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Abstract. Several recent results in the area of robust asymptotic sta-
bility of hybrid systems show that the concept of a generalized solution
to a hybrid system is suitable for the analysis and design of hybrid con-
trol systems. In this paper, we show that such generalized solutions are
exactly the solutions that arise when measurement noise is present in the
system.

1 Introduction

1.1 Motivation

Hybrid dynamical systems comprise a rich class of systems in which the state can
both evolve continuously (flow) and discontinuously (jump). Over the last ten
years or more, in research areas such as computer science, feedback control, and
dynamical systems, researchers have given considerable attention to modeling
and solution definitions for hybrid systems. Some notable references include [41,
38, 4, 9, 8, 28, 40].

In the paper [19], motivated by robust stability issues in hybrid control sys-
tems, the authors introduced the notion of a generalized solution to a hybrid
system and outlined some stability theory consequences that followed from this
solution concept. These included results on “for free” robustness of stability,
a generalization of LaSalle’s invariance principle, and the existence of smooth
Lyapunov functions for asymptotically stable hybrid systems. More details about
these results and generalizations were given in the subsequent conference papers
[20] (see also [21]), [35] and [10], respectively.

The purpose of the current paper is to motivate further the use of generalized
hybrid solutions by considering the effect of arbitrary small measurement noise
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in hybrid control systems. In this paper we show that, for hybrid systems arising
from using hybrid feedback control, generalized hybrid solutions agree with the
limits (in an appropriate sense) of solutions generated by arbitrarily small mea-
surement noise in the hybrid control system. This result generalizes to hybrid
systems a similar result for differential equations initially reported by Hermes
in [23] and expanded upon by Hàjek in [22]. It contains, as a special case, an
analogous result for difference equations that, to the best of our knowledge, has
not appeared in the literature.

1.2 Controversy?

In continuous-time systems, generalized solutions to discontinuous differential
equations are shunned at times because using such a solution precludes solving
certain nonlinear control problems. For example, for asymptotically controllable
nonlinear systems, it is possible to solve the stabilization problem by state feed-
back when using weak notions of solution for discontinuous differential equations
(e.g., Caratheodory solutions, Euler solutions, etc.) (see [13]) but it is impossible
to solve this problem in general when using generalized solutions such as those
due to Krasovskii [25], Filippov [18], or Hermes [23]; for further details see [11].

The feedback stabilization problem does not provide the same motivation for
avoiding generalized solutions to hybrid systems. Indeed, it is possible to robustly
stabilize asymptotically controllable nonlinear systems using hybrid feedback
and using generalized solutions to hybrid systems. See, for example, [31].

Despite our opinion that the use of generalized solutions to hybrid systems
will never diminish the capabilities of hybrid control, we would not be surprised
to see some resistance to the use of generalized hybrid solutions to hybrid control
systems. We expect the main sticking point to be how the notion of generalized
solutions affects the “semantics” of a hybrid control system. We now elaborate
on what we mean.

For the purposes of this paper, a hybrid system is specified by the data
H = (f, g, C,D,O) where the open set O ⊂ R

n is the state space of the hybrid
system H, f is a function from C to R

n called the “flow map”, g is a function
from D to C ∪D called the “jump map”, C is a subset of O called the “flow set”
and indicates where in the state space flow may occur, D is a subset of O called
the “jump set” and indicates from where in the state space jumps may occur.
At times, we write the data in the suggestive form

H

{

ẋ = f(x) x ∈ C
x+ = g(x) x ∈ D

(1)

where x is the state of the hybrid system (with discrete modes already embedded
in it). Several models for hybrid systems available in the literature (see e.g.
[8], [28], [40]), under certain assumptions, can be fit in such framework. The
particular concept of a solution to a hybrid system we use will be made precise
in Section 2; it is not relevant for the discussion below.

