

(x2, h1(x1), u2) ∈ D2

x+
1 = g1(x1, h2(x2), u1)

x+
2 = g2(x2, h1(x1), u2)

}
(x1, h2(x2), u1) ∈ D1 &

(x2, h1(x1), u2) ∈ D2

y1 = h1(x1)

y2 = h2(x2).

Its state is x := (x1, x2) ∈ R
n1 × R

n2 , its input is u :=
(u1, u2) ∈ U := U1 × U2, and its output is y := (y1, y2).
The interconnection H1,H2 can be written as H with

C := {(x, u) : (x1, h2(x2), u1) ∈ C1}

∩{(x, u) : (x2, h1(x1), u2) ∈ C2},

f(x, u) := [f1(x1, h2(x2), u1)
⊤ f2(x2, h1(x1), u2)

⊤]⊤,

D := {(x, u) : (x1, h2(x2), u1) ∈ D1 }

∪ {(x, u) : (x2, h1(x1), u2) ∈ D2 } ,

g(x, u) := [g̃1(x1, h2(x2), u1)
⊤ g̃2(x2, h1(x1), u2)

⊤]⊤,

where

g̃1 :=

{
g1(x1, h2(x2), u1) (x1, h2(x2), u1) ∈ D1

x1 otherwise,

g̃2 :=

{
g2(x2, h1(x1), u2) (x2, h1(x1), u2) ∈ D2

x2 otherwise,
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and h(x) := (h1(x1), h2(x2)). As discussed above, the
data of the interconnection H1,H2 is such that flows oc-
cur when the flow conditions imposed by H1 and by H2

hold simultaneously, while jumps occur when either the
jump condition of H1 or H2, or both hold. The construc-
tion of the jump map g and the functions g̃1 and g̃2 are
such that x1 is updated via g1 only when the jump con-
dition imposed by H1 holds; similarly for the update of
x2.
As already suggested by the interconnection H1,H2

and illustrated next, interconnected hybrid systems can
have totally different dynamics (and solutions) from the
individual hybrid systems. This is due to the coupling
through the interconnection assignment of the flows and
jumps of the individual systems.

3.1 Solutions stop at Zeno time

The interconnection between several hybrid systems may
have Zeno solutions that were not part of the set of solu-
tions to every subsystem. The simplest case is perhaps a
vacuous interconnection between a system with Zeno so-
lutions and a system with continuous complete solutions.
By “vacuous interconnection” we mean that the systems
are both in the same model, but do not share inputs and
outputs. The time domain of the solutions of the “in-
terconnection” may be dramatically different from those
of the individual systems. For instance, consider a ball
bouncing on a floor at a height determined by u, with
state x = [x1 x2]

⊤ ∈ R
2, where x1 denotes the height of

the ball relative to the floor and x2 the vertical velocity.
The data of the associated hybrid system is given by

C = {(x, u) : x1 ≥ u } ,

f(x, u) =

[
x2

−γ

]
∀(x, u) ∈ C,

D = {(x, u) : x1 = u, x2 ≤ 0 } ,

g(x, u) =

[
x1

−ex2

]
∀(x, u) ∈ D,

h(x) = x1 ∀x ∈ R
2,

(4)

where γ > 0 is the gravity constant and e ∈ (0, 1) is the
restitution coefficient. It is easy to check that every solu-
tion pair (φ, u) ∈ SH(ξ), to this system with u constant
and ξ1 > u is complete and has a time domain such that

sup {t : (t, j) ∈ domφ } =

ξ2 +
√
ξ22 + 2γ(ξ1 − u)

γ
+

2e
√
ξ22 + 2γ(ξ1 − u)

γ(1− e)
,

(5)
which is known as the Zeno time. This hybrid system will
prevent any purely continuous-time system jointly mod-
eled with it from having solutions that are defined for all
t ∈ [0,+∞). An example of the (vacuous) interconnec-
tion between two such systems is the model of a bouncing
ball as in (4) and a timer counting the elapsed flow time

τ̇ = 1 τ ≥ 0.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

height

t

Figure 2: Three bouncing balls with height of floor u at
3 (top), 1 (middle), and 0 (bottom).

