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Abstract— The problem of establishing synchronization of can be updated in real time to react to a changing envi-
a class of impulsive oscillators is considered. Each impule ronment. In space applications, two-agent communication
oscillator is modeled as a hybrid system that self resets toero scenarios are key as they capture the scenario consistig of

when its state reaches a threshold and is externally resetavian d stati tablishi link with tellite. Coiyait
impulsive update law when information from other oscillators ground station establishing a link with a satellite. Logsi

is received. At every reset to zero, the oscillators broadsa a  radio is a form of software defined radio. It is an agile
packet and select a different communication channel. The nea-  communication system capable of dynamically changing its
anism resembles that of a firefly deE! in WhiC_h the external protocols with the rapid changes of the environment, due
resets cprresporjd to flashes of the fireflies. Oscillators cammly to adversarial jammers, managing communication with a
receive information when they are on the same channel thata . . . .
packet was broadcast. This mechanism leads to the possilbyi p”maf¥ user, and rende;vousmg with Pther L_Jsers 'n a de-
of information loss. Under such a communication constraint C€ntralized network. In this context, the impulsive ostdrs
we show that the coupled impulsive oscillators (almost gladly)  represent agents or radios that, through dynamic seleafion
synchronizg their chanrjel selectipns. To establish. this sellt, we  the communication channel parameters, synchronize chan-
mode] the interconnection of oscillators as a hybrid systemand  no| access with minimal information using feedback-based
apply recently developed Lyapunov stability tools. Numertal . . .
simulations are included to illustrate the results. protocols. This feature could be advantageous in prevgntin
adversaries from disrupting agent-to-agent communinatio
since no pre-specified channel selection is made. In faet, tr
ditional algorithms for establishing communication bedwe
Impulsive oscillators are dynamical systems with stategodes rely on a fixed channel selection sequence, such as the
that evolve continuously until an event occurs, at whiclso-calledrequency hopping algorithwhich assigns to each
instant they exhibit an instantaneous jump; see, e.g., [13gent a frequency-hopping pattern specifying the sequence
[2], [3]. Networks of such oscillators, under the nanme (or code) of frequencies at which transmission is allowed
tegrate and fire oscillatorsand pulse-coupled oscillators [8]; see related work in [9], [10] and [11]. Compared with
have been employed to capture the dynamics of a wid®ich works, a key feature of the algorithm emerging from the
range of biological systems [4], [1], including neuronsatie impulsive synchronization problem studied in this paper is
muscle cells, crickets, and fireflies; as well as in the desighat it does not require pilot tones on a pre-specified channe
of network communication algorithm [5], [6], [7]. Relying and that the channel selection patterns are determinedlin re
only on minimal information, such networks of impulsivetime and based on feedback control.
oscillators have been shown to asymptotically synchronize The approach taken in this paper consists of modeling
their variables in ideal communication settings [1]. the pulse-coupled oscillators as a hybrid dynamical system
In this paper, we analyze the synchronization properti¢ith continuous dynamics capturing the evolution of the
of pulse-coupled oscillators communicating over two twdir Oscillator’s state in between impulses and discrete dynam-
tional channels. Bidirectional communication channdiswal ics modeling self- and externally-triggered impulses. The
for both transmission and reception of information on théesulting hybrid system contains continuous states, which
same channel. These channels are available to each ascilla@'® timers corresponding to the oscillator's variables) an
In such a setting, the packets transmitted by each osaillat@iscrete states, which are variables denoting the channel
on the currently chosen channel generate an event in the otgglected by each oscillator. Synchronization is recast as a
oscillator only if they are on same communication channefompact set stabilization problem. Asymptotic stabilityy o
Our motivation for the study of this problem stems from{his set implies that the difference between the states of
the control of networked reconfigurable systems, in particdh® oscillators and of the logic variables representing the
lar, cognitive radio systems in space applications, in whicSelected channels converge to zero. Analysis is performed
system parameters, such as communication channel, traH§Ng the framework of hybrid systems in [12] and tools
mission power, and direction of transmission or receptiorf® @ssert asymptotic stability in [12], [13]. We construct a
Lyapunov function to show synchronization for the case of
Sean Philips and R. G. Sanfelice are with the Department ofwo oscillators on two channels.
Aerospace and Mechanical Engineering, University of Aradl130 N. The remainder of this paper is organized as follows.
g"roil”(‘:tgir”dgvéjAgﬁfg#a'f“ggifap%@”ﬁ' I.arizona.edu,  gection[]) is devoted to modeling. Sectibnl Ill presents the
R. Scott Erwi.n is with the Air Force Research Laboratory, @péehicles main tools for analysis as well as the main result. Numerical
Directorate, Kirtland AFB, NM 87117. simulations are presented in Sectiod IV.
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IIl. MODELING IMPULSIVE OSCILLATORS WITH 2%‘\ ¥r Self reset