Generalized solutions to H are solutions to a hybrid system with regularized
data H = (f, g, C,D,O), where f and g are constructed from f and g in a



manner that will be made precise later (see Definition 3) and C and D denote
the closures of C and D, respectively, relative to O. In particular this means
that if C ∪D = O then C ∩D is not empty1 even if C ∩D is empty. It turns out
that many models of hybrid systems insist on having C∩D empty. For example,
one has C = O\D in the definition of state-dependent impulsive systems in [5]
(see also [6] and [12]). The condition C = O\D is also used in many of the
hybrid models considered in [8]. Making C ∩D empty is one way to guarantee
that jumps are enforced in the jump set rather than simply enabled. (Some
researchers use the phrases “ ‘as is’ semantics” and “enabling semantics” for
these two respective situations, see [36].) Moreover, it is a way to guarantee that
solutions, if they exist, are unique when the flow map f is locally Lipschitz. See,
for example, [29].

As we pointed out in [19], changing C and D to their relative closures can
have a dramatic effect on the solutions to the hybrid control system. For example,
if D has measure zero, perhaps being a surface on which jumps are enforced, and
C = O\D (see, for example, the model of reset control systems used in [6] and
the references therein) then the relative closure of C will be equal to the entire
state space. This may enable solutions that never jump, circumventing the reason
for hybrid control in the first place. However, the point we are making in this
paper is that the new behavior that appears when taking the relative closures
can manifest itself due to measurement noise in a feedback control system. In
this sense, this new behavior should be taken into account.

There are many motivations for not taking the flow set C and the jump
set D to be sets that are closed relative to O in the definition of a hybrid
system. However, in the context of hybrid control systems, we hope that the
robust stability motivation given in [19], the solution properties reported in [20],
the stability theory corollaries reported in [20] and [35], and the new results
reported here on the equivalence between generalized solutions and the limit
of solutions due to measurement noise continue to motivate the development
of hybrid control system models that use jump and flow sets that are closed
relative to the state space. An example in this direction is the work of [42, 30]
which revisits the reset control systems considered in [6] and finds a natural
definition of the flow set and jump set so that they are closed and yet still force
jumps at the appropriate locations in the state space.

2 Definition of generalized solutions

In what follows we write R≥0 for [0,+∞), N for {0, 1, 2, ...}, and | · | for the
Euclidean vector norm.

2.1 Generalized time domain

In what could be described as the “classical” approach to hybrid systems, a
solution to H = (f, g, C,D,O) is, vaguely, a piecewise continuous function ξ that

1 This is true unless either C is empty or D is empty, in which case the original system
was not truly hybrid in the first place.



is left-continuous and such that, on each interval of continuity satisfies ξ(t) ∈ C
and ξ̇ = f(ξ(t)), while at each point τ of discontinuity satisfies limt→τ− ξ(t) ∈
D and ξ(τ) = g(limt→τ− ξ(t)) (so, more compactly, ξ− ∈ D, ξ+ = g(ξ−)).
By design, such concept of a solution excludes multiple jumps at a single time
instant. Furthermore, it makes it troublesome (or impossible) to discuss limits of
solutions; see Example 1. These issues can be overcome by using a “generalized”
time domain, as defined below.

Definition 1 (hybrid time domain). A subset D ⊂ R≥0 × N is a compact
hybrid time domain if

D =

J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ... ≤ tJ . It is a hybrid time
domain if for all (T, J) ∈ D, D ∩ ([0, T ] × {0, 1, ...J}) is a compact hybrid
domain.

Hybrid time domains are similar to hybrid time trajectories in [28],[29], and
[3], and to the concept of time evolution in [40], but give a more prominent role
to the number of jumps j (c.f. the definition of hybrid time set by Collins in
[15]). On each hybrid time domain there is a natural ordering of points: we write
(t, j) ¹ (t′, j′) for (t, j), (t′, j′) ∈ D if t ≤ t′ and j ≤ j′.

Definition 2 (hybrid arc). A hybrid arc is a pair (x,domx) consisting of a
hybrid time domain domx and a function x defined on domx that is locally
absolutely continuous in t on domx ∩ (R≥0 × {j}) for each j ∈ N.