The timer system alone has complete solutions with hy-
brid time domain [0,+∞)×{0}, but when interconnected
with the bouncing ball inherits Zeno.
Another example of an interconnection leading to Zeno

solutions that do not belong to the set of solutions of all of
the individual subsystems is given by a model of multiple
bouncing balls. When the balls start from different initial
conditions or when they bounce at different floor heights,
the solution to such model may not allow all of the balls
to reach their own Zeno time as the original model of each
bouncing ball would. Figure 2 shows a simulation of the
heights of three bouncing balls modeled as in (4), up to
the Zeno time of one of the balls, which is at around 5 sec,
where infinitely many impacts accumulate. Note that the
other two balls are still far from being at rest and, hence,
far from their own Zeno times.
Interconnections generating “new” Zeno solutions are

possible in the context of hybrid control of continuous-
time plants. Consider a distributed network system with
N nodes or agents in which each agent has an internal
state ξi ∈ R

m storing some value with continuous dy-
namics ξ̇i = u1

i and discrete dynamics ξ+i = u2
i , and a

controller designed with the goal of achieving consensus
among those internal values, i.e., guarantee that the in-
ternal states satisfy ξi = ξj for all i, j. Suppose that
to accomplish this task, a sample-and-hold value of the
neighbors’ state is available to each agent, that is, the
i-th agent has sample-and-hold values zk available to it,
where k ∈ Ni ⊂ {1, 2, . . . , N} defines the index of the
neighbors to the i-th agent. A simple hybrid control al-
gorithm for consensus that, during flows follows [33] leads
to continuous dynamics of the form

u1
i = −

∑

k∈Ni

(ξi − zk). (6)

and at jumps follows [23, 46]

ξ+i = z+i = u2
i , u2

i = ξi − α
∑

k∈Ni

(ξi − zk) for each i,

(7)
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where α is a positive constant. When the timer state
τ in the network reaches a threshold, the internal states
and their samples are reset to the same value given by
a function of the local information. Otherwise, flows are
allowed. Let x := [ξ1, z1, ξ2, z2, . . . , ξN , zN , τ ]⊤. A general
construction of such sets is given by

C := {x : τ ≤ ϕ(x) } , D := {x : τ ≥ ϕ(x) } . (8)

Figure 3 shows the solutions for the case of four agents
(N = 4) with N1 = {2}, N2 = {1, 3, 4}, N3 = {2, 4}, and
N4 = {2, 3} for which the solutions are Zeno. Evidently,
the signal generated by the controller does not permit the
agents from having solutions that exist for all t ∈ [0,+∞).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

t

ξ i
,
i
∈
{1

,2
,3
,4
}

Figure 3: Solution with a simple hybrid consensus algo-
rithm controlling four continuous-time agents.

3.2 Interconnection with empty sets

A more dramatic situation may emerge due to intercon-
necting hybrid systems having solutions with radically
different time domains, such as continuous and discrete.
For instance, the dynamics of a continuous-time system

ẋ1 = f1(x1, u1)
y1 = h1(x1)

(9)

can be modeled as a hybrid system H1 with sets

C1 = R
n1 × R

m1 , D1 = ∅ (10)

and an arbitrary function g1. A purely discrete-time sys-
tem

x+
2 = g̃2(x2, u2)

y2 = h2(x2)
(11)

with state x2 ∈ R
n2 can be modeled as a hybrid system

H2 with sets

C2 = ∅, D2 = R
n2 × R

m2 , (12)

g2 = g̃2, and an arbitrary function f2. The feedback
interconnection between these two systems, which may

correspond to the situation where a discrete-time algo-
rithm measures the output of a continuous-time system
and updates its input, i.e., sample-and-hold control, is
such that there are no nontrivial solutions. While, for
any hybrid input, basic regularity properties of f1 and g2
would guarantee that the solutions to H1 are continuous
and complete and the solutions to H2 are discrete and
complete (see [14, Proposition 2.4]), the solutions to the
interconnection can only be discrete. This is due to the
fact that the sets of the resulting interconnection will be

C = ∅, D = {(x1, x2) : (x2, h1(x1)) ∈ D2 } . (13)