CHANNEL DEPENDENCY

The pulse-coupled oscillator system of study consists of
oscillators defining the agents with continuous statesrgive
by timers (11, 72) and discrete state§j,¢2) denoting the
current channel selection. These states are discretebteghd
when they reach a threshold and are externally reset when
information is received. Information arrives to each agent
from pre-defined channels. The agents can listen to one 2
channel at a time.

Consider the case of two agents communicating over two : : : : : :
channels via the following mechanism: 1 ES— : TUTINE : T :

A) Eac.:h. aggnt Iistens on the currently selected channel g
until |t§ t|mer_exp|res. Under such an event, the agent (a) A single pulse-coupled oscillator.
transmits a signal (or packet) on the current channel,
resets its timer to zero, and switches to the other 2;‘\ * External Reset
channel. Figur¢ I(h) shows that situation for a single
pulse-coupled oscillator.

B) If an agent receives a packet while listening on the T
currently chosen channel, its timer is reset via an update
law that reduces the listening time on that channel
for the receiving agent. Figufe I[b) demonstrates the
interaction between two pulse-coupled oscillators. A

This mechanism can be thought as a control algorithm.
It is inspired by synchronization of biological systems in
[4], [1], where agents can “listen” all the time. In fact, R
the main difference between the mechanism above and the 1 [.£. S S
synchronization mechanism studied in [1] is that here tigere
a constraint on data reception, which depends on the channel t[s]
currently chosen by the agents and does not guarantee that (b) Two pulse-coupled oscillators.
information sent is always received. In the case of a common S _ _
channel and no information loss, the agents wil synchniz % gha(ﬁgegélg)‘;tc}r;gégéggéﬂq"’l‘)S;”ngd'e(TZ‘f'qsf)‘%?“g'gdp3;2'_'2;%&3”
as in the work of [1]. oscillators over two channels.

Y

A. Hybrid Modeling

Our approach is to use a hybrid system model to Captuyéhere the state: can contain both continuous and discrete
mathematically the mechanism outlined in A) and B) abovetates. We refer the reader to [12] for more details abost thi
Hybrid systems allow for states that both flow and jumpmodeling framework.
and allow for analysis of the above mechanism in which From the outline in A) and B) above a two agent/two
events cause timers and channel selection states jumpisTo tehannel mechanism can be modeled as a hybrid system in
end, we follow the hybrid formalism of [12], where a hybrid (). We denote it ag{, . For eachi € {1, 2}, thei-th agent
system# is given by four object§C, f, D, G) defining its has a timer state; and a channel statg € @ := {1,2}.
data The timer state takes value in the $&t27], where7 > 0 is

« Flow map a single-valued mag : R" — R" defining a parameter defining the threshold for_jum_ps. Then, the state

the flows (or continuous evolution) 6{. of the two agent/two channel system is given by

o Flow set a setC' C R" specifying the points where )
flows are possible. ¢ - -

o Jump mapa set-valued mapg-s : R” = R"™ defining L . € P:=10,27] x Q x [0,27] x Q.
the jumps (or discrete evolution) 61. ¢

o Jump seta setD C R" specifying the points where
jumps are possible.
Then, a hybrid systeri{ := (C, f, D, G) can be written in
the compact form

The flow and jump sets are defined to constrain the evolution
of the timers(r;,72) and the channel statéy, o). For
example, when agernt is listening to channel one, that is,
q1 = 1, the timerr; takes value in the sef0, 7], while

" z = f(x) reC when agentl is listening to channel twog; = 2, and
He TeR { T e G(z) xeD "’ (1) takes value ir{7, 27]. Then, flows are allowed when each of



the agent’s timers are within the range corresponding to ttgrecisely, if the new value of the timep, which after the
current channel on which they are listening. This is cagturereset isr, + ¢, is below the current threshold, then update
via the flow set to = + ¢, but if it is above the current threshold, then reset
o _ it as if it expired and switch channels. When+ ¢ = ¢o7
C:={zeP:(n,q)el,(rne)ell, @ 4anthe jump set is within a set of values and will do either.
where, for each € Q, The definition of the functiory, in G is asgi, but with
reverse roles. More precisely, it is given as
Ci:={(1i,q:) € 10,27 x Q : (¢; — V)T < 7; < ¢;T}. P y 9