We will not mention domx explicitly, and understand that with each hybrid
arc x comes a hybrid time domain domx. In this way, hybrid arcs x are parame-
terized by (t, j) ∈ domx, with x(t, j) being the value of x at the “hybrid instant”
given by (t, j). A hybrid arc ξ is said to be nontrivial if dom ξ contains at least
one point different from (0, 0), complete if dom ξ is unbounded, and Zeno if it is
complete but the projection of dom ξ onto R≥0 is bounded.

Example 1. Consider a hybrid system on R
2 given by D = (0, 1) × {0}, C =

R
2 \D, f(x1, x2) = (x2,−x1), g(x) = x/2. For any point ξ0 with 0 < |ξ0| < 1,

ξ0 6∈ D, a “classical” solution from ξ0 (the solution is unique!) rotates clockwise
until it hits D, then via a jump has its magnitude divided by 2, then rotates
again for time 2π until it jumps again, etc; see Figure 1(a). In the presence of
arbitrarily small noise, a “classical” solution may jump almost immediately after
the first jump. That is, if τ is the time of the first jump, a solution to ẋ = f(x+e),
x ∈ C while x+ = g(x− + e−), x− ∈ D will jump at τ and then again when
x2 = −ε, if one considers the noise e(t) = (0, 0) if t ≤ τ , e(t) = (0, ε) for t > τ .
In this fashion, one can in fact construct a “classical” solution and arbitrarily
small noise so that the solution jumps arbitrarily many times (even infinitely
many) in arbitrary short time (so it may be a Zeno solution). One can then ask
what the limit of such solutions is (with the noise size decreasing to 0), and it
would be reasonable to expect that the limit is a solution that jumps infinitely



many times at time τ . Figure 1(b) shows this on hybrid time domains. Of course,
such solution is not a “classical” solution, in fact, it can not be represented using
regular time. However, it is a hybrid arc (in the sense of Definition 2) defined on
a hybrid time domain.

(a) One possible
“classical” solution.

(b) Convergence of solutions when the noise ap-
proaches zero. The value of the noise e at the i-th
jump is given by (0, εi) where εi → 0 as i → ∞.

Fig. 1. Solutions and their convergence under the presence of measurement noise for
the system in Example 1.

2.2 Generalized solutions a la Krasovskii

The regularization of the hybrid system H is defined below. We remind the
reader that for a set C ⊂ O, its closure relative to O is equal to the closure
of C intersected with O, and is the smallest relatively closed subset of O that
contains C.

Definition 3 (regularized hybrid system H). Given a hybrid system H =
(f, g, C,D,O), its regularization (a la Krasovskii) is denoted by H = (f, g, C,
D,O) where, for every x ∈ O,

f(x) :=
⋂

δ>0

cof((x+ δB) ∩ C), g(x) :=
⋂

δ>0

g((x+ δB) ∩D) (2)

and C,D are the relative closures of the sets C,D with respect to the state space
O, respectively.

Regarding the function f , the regularization corresponds to the one proposed
by Krasovskii in [26] for discontinuous differential equations. (An equivalent



description of f(x) would say that it is the smallest closed convex set containing
all limits of f(xi) as xi → x, xi ∈ C.) We note that the regularization of f as
proposed by Filippov in [18] ignores the behavior of f on sets of measure zero,
and thus proves to be unsuitable for hybrid systems (and even for constrained
differential equations). Indeed, for example, a set C with zero measure leads to
an “empty” regularization. Regarding g, the regularization is the one used in
[24]; due to the nature of discrete time, the convexification is not needed.

Following the compact form for hybrid systems H = (f, g, C,D,O) given in
(1), we can write its regularized version H = (f, g, C,D,O) as

H

{

ẋ ∈ f(x) x ∈ C
x+ ∈ g(x) x ∈ D.