3.3 Interconnection with not meaningful

solutions

The rather simple illustrations above suggest that the so-
lutions of the individual systems may not necessarily be
preserved in the resulting interconnection. In fact, as in-
dicated above by the vacuous interconnection of a hybrid
system having Zeno solutions and a purely continuous-
time system, it is not the case that the set of solutions
of the interconnection “contains” the set of solutions of
the individual hybrid systems. As a consequence, it is
necessary to check whether the set of solutions of the
interconnection is meaningful, and if not, redefine the in-
terconnection conditions or the models of the subsystems.
For instance, if the interconnection of the hybrid system
H1 in (9)-(10) with the hybrid system H2 in (11)-(12)
was supposed to model the closed-loop system resulting
from controlling a continuous-time plant with a discrete-
time algorithm, then its set of solutions does not capture
the desired behavior. One way to obtain an intercon-
nection capturing the desired behavior is to remove the
undesired discrete solutions by augmenting the state of
the control algorithm model with a timer and redefining
its sets to trigger jumps with intervals of flow time of
nonzero length in between. More precisely, the state will
be given by x2 = [x⊤

21 x22]
⊤, where x21 is the state of the

control algorithm and x22 is the timer. The continuous
dynamics of the system will be given by

ẋ21 = 0
ẋ22 = 1

(14)

when the timer state is no larger than, say, a given thresh-
old T , that is,

C′
2 = {(x2, u2) : x22 ∈ [0, T ] } .

The discrete dynamics of the system will be given by

x+
21 = g̃2(x21, u2)

x+
22 = 0

(15)

when the timer reaches the threshold T , that is,

D′
2 = {(x2, u2) : x22 = T } .
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With the output given by y2 = h2(x2), the resulting in-
terconnection is given by

H1,H2





ẋ1 = f1(x1, h2(x2))

ẋ2 =

[
0

1

]




(x2, h1(x1)) ∈ C′

2

x+
1 = x1

x+
2 =

[
g̃2(x2, h1(x1))

0

]




(x2, h1(x1)) ∈ D′
2

Its solutions are complete with jumps occurring every T

seconds (except the first jump if x22(0, 0) 6= 0).

The examples above suggest that solutions may rad-
ically change when systems are interconnected. Condi-
tions for existence of solutions to interconnections can be
readily obtained from [14, Proposition 2.4], which require
viability properties of flows and jumps to hold. Unfortu-
nately, as suggested by the examples above, the satisfac-
tion of those conditions by the individual hybrid systems
does not imply that they hold for the resulting intercon-
nection.

4 Input-to-Output Stability for

Hybrid Systems

Classical stability notions relating inputs and outputs of
dynamical systems are aimed at guaranteeing that “well-
behaved” inputs generate “well-behaved” outputs. Differ-
ent characterizations of “well-behaved” signals have been
proposed in the literature, involving boundedness, inte-
grability, and convergence properties of the signals and
using a diversity of norms; see, e.g., [11] and [22]. In this
section, we consider the stability notion called input-to-

output stability, IOS for short. Along with several charac-
terizations, IOS for continuous-time systems around the
origin was introduced in [41, 37] and consists of the fol-
lowing property:3

• There exist a class-KL function β and a class-K func-
tion α such that every input t 7→ u(t) and associated
solutions t 7→ φ(t; ξ, u) satisfy

|h(φ(t; ξ, u))| ≤ max{β(|ξ|, t), α(‖u‖)} ∀t ≥ 0.
(16)

The bound (16) implies the property that a bounded in-
put will generate a bounded output y = h(x) with over-
shoot depending on the initial condition. The norm of

3 A function α : R≥0 → R≥0 is said to belong to class-K if
it is continuous, zero at zero, and strictly increasing. A function
α : R≥0 → R≥0 is said to belong to class K∞ if it belongs to
class-K and is unbounded. A function β : R≥0 × R≥0 → R≥0

is said to belong to class KL if it is continuous, nondecreasing
in its first argument, nonincreasing in its second argument, and
lim

sց0 β(s, r) = limr→∞ β(s, r) = 0.

the input can be replaced by the norm up to t, sometimes
denoted ‖u‖[0,t]. Note that, in principle, the property is
required to hold for all t ≥ 0, which implicitly requires the
solutions to be complete. Also note that when the output
function is the identity the definition of IOS reduces to
input-to-state stability as defined in [38].
The purpose of the remainder of this section is to

present an extension of the notion of IOS for hybrid sys-
tems H and provide Lyapunov characterizations. The
new notion will be used in the analysis of interconnec-
tions of hybrid systems in the next section.