During flows, the timers count ordinary time and the channel (@) = (2ni(x))%

state remains constant, i.e., 92 N 3 _qq22 ’
f@=[1 0 10" Vvzec 3)
T1 + € . _

The discrete events described in A) and B) above are { m ] it mte<ar
modeled by a jump seb and a jump mags. The events or -
jumps are triggered when a timer expires, i.e., the jump set - {(23_ ql)T] if m+e>qrF
D captures timer resets and packet reception events. Thesé!l () = G
even_ts correspond to either timer reaching its threshotiteM n+el [Q-q)F

precisely: a || 3 - a

D:={xeC:(n,q1) € D1} U{x € C: (1, q) € Dy}, it mte=ar

(4)  Functionsgs and g, capture the cases when the agents are
whereD; := {(7i,¢;) € [0,27] x Q : 7; = ¢;7}. In such a in different channels. They are given by
case, the agent whose timer expired transmits a packet on its

current channel and changes channel by updating its channel 2—q)7 71
state and timer state appropriately. If the other agent is in gs(z) = 3—q . gaz) = wo
the same channel, then its timer is incremented by a timer 72 (2—q)7
advance constant,€ (0, 27], as to reduce the listening time g2 3= q2
on that channel. This is captured via the jump map When both agents reach their threshold at the same time
g1(z) if n=q7 n <@ q=q0 neither are listening, so they both change channels and rese
go(z) if 7 <@QT, ™=@, (=g their timers. Functiongs andgs correspond to such a case,
Glr) = g3() if 7 =7 n<@hqa#e where g5 corresponds to the case that the agents are in the
(@) = ga(x) if <7, =T, # @ same channel whilgs to the case when they are not. Then
95(x) ?f L= QT T2 = G2T, q1 = G2 2 —q)7
go() it Ti=qT, =0T, g #F e 3
5 _ _ q1
) gs5(z) = go(z) = (2= qo)7
VzeD. 1
3—qo

The first casdg;) of G corresponds to the case when agené
1's timer reaches a threshold, which means that it is about _ _ _ _
to transmit a packet, agent 2's timer is not at a threshold, To apply analysis tools for hybrid systems, which will be

which means that it is listening, while both agents are oRresented in Sectidn]ll, the data of the hybrid systay
the same channel. In this way, is defined as must meet certain mild conditions [12]. These conditions,

referred to aBasic Assumptionsare as follows:

Basic Properties of{3 o

2-q)7 o
g(z) = 3—q ’ Al) C andD are _closed_sets iR™.
na(z) A2) f:R" - R"is .contlnuous orC.. .
A3) G : R = R™ is an outer semicontinuous set-valued
To+ € , B mapping, locally bounded op, and such tha&(x) is
{ g ] it mte<er nonempty for each: € D.
(2 — go)7 _ ) A s.,e'F-vaIued mapping: : R™ = R" is oute( semicontin-
no(z) = [ 3 g ] if  m+e>qT _ uousif its graph{(z,y) : €ER"y € G(_x)} is close(_j. In
terms of set convergencé, is outer semicontinuous if and
{ {Tz + 5] {(2 - qz)T] } only if, for eachz € R™ and each sequenag — x, the outer
@ || 3—a limit limsup,_, .. G(x;) is contained inG(x). The mapping
if mde=qT G is locally boundedon a setD if, for each compact set

The functionn, describes how agent 2 reacts to incomind® C D, G(K) is bounded.
information, allowing for timer resetting and channel i Lemma 2.1: The data ¢, satisfies the Basic Assump-
ing if the jump pushes the timer past the threshold. Morgons.



IIl. SYNCHRONIZATION PROPERTIES OF THEHYBRID
SYSTEM MODEL FORTWO IMPULSIVE OSCILLATORS
WITH CHANNEL DEPENDENCY

the agent timers. A precise definition of asymptotic stgbili
for hybrid systemsH is given next.

Definition 3.4 (stability): A compact set4d C R" is said

In this section, we summarize tools for stability analysiso be
of hybrid systems and then apply them to the two agents/two « stableif for eache > 0 there exist$ > 0 such that each

channels systerfs o.

