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Abstract— The problem of establishing synchronization of
a class of impulsive oscillators is considered. Each impulsive
oscillator is modeled as a hybrid system that self resets to zero
when its state reaches a threshold and is externally reset via an
impulsive update law when information from other oscillators
is received. At every reset to zero, the oscillators broadcast a
packet and select a different communication channel. The mech-
anism resembles that of a firefly model in which the external
resets correspond to flashes of the fireflies. Oscillators canonly
receive information when they are on the same channel that a
packet was broadcast. This mechanism leads to the possibility
of information loss. Under such a communication constraint,
we show that the coupled impulsive oscillators (almost globally)
synchronize their channel selections. To establish this result, we
model the interconnection of oscillators as a hybrid systemand
apply recently developed Lyapunov stability tools. Numerical
simulations are included to illustrate the results.

I. I NTRODUCTION

Impulsive oscillators are dynamical systems with states
that evolve continuously until an event occurs, at which
instant they exhibit an instantaneous jump; see, e.g., [1],
[2], [3]. Networks of such oscillators, under the namein-
tegrate and fire oscillatorsand pulse-coupled oscillators,
have been employed to capture the dynamics of a wide
range of biological systems [4], [1], including neurons, heart
muscle cells, crickets, and fireflies; as well as in the design
of network communication algorithm [5], [6], [7]. Relying
only on minimal information, such networks of impulsive
oscillators have been shown to asymptotically synchronize
their variables in ideal communication settings [1].

In this paper, we analyze the synchronization properties
of pulse-coupled oscillators communicating over two bidirec-
tional channels. Bidirectional communication channels allow
for both transmission and reception of information on the
same channel. These channels are available to each oscillator.
In such a setting, the packets transmitted by each oscillator
on the currently chosen channel generate an event in the other
oscillator only if they are on same communication channel.

Our motivation for the study of this problem stems from
the control of networked reconfigurable systems, in particu-
lar, cognitive radio systems in space applications, in which
system parameters, such as communication channel, trans-
mission power, and direction of transmission or reception,
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can be updated in real time to react to a changing envi-
ronment. In space applications, two-agent communication
scenarios are key as they capture the scenario consisting ofa
ground station establishing a link with a satellite. Cognitive
radio is a form of software defined radio. It is an agile
communication system capable of dynamically changing its
protocols with the rapid changes of the environment, due
to adversarial jammers, managing communication with a
primary user, and rendezvousing with other users in a de-
centralized network. In this context, the impulsive oscillators
represent agents or radios that, through dynamic selectionof
the communication channel parameters, synchronize chan-
nel access with minimal information using feedback-based
protocols. This feature could be advantageous in preventing
adversaries from disrupting agent-to-agent communication
since no pre-specified channel selection is made. In fact, tra-
ditional algorithms for establishing communication between
nodes rely on a fixed channel selection sequence, such as the
so-calledfrequency hopping algorithmwhich assigns to each
agent a frequency-hopping pattern specifying the sequence
(or code) of frequencies at which transmission is allowed
[8]; see related work in [9], [10] and [11]. Compared with
such works, a key feature of the algorithm emerging from the
impulsive synchronization problem studied in this paper is
that it does not require pilot tones on a pre-specified channel
and that the channel selection patterns are determined in real
time and based on feedback control.

The approach taken in this paper consists of modeling
the pulse-coupled oscillators as a hybrid dynamical system,
with continuous dynamics capturing the evolution of the
oscillator’s state in between impulses and discrete dynam-
ics modeling self- and externally-triggered impulses. The
resulting hybrid system contains continuous states, which
are timers corresponding to the oscillator’s variables, and
discrete states, which are variables denoting the channel
selected by each oscillator. Synchronization is recast as a
compact set stabilization problem. Asymptotic stability of
this set implies that the difference between the states of
the oscillators and of the logic variables representing the
selected channels converge to zero. Analysis is performed
using the framework of hybrid systems in [12] and tools
to assert asymptotic stability in [12], [13]. We construct a
Lyapunov function to show synchronization for the case of
two oscillators on two channels.