(3)

Note that the differential and difference equations in H are replaced by differ-
ential and difference inclusions, since f : O →→ R

n, g : O →→ O, by their very
definitions, are in general set-valued mappings and not functions. A formal def-
inition of Krasovskii solutions follows.

Definition 4 (hybrid Krasovskii solution to H). A hybrid arc ψ : domψ →
O is a hybrid Krasovskii solution to the hybrid system H = (f, g, C,D,O) with
regularization given by H = (f, g, C,D,O) if ψ(0, 0) ∈ C ∪D and:

(K1) for all j ∈ N and almost all t such that (t, j) ∈ domψ,

ψ(t, j) ∈ C, ψ̇(t, j) ∈ f(ψ(t, j)); (4)

(K2) for all (t, j) ∈ domψ such that (t, j + 1) ∈ domψ,

ψ(t, j) ∈ D, ψ(t, j + 1) ∈ g(ψ(t, j)). (5)

Under minor assumptions on f and g, the system H = (f, g, C,D,O) has
the regularity properties (stated below, in Theorem 1) that were imposed on the
hybrid systems by the authors et al. in [19] and in [20] and led to results on
sequential compactness of the sets of solutions to hybrid systems. In particular,
such properties guarantee that an appropriately understood limit of a sequence
of solutions to a hybrid system is itself a solution.

A function φ : O → R
n (or a set-valued mapping φ : O →→ R

n) is locally
bounded on O if for each compact set K ⊂ O there exists a compact set K ′ ⊂ R

n

such that φ(K) ⊂ K ′. It is locally bounded with respect to O on O if we request
that K ′ ⊂ O.

Assumption 1 The function f is locally bounded on O. The function g is locally
bounded with respect to O on O.

A set valued mapping φ : O →→ R
n (or φ : O →→ O) is outer semicontinuous

if for any sequence {xi}
∞
i=1 with limi→∞ xi = x ∈ O and any sequence {yi}

∞
i=1

with yi ∈ φ(xi) and limi→∞ yi = y we have y ∈ φ(x).



Theorem 1 (basic properties of H). Under Assumption 1, the regularized
hybrid system H = (f, g, C,D,O) satisfies

(A0) O ⊂ R
n is an open set.

(A1) C and D are relatively closed sets in O.
(A2) f : O →→ R

n is outer semicontinuous and locally bounded, and f(x) is
nonempty and convex for all x ∈ C.

(A3) g : O →→ O is outer semicontinuous and g(x) is nonempty for all x ∈ D.

One of the benefits of these properties is that, for systems that possess them,
very general conditions for existence of solutions can be given, and maximal
solutions behave as expected: that is, they are either complete or “blow up”
in finite hybrid time (a solution is complete if its domain is unbounded). More
specifically, under Assumption 1, and hence in presence of the properties listed
in Theorem 1, the following is true: if ψ0 ∈ D or the following condition holds:

(VC) ψ0 ∈ C and for some neighborhood U of ψ0, for all ψ′ ∈ U ∩ C, TC(ψ′) ∩
F (ψ′) 6= ∅,

then there exists a nontrivial Krasovskii solution ψ to H with ψ(0, 0) = ψ0. If
(VC) holds for all ψ0 ∈ C\D, then for any maximal solution ψ with ψ(0, 0) = ψ0

(a Krasovskii solution ψ is said to be maximal if there does not exist another
Krasovskii solution ψ′ such that ψ is a truncation of ψ′ to some proper subset
of domψ′) at least one of the following statements is true:

(i) ψ is complete;

(ii) ψ eventually leaves every compact subset of O: for any compact K ⊂ O,
there exists (T, J) ∈ domψ such that for all (t, j) ∈ domψ with (T, J) ≺
(t, j), ψ(t, j) 6∈ K;

(iii) for some (T, J) ∈ domψ, (T, J) 6= (0, 0), we have ψ(T, J) 6∈ C ∪D.