4.1 Definitions and Basic Properties

Input-to-output stability for hybrid systems H =
(C, f,D, g, h) is defined with respect to compact sets A
and without insisting on completeness of solutions. It is
assumed that, given a compact set A ⊂ R

n, the output
function h : Rn → R

p is such that h(x) = 0 for all x ∈ A.
Following the definition of IOS for continuous-time sys-
tems in [41, 37], a hybrid system H is said to be input-
to-output stable with respect to a compact set A ⊂ R

n if
there exist a class-KL function β and a class-K function
γ such that, for each ξ ∈ R

n, each (φ, u) ∈ SH(ξ) satisfies

|h(φ(t, j; ξ, u))| ≤ max
{
β(|ξ|A, t+ j), γ(‖u‖(t,j))

}

(17)

for all (t, j) ∈ dom(φ, u). When the function h is given
by the identity and |h(·)| is replaced by4 | · |A, then IOS
reduces ISS as in [7, Definitions 2.1 and 2.3].
It is expected that under mild assumptions on the data

of the hybrid system, asymptotic stability with zero input
guarantees the IOS property to hold locally. A local ver-
sion of the IOS property above consists of the existence
of δ > 0, a class-KL function β, and a class-K function
α such that, for each ξ ∈ R

n with |ξ|A ≤ δ and each
solution pair (φ, u) ∈ SH(ξ), ‖u‖ ≤ δ, we have that (17)
holds for all (t, j) ∈ dom(φ, u). With this definition, it
follows that asymptotic stability with zero inputs guar-
antees that the IOS property holds for inputs with small
enough size. It parallels the ISS results in [40, Lemma
I.2] for continuous-time systems and [7, Proposition 2.3]
for hybrid systems. In fact:

(⋆) Given a hybrid system H satisfying (A1)-(A2), if the
compact set A is 0-input pre-asymptotically stable
for H and there exist functions α1, α2 ∈ K such that

|h(x)| ≤ α1(|x|A) + α2(|u|) ∀(x, u) ∈ R
n × U ,

(18)
then H is locally IOS with respect to A.

The output bound (18) combined with input-to-state
stability implies input-to-output stability. In fact, input-
to-state stability with respect to A implies the existence

4Instead of | · |A, using a proper indicator for A on Rn would be
equivalent.
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of a class-KL function β̃ and class-K function γ̃ such that
for each ξ ∈ R

n, each solution pair (φ, u) ∈ SH(ξ) satisfies

|φ(t, j; ξ, u)|A ≤

max
{
β̃(|φ(0, 0; ξ, u)|A, t+ j), γ̃(‖u‖(t,j))

}
(19)

for all (t, j) ∈ dom(φ, u). Then, with (18), it is straight-

forward to check that IOS holds with β := 2α1 ◦ β̃ and
γ := 2(α1 ◦ γ̃ + α2). This leads to the following result:

(⋆) Suppose that a hybrid systemH is input-to-state sta-
ble with respect to a compact set A ⊂ R

n. If there
exist functions α1, α2 ∈ K such that (18) holds then
H is IOS with respect to A.

4.2 A Lyapunov characterization

Lyapunov conditions asserting IOS for continuous-time
systems have been introduced in [37]. Following [37, Def-
inition 1.1], we define a class of IOS Lyapunov functions
for H. A continuously differentiable function V : Rn →
R≥0 is an IOS Lyapunov function with respect to a com-
pact set A ⊂ R

n for H if there exist class-K∞ functions
α1, α2, α3 and a class-K function χ such that

α1(|h(x)|) ≤ V (x) ≤ α2(|x|A) ∀x ∈ R
n, (20)

〈∇V (x), f(x, u)〉 ≤ −α3(V (x))
∀(x, u) ∈ C, V (x) ≥ χ(|u|),

(21)

V (g(x, u))− V (x) ≤ −α3(V (x))
∀(x, u) ∈ D, V (x) ≥ χ(|u|).

(22)

It turns out that, under (A1)-(A2), the conditions (21)
and (22) are equivalent to the dissipative form

〈∇V (x), f(x, u)〉 ≤ −α3(V (x)) + ρ(|u|)
∀(x, u) ∈ C,

(23)

V (g(x, u))− V (x) ≤ −α3(V (x)) + ρ(|u|)
∀(x, u) ∈ D,

(24)

for some class-K∞ function α3 and class-K function ρ.

It turns out that the existence of an IOS Lyapunov
function implies IOS with respect to a compact set A.

(⋆) Given a hybrid system H satisfying (A1)-(A2), if
there exists an IOS Lyapunov function with respect
to a compact set A ⊂ R

n for H then H is IOS with
respect to A.