The remainder of this paper is organized as follows.
Section II is devoted to modeling. Section III presents the
main tools for analysis as well as the main result. Numerical
simulations are presented in Section IV.



II. M ODELING IMPULSIVE OSCILLATORS WITH

CHANNEL DEPENDENCY

The pulse-coupled oscillator system of study consists of
oscillators defining the agents with continuous states given
by timers (τ1, τ2) and discrete states(q1, q2) denoting the
current channel selection. These states are discretely updated
when they reach a threshold and are externally reset when
information is received. Information arrives to each agents
from pre-defined channels. The agents can listen to one
channel at a time.

Consider the case of two agents communicating over two
channels via the following mechanism:

A) Each agent listens on the currently selected channel
until its timer expires. Under such an event, the agent
transmits a signal (or packet) on the current channel,
resets its timer to zero, and switches to the other
channel. Figure 1(a) shows that situation for a single
pulse-coupled oscillator.

B) If an agent receives a packet while listening on the
currently chosen channel, its timer is reset via an update
law that reduces the listening time on that channel
for the receiving agent. Figure 1(b) demonstrates the
interaction between two pulse-coupled oscillators.

This mechanism can be thought as a control algorithm.
It is inspired by synchronization of biological systems in
[4], [1], where agents can “listen” all the time. In fact,
the main difference between the mechanism above and the
synchronization mechanism studied in [1] is that here thereis
a constraint on data reception, which depends on the channel
currently chosen by the agents and does not guarantee that
information sent is always received. In the case of a common
channel and no information loss, the agents will synchronize
as in the work of [1].

A. Hybrid Modeling

Our approach is to use a hybrid system model to capture
mathematically the mechanism outlined in A) and B) above.
Hybrid systems allow for states that both flow and jump,
and allow for analysis of the above mechanism in which
events cause timers and channel selection states jump. To this
end, we follow the hybrid formalism of [12], where a hybrid
systemH is given by four objects(C, f,D,G) defining its
data:

• Flow map: a single-valued mapf : Rn → R
n defining

the flows (or continuous evolution) ofH.
• Flow set: a setC ⊂ R

n specifying the points where
flows are possible.

• Jump map: a set-valued mapG : Rn
⇉ R

n defining
the jumps (or discrete evolution) ofH.

• Jump set: a setD ⊂ R
n specifying the points where

jumps are possible.

Then, a hybrid systemH := (C, f,D,G) can be written in
the compact form

H : x ∈ R
n

{

ẋ = f(x) x ∈ C

x+ ∈ G(x) x ∈ D
, (1)
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Fig. 1. (a) Trajectories(τ1, q1) of a single pulse-coupled oscillator over
two channels. (b) Trajectories(τ1, q1) and (τ2, q2) of two pulse-coupled
oscillators over two channels.

where the statex can contain both continuous and discrete
states. We refer the reader to [12] for more details about this
modeling framework.

From the outline in A) and B) above a two agent/two
channel mechanism can be modeled as a hybrid system in
(1). We denote it asH2,2. For eachi ∈ {1, 2}, thei-th agent
has a timer stateτi and a channel stateqi ∈ Q := {1, 2}.
The timer state takes value in the set[0, 2τ̄ ], whereτ̄ > 0 is
a parameter defining the threshold for jumps. Then, the state
of the two agent/two channel system is given by

x :=









τ1
q1
τ2
q2









∈ P := [0, 2τ̄ ]×Q× [0, 2τ̄ ]×Q.

The flow and jump sets are defined to constrain the evolution
of the timers (τ1, τ2) and the channel state(q1, q2). For
example, when agent1 is listening to channel one, that is,
q1 = 1, the timer τ1 takes value in the set[0, τ̄ ], while
when agent1 is listening to channel two,q1 = 2, and τ1
takes value in[τ̄ , 2τ̄ ]. Then, flows are allowed when each of



the agent’s timers are within the range corresponding to the
current channel on which they are listening. This is captured
via the flow set

C := {x ∈ P : (τ1, q1) ∈ C1, (τ2, q2) ∈ C2}, (2)

where, for eachi ∈ Q,

Ci := {(τi, qi) ∈ [0, 2τ̄ ]×Q : (qi − 1)τ̄ ≤ τi ≤ qiτ̄}.