A. Tools for Stability Analysis of Hybrid Systems
Solutions to general hybrid systers Ho » in particular,

can evolve continuously (or flow) and/or discretely (or jymp

solutionz with |2(0,0)| 4 < ¢ satisfies|z(t,j)|a < e
for all (t,7) € domu;

o attractive if there existsy > 0 such that every solu-
tion = with |2(0,0)|4 < u is complete and satisfies
lim(t,,j)edomm,t+j—>oo |x(t7])|A =0;

depending on the continuous and discrete dynamics and the asymptotically stabléf stable and attractive:

sets where those dynamics apply. We treat the number o
jumps as an independent variabland we parameterize the

state by(t, j). Solutions to#H will be given by hybrid arcs
on hybrid time domains

Definition 3.1: (hybrid time domain) A subsef C R x
N is acompact hybrid time domaiif

J—1
S=J (ltt51])
§=0

for some finite sequence of tim@s=ty < t; <ty ... <t;.
A subsetS C R>o x N is a hybrid time domainf for all
(T,J)e S, S n (]0,7] x {0,1,...J}) is a compact hybrid
time domain.

Definition 3.2: (hybrid arc) A functionz : domz — R"
is a hybrid arcif dom « is a hybrid time domain and if for
eachj € N, the functiont — x(t, ) is locally absolutely
continuous.

Definition 3.3: (solution) A hybrid arcz is a solution to
the hybrid systen# if #(0,0) € C U D and:

(S1) For allj € N and almost alt such that¢, j) € domz,
x(t,j) € C,  &(t,j) = F(z(t.j)) .
(S2) For all(t,j) € domx such that(t, j + 1) € dom =,

x(t,j) €D, z(t,j+1) € Gx(t,j)) .

A solution z is said to benontrivial if dom 2 contains at
least one point different fron0, 0), maximalif there does
not exist a solution’ such thatr is a truncation of.’ to some
proper subset oflom 2/, completeif dom x is unbounded,
and Zenoif it is complete but the projection afom z onto
R> is bounded.

Our goal is to show that the solutions= (11, ¢1, 72, ¢2)

to #Hs o are such that
and ql(taj)_qQ(taj)_)O

ast+ j — oo, and that if the initial conditions (0,0),

Tl(tvj) _TQ(taj) —0

WT’]GI'G|I|E is generally defined asif,cs; |« — y| for the set
3 C R™ and a pointz € R™. The set of points from where
the attractivity property holds is the basin of attraction.

A Lyapunov function can be employed to show that the
compact set in[{6) is asymptotically stable. For a function
V' to be considered a Lyapunov candidate it must meet the
following requirements.

Definition 3.5: (Lyapunov function candidate) Given the
hybrid system? with data (C, f, D,G) and the compact
setA c R”, the functionV : domV — R is a Lyapunov
function candidatdor (#,.A) if

i) V is continuous and nonnegative ¢6' U D) \ A C

domV/,
i) V is continuously differentiable on an open sét
satisfyingC' \ A C O C domV, and
i) limg, 4, 2edom vn(cup)y V(x) = 0.
Conditions i) and iii) hold wherlom V' containsAUC' U D,
V is continuous and nonnegative on its domain, &fd) =
0 for all x € A. The following result from [12, Theorem
23] states the conditions ovi for asymptotic stability of a
compact set. Below, a level séi, (u) refers to the set of all
points inC U D such thatV(z) = u, i.e., Ly (n) = {z €
CUD :V(z) = u}.

Theorem 3.6: [12, Theorem 23] Consider a hybrid system
H = (C, f,D,G) satisfying the Basic Assumptions and a
compact set4d C R"™ satisfyingG(D N A) C A. If there
exists a Lyapunov function candidaké for (#,.4) that is
positive on(C' U D) \ A and satisfies

(VV(z), f(z)) <0 forall z € C\ A,
V(ig)—V(z)<0 forallze D\ A geGx)\A

then the setA is stable. If, furthermore, there exists a
compact neighborhoo#l” of A such that, for each > 0, no
complete solution t6{ remains inLy (u)N K, then the sed

is asymptotically stable. In this case, the basin of atiatt
contains every compact set containedinthat is forward

q1(0,0) and 72(0,0), ¢2(0,0) are close, then the solutions invariant.
stay close. In other words, our goal is to show that th%_ Asymptotic Stability Analysis 615 »

compact set

A:={zeCUD:n =7,¢ = ¢} (6)

is asymptotically stable for the hybrid systehs; .. Due
to the evolution of the timers being periodic when

asymptotic stability of4 is a synchronization property for V(z) = (1—p(x))Vi(x)+ p(x)Va(x)

The overall goal of this section is to determine the stapbilit
and attractivity properties of the set of poinfg (6). We
consider the functio’’ : R* — R given by