If additionally

(VD) for all ψ0 ∈ D, G(ψ0) ⊂ C ∪D,

then case (iii) above does not occur. For details, see [21, Proposition 2.5].
Note that the viability condition (VC) for the continuous evolution is au-

tomatically satisfied at each point ψ0 in the interior of C. Therefore, when
C ∪ D = O (a condition that is common in many models for hybrid systems,
see the Introduction), (VC) holds for all ψ0 ∈ C \D since C \D = O \D and
the latter set is open. Consequently, if C ∪D = O, for all ψ0 ∈ O there exists a
nontrivial solution ψ with ψ(0, 0) = ψ0.

Example 2. Consider the system from Example 1. Since the set D is thin, ar-
bitrarily small noise can cause “classical” solutions, or solutions understood as
hybrid arcs satisfying (1), starting from initial points ξ0 with 0 < |ξ0| < 1,
ξ 6∈ D, to miss D and never jump. On the other hand, arbitrarily small noise
can cause solutions from ξ0 with |ξ0| = 1 to jump (to a point near (0.5, 0)) when



the solution is near (1, 0). Finally, once a solution ξ is such that 0 < |ξ(t)| < 1,
arbitrarily small noise can cause it to miss D and rotate, jump several times
in arbitrarily short time, or display any combination of these behaviors. (So in
particular, when limits of such solutions under vanishing noise are considered,
uniqueness – present for “classical” solutions – is lost.)

Such potential effects of noise on the system are captured by its Krasovskii
regularization. Here, we get C = R

2, D = [0, 1] × {0}, while f = f , g = g. The
fact that C = R

2 results in Krasovskii solutions that only flow, or rotate around
the origin an arbitrary number of times in between jumps. The point (1, 0) being
in D leads to solutions starting with |ξ(0)| = 1 that jumps at some time. These
features, and the generality of hybrid time domains, capture the behavior of the
original system under (arbitrarily small) noise.

2.3 Generalized solutions a la Hermes

To define hybrid Hermes solutions to a hybrid system, we need a concept of con-
vergence of hybrid arcs that admits sequences of arcs with potentially different
domains. Consequently, we will rely on graphical convergence. Given a hybrid
arc x with domain domx, its graph is the set

gphx := {(t, j, x(t, j)) ∈ R≥0 × N ×O | (t, j) ∈ domx} .

A sequence of hybrid arcs {xi}
∞
i=1 converges graphically to a hybrid arc x if the

sequence of graphs {gphxi}
∞
i=1 converges to gphx in the sense of set conver-

gence. The latter concept is well-established and often used in set-valued and
nonsmooth analysis; see [32, 2]. For precise definitions of general set and graphi-
cal convergence we refer the reader to [32, Chapters 4,5]; below we state a version
of [32, Exercise 5.34] relevant for our purposes. For further details on graphical
convergence of hybrid arcs we recommend [20]. Finally, we add that graphical
convergence is closely related to convergence in the Skorokhod topology used in
[15].

Lemma 1 (graphical convergence of hybrid arcs). Let x be a hybrid arc
with compact domx, and let (T, J) be the supremum of domx. A sequence
{xi}

∞
i=1 of hybrid arcs with domxi ⊂ R≥0 × {0, 1, . . . , J}, i = 1, 2, . . . , con-

verges graphically to x if and only if for all ε > 0, there exists i0 ∈ N such that,
for all i > i0

(a) for all (t, j) ∈ domx there exists s such that (s, j) ∈ domxi, |t− s| < ε,
and |x(t, j) − xi(s, j)| < ε,

(b) for all (t, j) ∈ domxi there exists s such that (s, j) ∈ domx, |t − s| < ε,
and |xi(t, j) − x(s, j)| < ε.

In particular, a sequence {xi}
∞
i=1 of hybrid arcs with domxi ⊂ domx, i =

1, 2, . . . , converges graphically to x if for all ε > 0 there exists i0 ∈ N such that,
for all i > i0, all (t, j) ∈ domx, we have (t, j) ∈ domxi and |x(t, j)−xi(t, j)| < ε.