During flows, the timers count ordinary time and the channel
state remains constant, i.e.,

f(x) :=
[

1 0 1 0
]⊤

∀ x ∈ C. (3)

The discrete events described in A) and B) above are
modeled by a jump setD and a jump mapG. The events or
jumps are triggered when a timer expires, i.e., the jump set
D captures timer resets and packet reception events. These
events correspond to either timer reaching its threshold. More
precisely:

D := {x ∈ C : (τ1, q1) ∈ D1} ∪ {x ∈ C : (τ2, q2) ∈ D2},
(4)

whereDi := {(τi, qi) ∈ [0, 2τ̄ ] × Q : τi = qiτ̄}. In such a
case, the agent whose timer expired transmits a packet on its
current channel and changes channel by updating its channel
state and timer state appropriately. If the other agent is in
the same channel, then its timer is incremented by a timer
advance constant,ε ∈ (0, 2τ̄ ], as to reduce the listening time
on that channel. This is captured via the jump map

G(x) =































g1(x) if τ1 = q1τ̄ , τ2 < q2τ̄ , q1 = q2
g2(x) if τ1 < q1τ̄ , τ2 = q2τ̄ , q1 = q2
g3(x) if τ1 = q1τ̄ , τ2 < q2τ̄ , q1 6= q2
g4(x) if τ1 < q1τ̄ , τ2 = q2τ̄ , q1 6= q2
g5(x) if τ1 = q1τ̄ , τ2 = q2τ̄ , q1 = q2
g6(x) if τ1 = q1τ̄ , τ2 = q2τ̄ , q1 6= q2

(5)
∀ x ∈ D.

The first case(g1) of G corresponds to the case when agent
1’s timer reaches a threshold, which means that it is about
to transmit a packet, agent 2’s timer is not at a threshold,
which means that it is listening, while both agents are on
the same channel. In this way,g1 is defined as

g1(x) =





(2− q1)τ̄
3− q1
n2(x)



 ,

n2(x) =















































[

τ2 + ε

q2

]

if τ2 + ε < q2τ̄

[

(2 − q2)τ̄
3− q2

]

if τ2 + ε > q2τ̄

{[

τ2 + ε

q2

]

,

[

(2− q2)τ̄
3− q2

]}

if τ2 + ε = q2τ̄

.

The functionn2 describes how agent 2 reacts to incoming
information, allowing for timer resetting and channel switch-
ing if the jump pushes the timer past the threshold. More

precisely, if the new value of the timerτ2, which after the
reset isτ2+ε, is below the current threshold, then updateτ2
to τ2 + ε, but if it is above the current threshold, then reset
it as if it expired and switch channels. Whenτ2 + ε = q2τ̄

then the jump set is within a set of values and will do either.
The definition of the functiong2 in G is asg1, but with

reverse roles. More precisely, it is given as

g2(x) =





n1(x)
(2− q2)τ̄
3− q2



 ,

n1(x) =















































[

τ1 + ε

q1

]

if τ1 + ε < q1τ̄

[

(2 − q1)τ̄
3− q1

]

if τ1 + ε > q1τ̄

{[

τ1 + ε

q1

]

,

[

(2− q1)τ̄
3− q1

]}

if τ1 + ε = q1τ̄

.

Functionsg3 and g4 capture the cases when the agents are
in different channels. They are given by

g3(x) =









(2 − q1)τ̄
3− q1
τ2
q2









, g4(x) =









τ1
q1

(2− q2)τ̄
3− q2









.

When both agents reach their threshold at the same time
neither are listening, so they both change channels and reset
their timers. Functionsg5 andg6 correspond to such a case,
whereg5 corresponds to the case that the agents are in the
same channel whileg6 to the case when they are not. Then

g5(x) = g6(x) =









(2 − q1)τ̄
3− q1

(2 − q2)τ̄
3− q2









.