Note that the converse of this result does not neces-
sarily hold without further assumptions. In particular,
it has been already shown in [7] that, for the case of h
being the identity, ISS does not imply the existence of
an ISS-Lyapunov function. Moreover, as pointed out in
[41, 37], bounds (21) and (22) explicitly depending on |x|
are expected to be required.

5 A Small Gain Theorem for

Input-to-Output Stability

One of the main tools for analysis of interconnections of
dynamical systems is the small gain theorem. It is well
known that the feedback interconnection of ISS nonlin-
ear systems is ISS when a small gain condition holds.
Such a result can be asserted using the KL estimates in-
volved in the definition of ISS for the individual systems.
Small gain results in terms of KL estimates were pre-
sented for interconnections of ISS systems in [19, 42, 17],
for IOS/IOSS nonlinear continuous-time systems in [19],
for IOS continuous and discrete-time systems [18], for in-
put/output system models in [39], and for a class of sys-
tems with jumps in [32]. Sufficient conditions for ISS
of interconnections in terms of Lyapunov functions have
been shown to be powerful as they provide an ISS Lya-
punov function for the entire interconnection. These ex-
ploit Lyapunov characterizations and sufficient conditions
for ISS of the individual systems, results that were pre-
sented for continuous-time systems in [40], for discrete-
time systems in [21], for switched systems in [28, 44], and
for hybrid systems in [7]. A Lyapunov-based small gain
theorem for interconnections of ISS systems appeared in
[20] for continuous-time systems, and later extended to
discrete-time and hybrid systems in [24] and [31] (see also
[26] and [10]), respectively.

5.1 Main Result

In this section, a small gain theorem for the analysis of in-
terconnections of IOS systems using Lyapunov functions
is given. Let X1, X2, and X be the projection of the
closure of C ∪ D ∪ (g(D) × U) onto R

n1 , Rn2 , and R
n,

n = n1 + n2, respectively. We consider the interconnec-
tion of two hybrid systems H1,H2. Let A1,A2 be com-
pact subsets of Rn1 ,Rn2 , respectively. Below, for a locally
Lipschitz function V , V ◦(x,w) denotes the Clarke gener-
alized derivative of V at x in the direction w [8]. A small
gain result for interconnected IOS hybrid systems is as
follows:

(⋆) Suppose that for i = 1, 2 there exist continuously
differentiable functions Vi : R

ni → R≥0 such that

A) There exist class-K∞ functions αi1, αi2 such
that for all xi ∈ Xi

αi1(|hi(xi)|) ≤ Vi(xi) ≤ αi2(|xi|Ai
) (25)

B) There exist class-K∞ functions χi, γi, positive
definite functions αi and λi satisfying λi(s) < s

for all s > 0 such that:

∗ For all (x, u) ∈ C and V1(x1) ≥
max{χ1(V2(x2)), γ1(|u1|)}:

〈∇V1(x1), f1(x1, h2(x2), u1)〉 ≤
−α1(V1(x1))

(26)
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and, for all (x, u) ∈ C and V2(x2) ≥
max{χ2(V1(x1)), γ2(|u2|)}:

〈∇V2(x2), f2(x2, h1(x1), u2)〉 ≤
−α2(V2(x2))

(27)

∗ For all (x, u) ∈ D we have

V1(g̃1(x1, h2(x2), u1)) ≤
max{λ1(V1(x1)), χ1(V2(x2)), γ1(|u1|)}

(28)

and

V2(g̃2(x2, h1(x1), u2)) ≤
max{λ2(V2(x2)), χ2(V1(x1)), γ2(|u2|)}.

(29)

C) The following holds

χ1 ◦ χ2(s) < s ∀s > 0. (30)

Let a class-K∞ function ρ be such that5 χ1(s) < ρ(s)
for all s > 0, χ2(s) < ρ−1(s) for all s > 0, and
continuously differentiable on (0,∞) with dρ

ds
(s) > 0

for all s > 0. Then, let

V (x) := max{V1(x1), ρ(V2(x2))}. (31)

It follows that

1) There exist class-K∞ functions α1, α2 such that,
for all x ∈ X ,

α1(|(h1(x1), h2(x2))|) ≤ V (x) ≤
α2(|(x1, x2)|A1×A2

);
(32)