Equipped with graphical convergence, we generalize the definition of Hermes
solutions discussed by Hermes in [23] and later defined by Hàjek in [22].

Definition 5 (hybrid Hermes solution to H). A hybrid arc ϕ : domϕ→ O
is a hybrid Hermes solution to H = (f, g, C,D,O) if for each compact hybrid time
domain D ⊂ domϕ and the truncation ϕD of ϕ to D, there exists a sequence
of hybrid arcs ϕi : domϕi → O and measurable functions ei : dom ei → R

n,
dom ei = domϕi, that satisfy, for each i,

(H1) for all j ∈ N and almost all t such that (t, j) ∈ domϕi,

ϕi(t, j) + ei(t, j) ∈ C, ϕ̇i(t, j) = f(ϕi(t, j) + ei(t, j)); (6)

(H2) for all (t, j) ∈ domϕi such that (t, j + 1) ∈ domϕi,

ϕi(t, j) + ei(t, j) ∈ D, ϕi(t, j + 1) = g(ϕi(t, j) + ei(t, j)) (7)

with the property that limi→∞ ϕi(0, 0) = ϕ(0, 0), {ϕi}
∞
i=0 converges graphically

to ϕD, for each i we have sup(t,j)∈dom ei
|ei(t, j)| =: εi < +∞, and the sequence

{εi}
∞
i=0 converges to 0.

To illustrate what graphical convergence (vs. classical convergence notions)
grants us, we give two somewhat extreme, but important, examples.

Example 3. Consider the system from Example 1, and a sequence of points on
the line x1 = x2 converging to (0, 0). From each such point, one can find noise
ei and a “classical” solution ξi so that ξi rotates to D, and then jumps infinitely
many times, with jumps separated by less than 1/i amount of time. (We argued
that this is possible in Example 1.) The resulting sequence of hybrid arcs ξi

converges graphically to a hybrid arc ξ with dom ξ = {0} × N (that is, ξ never
flows) and for all j ∈ N, ξ(0, j) = (0, 0). Such ξ is a Hermes solution. It is also
a Krasovskii solution, since (0, 0) ∈ D and g(0, 0) = (0, 0). (Recall though that
(0, 0) 6∈ D!)

Example 4. Consider a hybrid system on R
2 given by D = R

2; C = [0,+∞) ×
{0}; f(x1, x2) = (1, 1) for every point (x1, x2) where x1 is rational, otherwise
f(x1, x2) = (1,−1); and g(x) = 0. For any point ξ0 ∈ C every classical solution
cannot flow since it would be pushed away from the set C. On the other hand,
in the presence of arbitrarily small noise, a “classical” solution can flow along
the C set towards +∞. Note that such a solution is also a Krasovskii solution
since the regularization of f is given by f(x1, x2) = (1, [−1, 1]).

In many control applications, the state of the system cannot be measured
exactly since it is corrupted by noise. The measurement noise can appear in some
but not every component of the state (e.g. when state feedback is implemented,
noise appears only on states measured with specific sensors). To account for such
cases, we consider functions f and g given as

∀x ∈ C f(x) := f ′(x, κc(x)), ∀x ∈ D g(x) := g′(x, κd(x)) (8)



where f ′ : O × U → R
n and g′ : O × U → O, κc : C → U , and κd : D → U ,

U ⊂ O. We allow for κc, κd to be discontinuous.
The notion of Hermes solution in Definition 5 changes for a hybrid system

H = (f, g, C,D,O) with f and g given by (8) since the noise is affecting the
differential and difference equations only through the function κc and κd.