B. Basic Properties ofH2,2

To apply analysis tools for hybrid systems, which will be
presented in Section III, the data of the hybrid systemH2,2

must meet certain mild conditions [12]. These conditions,
referred to asBasic Assumptions, are as follows:

A1) C andD are closed sets inRn.
A2) f : Rn → R

n is continuous onC.
A3) G : Rn

⇉ R
n is an outer semicontinuous set-valued

mapping, locally bounded onD, and such thatG(x) is
nonempty for eachx ∈ D.

A set-valued mappingG : Rn
⇉ R

n is outer semicontin-
uous if its graph{(x, y) : x ∈ R

n, y ∈ G(x)} is closed. In
terms of set convergence,G is outer semicontinuous if and
only if, for eachx ∈ R

n and each sequencexi → x, the outer
limit lim supi→∞ G(xi) is contained inG(x). The mapping
G is locally boundedon a setD if, for each compact set
K ⊂ D, G(K) is bounded.

Lemma 2.1: The data ofH2,2 satisfies the Basic Assump-
tions.



III. SYNCHRONIZATION PROPERTIES OF THEHYBRID

SYSTEM MODEL FOR TWO IMPULSIVE OSCILLATORS

WITH CHANNEL DEPENDENCY

In this section, we summarize tools for stability analysis
of hybrid systems and then apply them to the two agents/two
channels systemH2,2.

A. Tools for Stability Analysis of Hybrid Systems

Solutions to general hybrid systemsH, H2,2 in particular,
can evolve continuously (or flow) and/or discretely (or jump)
depending on the continuous and discrete dynamics and the
sets where those dynamics apply. We treat the number of
jumps as an independent variablej and we parameterize the
state by(t, j). Solutions toH will be given by hybrid arcs
on hybrid time domains.

Definition 3.1: (hybrid time domain) A subsetS ⊂ R≥0×
N is a compact hybrid time domainif

S =

J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times0 = t0 ≤ t1 ≤ t2 ... ≤ tJ .
A subsetS ⊂ R≥0 × N is a hybrid time domainif for all
(T, J) ∈ S, S ∩ ([0, T ]× {0, 1, ...J}) is a compact hybrid
time domain.

Definition 3.2: (hybrid arc) A functionx : domx → R
n

is a hybrid arc if domx is a hybrid time domain and if for
eachj ∈ N, the functiont 7→ x(t, j) is locally absolutely
continuous.

Definition 3.3: (solution) A hybrid arcx is a solution to
the hybrid systemH if x(0, 0) ∈ C ∪D and:
(S1) For allj ∈ N and almost allt such that(t, j) ∈ domx,

x(t, j) ∈ C, ẋ(t, j) = F (x(t, j)) .

(S2) For all(t, j) ∈ domx such that(t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)) .

A solutionx is said to benontrivial if domx contains at
least one point different from(0, 0), maximal if there does
not exist a solutionx′ such thatx is a truncation ofx′ to some
proper subset ofdomx′, completeif domx is unbounded,
andZenoif it is complete but the projection ofdomx onto
R≥0 is bounded.

Our goal is to show that the solutionsx = (τ1, q1, τ2, q2)
to H2,2 are such that

τ1(t, j)− τ2(t, j) → 0 and q1(t, j)− q2(t, j) → 0

as t + j → ∞, and that if the initial conditionsτ1(0, 0),
q1(0, 0) and τ2(0, 0), q2(0, 0) are close, then the solutions
stay close. In other words, our goal is to show that the
compact set

A := {x ∈ C ∪D : τ1 = τ2, q1 = q2} (6)

is asymptotically stable for the hybrid systemH2,2. Due
to the evolution of the timers being periodic when inA,
asymptotic stability ofA is a synchronization property for

the agent timers. A precise definition of asymptotic stability
for hybrid systemsH is given next.