2) There exist a positive definite function α and a
class-K function γ̃1 such that, for all (x, u) ∈ C

and V (x) ≥ γ̃1(|u|), we have

V ◦(x, f(x, u)) ≤ −α(V (x)); (33)

3) There exist a positive definite function λ, λ(s) <
s for all s > 0, and a class-K function γ̃2 such
that, for all (x, u) ∈ D,

V (g(x, u)) ≤ max{λ(V (x)), γ̃2(|u|)}. (34)

This small gain result can be established following the
ideas of the proof of [20, Theorem 3.1] for continuous-time
systems, which have been recently exploited to establish
small gain results for ISS hybrid systems in [31, Theo-
rem 2.1] and [10, Theorem 3.1]. Note that the result does
not provide a smooth IOS Lyapunov function. Note that
the interconnection H1,H2 does not rule out the possibil-
ity of solutions that are discrete, or that eventually, after
some (t, j), become discrete. This includes interconnec-
tions having solutions with one of the state components,
say x2, constant through the second option in the defini-
tion of the update law g̃2, for which it would be difficult
to satisfy conditions (28) and (29).

5 Such a function always exists since χ1 and χ2 are class-K∞

functions satisfying χ1 ◦ χ2(s) < s for all s > 0; see [19].

5.2 Illustrative Example

The small gain result is illustrated in the next example.
Consider two hybrid systems Hi, i ∈ {1, 2}, given by

Hi





ẋi = −aixi + biũi + ui (xi, ũi, ui) ∈ Ci

x+
i = ũi (xi, ũi, ui) ∈ Di

yi = xi,

where6

Ci := {(xi, ũi, ui) : ũi (xi − εiũi) ≤ 0 } ,

Di := {(xi, ũi, ui) : ũi (xi − εiũi) ≥ 0 } ,

ai, bi, εi > 0 and xi, ũi, ui ∈ R. Let Vi(xi) = 1
2x

2
i and

note that, for every i ∈ {1, 2}, (25) holds with

αi1(s) = αi2(s) :=
1

2
s2 ∀s ≥ 0

and that, on Ci,

〈∇Vi(xi), fi(xi, ũi, ui)〉 = −aix
2
i + bixiũi + xiui

≤ −aix
2
i + biεiũ

2
i + xiui

(35)

since for points in Ci we have ũixi ≤ εiũ
2
i . Consider the

input assignment

ũ1 = y2, ũ2 = y1. (36)

We start checking the flow conditions. From the
definition of Hi, fi(xi, ũi, ui) := −aixi + biũi + ui,
gi(xi, ũi, ui) := ũi, and hi(xi) := xi. With the assign-
ment (36) and using the bounds

xiui ≤
ai

2
x2
i +

1

2ai
u2
i ,

and (25), it follows that

〈∇V1(x1), f1(x1, h2(x2), u1)〉 ≤ −a1x
2
1 + b1ε1x

2
2 + x1u1

≤ −a1V1(x1)
+2b1ε1V2(x2) +

1
2a1

u1.

Then

〈∇V1(x1), f1(x1, h2(x2), u1)〉 ≤ −
a1

2
V1(x1) (37)

for all (x1, h2(x2), u1) ∈ C1 when

V1(x1) ≥ max

{
8b1ε1
a1

V2(x2),
2

a21
u2
1

}
(38)

Similarly,

〈∇V2(x2), f2(x2, h1(x1), u2)〉 ≤ −a2x
2
2 + b2ε2x

2
1 + x2u2

≤ −a2V2(x2)
+2b2ε2V1(x1) +

1
2a2

u2.

6The data of this hybrid system was inspired from an example
in [31].
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Then

〈∇V2(x2), f2(x2, h1(x1), u2)〉 ≤ −
a2

2
V2(x2) (39)

when

V2(x2) ≥ max

{
8b2ε2
a2

V1(x1),
2

a22
u2
2

}
. (40)

Then, since (38) implies (37), and (40) implies (39), we
have that (26) and (27) hold for

χ1(s) =
8b1ε1
a1

s, α1(s) =
a1

2
s, γ1 =

2

a21
s ∀s ≥ 0;

χ2(s) =
8b2ε2
a2

s, α2(s) =
a2

2
s, γ2 =

2

a22
s ∀s ≥ 0.