Definition 6 (hybrid control-Hermes solution to H). A hybrid arc ϕ :
domϕ → O is a hybrid control-Hermes solution to H = (f, g, C,D,O) with f
and g given in (8) if for each compact hybrid time domain D ⊂ domϕ and the
truncation ϕD of ϕ to D, there exists a sequence of hybrid arcs ϕi : domϕi → O
and measurable functions ei : dom ei → R

n, dom ei = domϕi, that satisfy, for
each i,

(cH1) for all j ∈ N and almost all t such that (t, j) ∈ domϕi,

ϕi(t, j) + ei(t, j) ∈ C, ϕ̇i(t, j) = f ′(ϕi(t, j), κc(ϕi(t, j) + ei(t, j))); (9)

(cH2) for all (t, j) ∈ domϕi such that (t, j + 1) ∈ domϕi,

ϕi(t, j) + ei(t, j) ∈ D, ϕi(t, j + 1) = g′(ϕi(t, j), κd(ϕi(t, j) + ei(t, j)))
(10)

with the property that limi→∞ ϕi(0, 0) = ϕ(0, 0), {ϕi}
∞
i=0 converges graphically

to ϕD, for each i we have sup(t,j)∈dom ei
|ei(t, j)| =: εi < +∞, and the sequence

{εi}
∞
i=0 converges to 0.

3 Statement of main results

Following the work by Hermes [23] and Hàjek [22], we show that hybrid Krasovskii
solutions to H are equivalent to hybrid Hermes solutions to H.

Theorem 2 (Krasovskii solutions ≡ Hermes solutions). Under Assump-
tion 1, a hybrid arc is a hybrid Krasovskii solution to H if and only if it is a
hybrid Hermes solution to H.

The two implications are stated and proved as Corollary 4.4 and Corollary
5.2 in [34].

We note that Theorem 2 generalizes, to the hybrid framework, the result
by Hàjek [22] given for differential equations. In proving the theorem, we first
extend some results by Hàjek to differential equations with a constraint (and we
give a proof quite different from that by Hàjek). We will also rely on results on
perturbations of hybrid systems given in [20].

Assumption 2 The functions f ′ is locally Lipschitz in the first argument uni-
formly in the second argument. The function g′ is continuous in the first argu-
ment uniformly in the second argument.



The result below is a generalization to the hybrid framework of the result
given by Coron and Rosier [16] in the context of robust stabilizability of nonlinear
systems with time-varying feedback laws.

Theorem 3 (Krasovskii solutions ≡ control-Hermes solutions). Under
Assumptions 1 and 2, for a hybrid system H with f and g given in (8), a hybrid
arc is a hybrid Krasovskii solution to H if and only if it is a hybrid control-
Hermes solution to H.

The two implications are stated and proved as Corollary 4.7 and Proposition
5.1 in [34] (One of them naturally follows from Theorem 2.)

4 Examples

Here we discuss examples that illustrate that generalized solutions to hybrid
systems play a very important role in the robust stabilization problem.

Example 5 (reset and impulsive control systems). For the problem of stabilizing
dynamical systems with state feedback, controllers that have states that jump
when certain conditions are satisfied have been proposed in the literature as it
is the case of reset and impulsive control systems, see e.g. [14], [27], [6], [42]. A
reset controller is a linear system with the property that its output is reset to
zero whenever its input and output satisfy certain algebraic condition. The first
reset integrator was introduced in [14] in order to improve the performance of
linear systems. Several models for reset control systems and various design tools
are currently available in the literature. One of the models for (closed-loop) reset
control systems that has been widely used in the literature, see e.g. [6] and the
references therein, assumes the form

ẋ = Aclx+Bcld x 6∈ M (11)

x+ = ARx x ∈ M (12)

where M := {x ∈ R
n | Cclx = 0, (I −AR)x 6= 0}; Acl, Bcl, Ccl are the closed-

loop system matrices; AR is the reset control matrix; x is the state of the system;
and d is an exogenous signal. The set where resets are possible is a subset of
{x ∈ R

n | Cclx = 0} and is given by D := M, while the set where the flows are
active is given by C := R

n \M. Note that the latter set corresponds to almost
every point in the state space. It follows that for every trajectory of the system it
is possible to construct an arbitrarily small measurement noise signal so that the
measurement of the state never belongs to the jump set M, so that the solution
never jumps.