Definition 3.4 (stability):A compact setA ⊂ R
n is said

to be
• stableif for eachε > 0 there existsδ > 0 such that each

solutionx with |x(0, 0)|A ≤ δ satisfies|x(t, j)|A ≤ ε

for all (t, j) ∈ domx;
• attractive if there existsµ > 0 such that every solu-

tion x with |x(0, 0)|A ≤ µ is complete and satisfies
lim(t,j)∈dom x,t+j→∞ |x(t, j)|A = 0;

• asymptotically stableif stable and attractive;

where|x|Σ is generally defined asinfy∈Σ |x− y| for the set
Σ ⊂ R

n and a pointx ∈ R
n. The set of points from where

the attractivity property holds is the basin of attraction.
A Lyapunov function can be employed to show that the

compact set in (6) is asymptotically stable. For a function
V to be considered a Lyapunov candidate it must meet the
following requirements.

Definition 3.5: (Lyapunov function candidate) Given the
hybrid systemH with data (C, f,D,G) and the compact
setA ⊂ R

n, the functionV : domV → R is a Lyapunov
function candidatefor (H,A) if

i) V is continuous and nonnegative on(C ∪ D) \ A ⊂
domV ,

ii) V is continuously differentiable on an open setO
satisfyingC \ A ⊂ O ⊂ domV , and

iii) lim{x→A, x∈domV ∩(C∪D)} V (x) = 0.

Conditions i) and iii) hold whendomV containsA∪C∪D,

V is continuous and nonnegative on its domain, andV (z) =
0 for all x ∈ A. The following result from [12, Theorem
23] states the conditions onV for asymptotic stability of a
compact set. Below, a level setLV (µ) refers to the set of all
points inC ∪ D such thatV (x) = µ, i.e., LV (µ) := {x ∈
C ∪D : V (x) = µ}.

Theorem 3.6: [12, Theorem 23] Consider a hybrid system
H = (C, f,D,G) satisfying the Basic Assumptions and a
compact setA ⊂ R

n satisfyingG(D ∩ A) ⊂ A. If there
exists a Lyapunov function candidateV for (H,A) that is
positive on(C ∪D) \ A and satisfies

〈∇V (x), f(x)〉 ≤ 0 for all x ∈ C \ A,

V (g)− V (x) ≤ 0 for all x ∈ D \ A, g ∈ G(x) \ A

then the setA is stable. If, furthermore, there exists a
compact neighborhoodK of A such that, for eachµ > 0, no
complete solution toH remains inLV (µ)∩K, then the setA
is asymptotically stable. In this case, the basin of attraction
contains every compact set contained inK that is forward
invariant.

B. Asymptotic Stability Analysis ofH2,2

The overall goal of this section is to determine the stability
and attractivity properties of the set of points (6). We
consider the functionV : R4 → R given by

V (x) = (1−ρ(x))V1(x)+ρ(x)V2(x) ∀x ∈ C∪D, (7)



whereV1 is a piecewise function given by

V1(x) =















































1
ε
(τ1 − τ2)

2 + ε
4
if |τ1 − τ2| ≤

ε
2 ,

1
ε
(τ1 − τ2 − 2τ̄)

2
+ ε

4
if τ1 − τ2 ≥ 2τ̄ − ε

2 ,
1
ε
(τ1 − τ2 + 2τ̄)

2
+ ε

4
if τ1 − τ2 ≤ −2τ̄ + ε

2 ,

V2(x)
if |τ1 − τ2| ∈

(

ε
2 , 2τ̄ − ε

2

)

,

,

hereε ∈ (0, 2τ̄ ], V2 is given by

V2(x) = min{|τ1 − τ2|, 2τ̄ − |τ1 − τ2|},

and,ρ is aC1 function satisfying

ρ(x) =

{

0 if q1 6= q2, q1, q2 ∈ {1, 2}
1 if q1 = q2 ∈ {1, 2}

and, for allx ∈ C,

∇τ1ρ(x) = 0 and ∇τ2ρ(x) = 0.

For points not inC ∪D, the Lyapunov functionV is given
by any positive and continuous function that is continuously
differentiable (almost everywhere). Furthermore, it can be
verified that the Lyapunov function satisfies the conditions
in Definition 3.5.