We now check the jump conditions. With the assign-
ment (36), it follows that for every (x, u) ∈ D such that
(x1, h2(x2), u1) ∈ D1, (x2, h1(x1), u2) 6∈ D2, we get

V1(g̃1(x1, h2(x2), u1)) = V2(g̃2(x2, h1(x1), u2))

=
1

2
x2
2 ≤

x1x2

ε1

≤
1

ε1

x2
1

2
+

1

ε1

x2
2

2

≤
2

ε1
max {V1(x1), V2(x2)}

(41)

since such points satisfy ε1x
2
2 ≤ x1x2. For every (x, u) ∈

D such that (x1, h2(x2), u1) 6∈ D1, (x2, h1(x1), u2) ∈ D2,
we get

V1(g̃1(x1, h2(x2), u1)) = V2(g̃2(x2, h1(x1), u2))

=
1

2
x2
1 ≤

x1x2

ε2

≤
1

ε2

x2
1

2
+

1

ε2

x2
2

2

≤
2

ε2
max {V1(x1), V2(x2)}

(42)

since such points satisfy ε2x
2
1 ≤ x1x2. For every (x, u) ∈

D such that (x1, h2(x2), u1) ∈ D1, (x2, h1(x1), u2) ∈ D2,
we get

V1(g̃1(x1, h2(x2), u1)) ≤
2

ε1
max {V1(x1), V2(x2)} (43)

V2(g̃2(x2, h1(x1), u2)) ≤
2

ε2
max {V1(x1), V2(x2)} .(44)

Combining (41)-(44), we obtain

V1(g̃1(x1, h2(x2), u1)) ≤

max
{

2
ε1
, 2
ε2

}
max {V1(x1), V2(x2)} ,

(45)

V2(g̃2(x2, h1(x1), u2)) ≤

max
{

2
ε1
, 2
ε2

}
max {V1(x1), V2(x2)} .

(46)

Then, (28) and (29) hold with

λ1(s) = χ1(s) = λ2(s) = χ2(s) = max
{

2
ε1
, 2
ε2

}
s ∀s ≥ 0,

γ1 = γ2 ≡ 0.

Then, for λi(s) < s to hold we require

max

{
1

ε1
,
1

ε2

}
<

1

2
.

Then, the functions χ1 and χ2 are defined as

χ1(s) = max

{
8b1ε1
a1

,
2

ε1
,
2

ε2

}
s,

χ2(s) = max

{
8b2ε2
a2

,
2

ε1
,
2

ε2

}
s.

Finally, the small gain condition (30) holds when

max

{
8b1ε1
a1

,
2

ε1
,
2

ε2

}
max

{
8b2ε2
a2

,
2

ε1
,
2

ε2

}
< 1.

It follows that items 1)-3) of the small gain result hold
with V as in (31). As suggested by the discussion in
Section 3, existence of solutions to the resulting intercon-
nection needs to be checked separately.
Figure 4 shows a solution to the interconnection when

the inputs u1 and u2 are set to zero. At jumps due to
the state hitting D1, the component x1 is reset to x2.
Figure 5 shows the evolution of x1 and x2 over hybrid
time for different values of the inputs u1 and u2. The
plots illustrate that the size of the bound on the solutions
decreases with the size of the applied input.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

D1

D1

D2

D2

x1

x
2

Figure 4: A solution in the plane to the interconnection
in Section 5.2 for initial condition x(0, 0) = [4 5]⊤ and
zero inputs. The solution hits the set D1 and jumps to
a point in the flow set C from where it flows to D1 and
jumps again. Parameters: a1 = 15, b1 = 0.5, ε1 = 2.3,
a2 = 45, b2 = 0.3, ε2 = 2.1.
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Figure 5: Solution components x1 (solid) and x2 (dashed-
dot) to the interconnection in Section 5.2. Initial condi-
tions and parameters are as in the plot in Figure 4. Top
plot: u1 = u2 = 20; middle plot: u1 = u2 = 10; bottom
plot: u1 = u2 = 0.

6 Conclusion

For a general class of hybrid systems, we discussed dif-
ficulties in the analysis of interconnection of hybrid sys-
tems. An input-to-output stability notion was presented,
along with basic properties and a Lyapunov characteri-
zations. A small gain result for the study of an intercon-
nection of two hybrid systems was presented and illus-
trated in a simple example. The nature of the results and
the general hybrid systems framework under study, which
cover classical continuous and discrete-time systems, sug-
gest wide applicability of these tools. Further details on
the IOS results outline here and results on input-output-
to-state stability for hybrid systems were reported in [34].
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