Therefore, in the presence of arbitrary small measurement noise, there ex-
ist solutions to the reset control system that never jump. Note that since the
measurement noise can be picked arbitrarily small, a sequence of solutions con-
verging to a solution that never jumps under the presence of measurement noise
with magnitude converging to zero can be constructed, a Hermes solution to the



reset control system. The limiting solution corresponds to a Krasovskii solution
to the reset control system and it satisfies (K1) and (K2) in Definition 4 on the
regularized sets C = R

n and D = M, respectively.
This lack of robustness not only arises in situations where exogenous signals

are present in the system but also in numerical simulation. When the reset
control system (11)-(12) is implemented in Simulink with an integrator with
reset and simple function blocks, the discretization in time produced by the
ODE solver may prevent the resets from being triggered and one has to appeal
to special Simulink blocks with zero-crossing detection. These special blocks
confer certain robustness properties to the closed loop and, in some situations,
make the simulation possible while affecting the model considered in the first
place.

Now consider the state-dependent impulsive dynamical system first intro-
duced in [5] that is modeled as (see also [12] and the references therein)

ẋ = fc(x) x 6∈ M (13)

x+ = x+ fd(x) x ∈ M (14)

where the function fc defines the continuous dynamics, the function fd defines
the discrete dynamics, and M is the reset set. In most applications of state-
dependent impulsive dynamical systems, the reset set M defines a surface in R

n

(for example, see the modeling examples in [12] or the feedback control strategies
proposed in [37, 33]). In such situations, it is also the case that arbitrarily small
measurement noise in the state x can prevent every solution to the closed-loop
system from jumping.

Example 6 (optimal control). In many robotics applications, optimal navigation
algorithms for mobile robots are designed by switching between several feedback
laws when the state of the system reaches the switching surface corresponding
to the current operation mode, see e.g. [1],[17], [7]. Since the switches between
modes occur when the state reaches the switching surface, arbitrarily small mea-
surement noise can prevent the switches from occurring, and consequently, can
cause the navigation task to fail.

Consider the example given in [7, Section 3] where a mobile robot of the uni-
cycle type is optimally steered from its initial location to a target (by optimality
the authors mean that the vehicle reaches the target while avoiding obstacles so
that it minimizes a cost function that penalizes the distance from the obstacle
and the proximity to the target). In this case, a hysteresis-type switching scheme
is designed around a circular obstacle by defining two circular surfaces given by
gi(x, y, ai) = (x0 −x)2 + (y0 − y)2 − a2

i , i = 1, 2, a2 > a1. When the surface g1 is
reached with the vector field pointing inwards, the control law switches to the
one that drives the vehicle away from the obstacle while when the surface g2 is
reached with the vector field pointing outwards, the control law is switched to
the one that steers the vehicle to the target. Figure 6 depicts this scenario. Even
though this strategy solves the chattering problem when only one switching sur-
face is considered, arbitrary small measurement noise can prevent the switch on



the surface g1 from happening (causing the vehicle to crash against the obstacle)
or it can also preclude the switch on the other surface to occur (causing the vehi-
cle to miss its target). Note that the nonrobustness phenomenon in this example

Fig. 2. Steering a vehicle to its target: the circles represent the switching surfaces
for the control strategy.“Classical” (solid) and generalized (dashed) solutions to the
optimal control problem in Example 6.

is not due to the existence of obstacles itself (see [39]), it is mainly related to the
fact that the concept of solution and the modeling framework were not designed
for asymptotic stability to be robust.

5 Conclusions

In this paper, motivated by the problem of robust stabilization of hybrid systems,
we have discussed the concepts of hybrid Krasovskii, Hermes, and control-Hermes
solutions. We have established that these three concepts of generalized solutions
are equivalent. This equivalence implies that hybrid Krasovskii solutions can be
approximated with arbitrary precision by solutions to the unregularized system
with (arbitrarily small) measurement noise. By examples of theoretical and prac-
tical relevance, we have motivated the use of generalized solutions in the design
of robust hybrid control systems.
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