Using τ̄ = 1 and ε = 0.3, Figure 2 showsV when
q1 = q2, and q1 6= q2. Note that whenq1 = q2, we have
V (x) = V2(x), while whenq1 6= q2, we haveV (x) = V1(x).
This function was constructed in this way to eliminate points
whereV (x) = 0 outside of the compact setA, which are
points belonging to the blue lines in Figure 3. The function
is not differentiable at these points and at pointsτ2 = τ1± τ̄ .
The latter points, which are denoted by the green lines
in Figure 3, will need to be removed from the basin of
attraction.

The following stability result forH2,2 can be established
using the Lyapunov function in (7) and Theorem 3.6.

Theorem 3.7: (Timer synchronization with limited infor-
mation) For everyτ̄ > 0 and ε ∈ (0, 2τ̄ ], the hybrid
systemH2,2 is such thatA is asymptotically stable with
basin of attraction containing every sublevel setLV (µ) with
µ ∈ [0, τ̄ ).

Remark 3.8:For initial conditions in{C ∪ D : |τ1 −
τ2| = τ̄ , q1 6= q2} solutionsx(t, j) stay in the level set
V (φ(t, j)) = τ̄ . Note the green lines in Figure 3. For
such solutions, the state does not converge toA because
both agents jump simultaneously but on opposite channels,
and thus missing the information transmitted. This point is
corroborated by a Lyapunov local maximum at these states.
Solutions from all other initial conditions inC∪D approach
the synchronization condition defined byA.

IV. N UMERICAL ANALYSIS

Solutions toH2,2 fall into three categories: always syn-
chronized, asymptotically synchronized, and desynchronized.
The simulations below show the evolution of these solution
types. The parameters used areτ̄ = 1, ε = 0.05.

τ2
τ1

V
(x
)

(a) q1 = q2

τ2
τ1

V
(x
)

(b) q1 6= q2

Fig. 2. A plot of the Lyapunov function V in (7) for eachx in C ∪D
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Fig. 3. The flow set (red), the jump set (solid black), and basin of attraction
with µ-level setsLV (τ̄ ) (in blue) andLV (0) (in green) for each pair
(q1.q2)

1) Always synchronized:A solution that starts in the setA
will always stay synchronized, that is,A is forward invariant.
Figure 4(a) shows the evolution of such a solution. The top
figure shows the timer value and the bottom figure shows the
channel of the agents.

2) Asymptotically synchronized:A solution that starts
close toA reaches synchronization rapidly. The initial condi-
tion for the simulation is such that|τ1−τ2| < ε, so after one
jump the two timers are the same. When the two timers start
close to the set of points from where synchronization is not
possible, the time needed to reach synchronization is much
larger. The simulation in Figure 4(b) shows that the solution



starts far fromA but still converges. The initial conditions
for these simulations areτ1(0, 0) = 0.3, q1(0, 0) = 1, and
τ2(0, 0) = 1.31, q2(0, 0) = 2.
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(a) A solution toH2,2 that is always synchronized.
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(b) A solution toH2,2 that asymptotically synchronizes after several transitions.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

 

0 2 4 6 8 10 12 14 16 18 20

1

2

 

t [s]

t [s]

τ 1
,τ

2
q 1
,q

2

τ1
τ2

q1
q2

(c) A solution toH2,2 that never synchronizes.

3) Desynchronized:When the agents start from an initial
condition satisfying|τ1(0, 0)− τ2(0, 0)| = τ̄ andq1(0, 0) 6=
q2(0, 0), they stay desynchronized. The initial conditions
τ1(0, 0) = 1.5, τ2(0, 0) = .5, q1(0, 0) = 2 and q2(0, 0) = 1
are used for the simulation in Figure 4(c). It shows that each
agent has an offset leading to continually miss the other
agent’s transmission since they switch to opposite channels
at every jump.

V. CONCLUSION

Synchronization of a class of two impulsive oscillators
was shown through Lyapunov analysis in a hybrid frame-
work. For almost every point in the space of the timers,
the oscillators synchronize. Lost packets do not effect the
asymptotic stability property, but leads to slower convergence
than when there is no channel constraints. Extensions of the
results to the multiple agents/multiple channels case as well
as of more general update laws building from the arguments
are currently under investigation.
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