Yz € CUD, (7)



whereV; is a piecewise function given by
1 2 ¢
s(n—m)" + 1 _
if |’7'1 — 7'2| < 3
1 N2, e
E(Tl—T2—2T? + 5
if Tl—TQZQf—%,

Vi(z) = ,
) Yr—m+27)"+5
if T1—T2§—27'+%, "2
Va(z)
if |r—7mle (5,27 —¢),
heree € (0,27], V% is given by @ a1 =q

VYQ(SC) = min{|7‘1 — T2|,277' — |T1 — Tgl},

and, p is aC*! function satisfying n o
o 0 If q1 #Q% Q1aQ2€ {172} A”‘
M@_{l if g1 =qo€{1,2} O v

and, for allz € C, 02

P

Vaplx)=0 and  V,p(z) =0.

For points not inC' U D, the Lyapunov functioi/ is given I 72
by any positive and continuous function that is continugusl v
differentiable (almost everywhere). Furthermore, it can b ®) a1 # g2
verified that the Lyapunov function satisfies the conditionsFrig. 2. A plot of the Lyapunov function V ir({7) for eachin C' U D
in Definition[3.5.
Using 7 = 1 ande = 0.3, Figure[2 showsV when
g1 = g2, and ¢y # ¢o. Note that wheng; = ¢2, we have
V(z) = Va(z), while wheng; # g2, we havel/ (z) = Vi (z).
This function was constructed in this way to eliminate p®int
whereV(z) = 0 outside of the compact sed, which are
points belonging to the blue lines in Figurk 3. The function
is not differentiable at these points and at points= 7 +7.
The latter points, which are denoted by the green lines
in Figure[3, will need to be removed from the basin of
attraction.
The following stability result for{, » can be established
using the Lyapunov function ii}7) and Theorém]3.6.
Theorem 3.7: (Timer synchronization with limited infor-
mation) For every7 > 0 and ¢ € (0,27], the hybrid
system#s o is such thatA is asymptotically stable with
basin Of attraction containing every sublevel &g (y) with Fig. 3. The flow set (red), the jump set (solid black), and asiattraction
[IES [OaT)- with p-level setsLy (7) (in blue) and Ly (0) (in green) for each pair
Remark 3.8:For initial conditions in{C UD : |r — (q1.q2)
7| = T,q1 # ¢2} solutionsz(t,j) stay in the level set

V(p(t,j)) = 7. Note th li in Fi 3. F . . .
(6(¢,7)) 7. Note the green lines in Figurl or 1) Always synchronizedA solution that starts in the set

such solutions, the state does not convergedtd®ecause . . L . ;
both agents jump simultaneously but on opposite channe?'," always stay synchronized, that igl, is forward invariant.

@ =2,q=2

and thus missing the information transmitted. This point i igure[4(a) shows the evolution of such a solution. The top

corroborated by a Lyapunov local maximum at these State%ure shows the timer value and the bottom figure shows the

Solutions from all other initial conditions i@'U D approach channel of the .agents. i )
the synchronization condition defined by 2) Asymptotically synchrpnlz_edA s_qut|on tha}t_ starts .
close toA reaches synchronization rapidly. The initial condi-
IV. NUMERICAL ANALYSIS tion for the simulation is such that; — | < ¢, so after one
Solutions toH2 » fall into three categories: always syn-jump the two timers are the same. When the two timers start
chronized, asymptotically synchronized, and desynclemhi close to the set of points from where synchronization is not
The simulations below show the evolution of these solutiopossible, the time needed to reach synchronization is much
types. The parameters used are- 1, £ = 0.05. larger. The simulation in Figufe 4{b) shows that the sotutio



starts far from.A but still converges. The initial conditions

for these simulations are (0,0) = 0.3,¢:(0,0) = 1, and
75(0,0) = 1.31, ¢2(0,0) = 2.

2
JE—
151 — T2

0.5 4

T1, T2

10 2 14 16 18 20
t[s]

(a) A solution toz 2 that is always synchronized.

’
157 4

;T2

T1

0 2 4 6 8 10 12 14
t[s]

V. CONCLUSION

Synchronization of a class of two impulsive oscillators
was shown through Lyapunov analysis in a hybrid frame-
work. For almost every point in the space of the timers,
the oscillators synchronize. Lost packets do not effect the
asymptotic stability property, but leads to slower coneaice
than when there is no channel constraints. Extensions of the
results to the multiple agents/multiple channels case dls we
as of more general update laws building from the arguments
are currently under investigation.
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