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Abstract

Motivated by applications of systems interacting with their environments, we study the design of passivity-based controllers
for a class of hybrid systems in which the energy dissipation may only happen along either the continuous or the discrete
dynamics. A general definition of passivity, encompassing the said special cases, is introduced and, along with detectability and
solution conditions, linked to stability and asymptotic stability of compact sets. The proposed results allow to take advantage
of the passivity property of the system at flows or at jumps and are employed to design passivity-based controllers for the
class of hybrid systems of interest. Two applications, one pertaining to a point mass physically interacting with a wall and
another about controlling a ball bouncing on an actuated surface, illustrate the definitions and results throughout the paper.
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1 Introduction

1.1 Background

Dissipativity and its special case, passivity, provide a
useful physical interpretation to stability and stabiliz-
ability problems as they establish a relationship between
the energy injected in and dissipated by a system. Sev-
eral textbooks [1–4] and seminal papers [5–8] document
dissipativity and passivity concepts, sufficient conditions
linking to stability, and passivity-based feedback con-
trol designs; for a detailed survey on the latter see [9].
For passive systems, the passivity-based control design
technique has been shown to be particularly useful in
designing controllers that can be well understood from
an energetic perspective. The problem of stabilizing a
system to a given equilibrium point, in particular, is ad-
dressed by designing a feedback controller such that the

1 Research by R. Naldi was funded by the collaborative
project AIRobots (Innovative Aerial Service Robots for Re-
mote inspections by contact, ICT 248669) supported by
the European Community under the 7th Framework Pro-
gramme. Research by R. G. Sanfelice was supported in part
by NSF under CAREER Grant no. ECS-1150306 and by
the Air Force Office of Scientific Research under Grant no.
FA9550-12-1-0366. Corresponding author: Roberto Naldi.

overall energy function has the desired form and mini-
mum. With such a function, convergence is obtained by
selecting the input so that the energy of the system is
dissipated. Modifications of the energy function and of
the dissipation rate are often referred to as energy shap-
ing and damping injection respectively (see, e.g., [7]).

Dissipativity and passivity have been recently consid-
ered for several types of hybrid systems. Passivity of
switching systems was investigated in [10]. Motivated
by haptic and teleoperation applications, a notion of
passivity for systems in which the controller switches
between different operative modes was proposed in [11].
Results about dissipativity of switching systems ap-
peared also in [12], where multiple storage functions
were considered. Passivity and passivity-based control
for systems undertaking impacts and unilateral con-
straints have been investigated in [13] by first extending
the Lagrange-Dirichlet theorem to a class of nonsmooth
Lagrangian systems. The results therein are applied
to mechanical systems including robotic manipulators
with rigid and flexible joints.

Controllability and stabilizability issues for nonsmooth
mechanical systems have been also considered in [14]
for a class of complementarity systems (for more details
regarding such a class of systems the reader is also re-
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ferred to [15]). For such systems, in [16], passivity-based
controllers are proposed, while, in [17], tracking control
problems are considered. In [18], the stability of mul-
tiple degree-of-freedom mechanical systems subject to
frictional unilateral/bilateral constraints is investigated
and the attractivity of equilibria is shown to be linked to
dissipativity properties. In [19], passivity-based control
techniques are employed to regulate walking for a class
of bipedal robots (see also [20]). In this work, impact
Poincarémaps are considered as a tool to investigate sta-
bility of periodic orbits characterizing the desired walk-
ing behavior. In [21], the authors consider dissipativity
theory for a class of impulsive dynamical systems. In par-
ticular, the proposed framework considers different in-
puts and outputs maps for respectively the continuous-
time evolution and the instantaneous changes, and re-
sults linking observability to asymptotic stability for the
design of feedback controllers are presented. Moreover,
in [22], the authors also present energy-based hybrid con-
trollers for impulsive dynamical systems. More recently,
a general notion of dissipativity for a class of hybrid sys-
tems was linked to detectability and used to establish
asymptotic stability for large-scale interconnections of
hybrid systems in [23].

1.2 Contributions

Building from the ideas in [21] and [23], and driven by ap-
plications of mechanical systems interacting with their
environment, this paper studies the design of passivity-
based controllers for a class of hybrid systems. In par-
ticular, we study the case of hybrid systems in which
the energy dissipation may only happen along either the
continuous or the discrete dynamics. For such systems,
twoweak notions of passivity, respectivelyflow-passivity,
in which dissipation happens along flows, and jump-
passivity, in which dissipation happens along jumps, as
well as their strict and output versions are introduced
and linked to asymptotic stability.

More precisely, in Section 3.2, we introduce first general
definitions of passivity, strict passivity and output strict
passivity for hybrid systems. Inspired by [21], the pro-
posed definitions consider different inputs and outputs
maps for the continuous and the discrete dynamics, re-
spectively, and encompass also the two hybrid specific
cases of flow- and jump-passivity. Then, with the passiv-
ity definitions at hand, in Section 3.4 we establish basic
properties of passive hybrid systems. In particular, we
show that passivity and strict passivity with respect to
a compact set imply respectively 0-input stability and
0-input asymptotic stability, respectively. Furthermore,
we also show that output strict passivity with respect
to a compact set implies 0-input asymptotic stability
provided that a detectability property holds true. These
general results are then specialized to the cases of flow-
and jump-passivity, showing how the hybrid specific no-
tions of passivity can be linked to asymptotic stability

under weaker conditions than when using the standard
notions. In particular, for the output strict passivity
cases, it is shown that 0-input asymptotic stability holds
under a different detectability property and additional
conditions on solutions.

The established basic properties are then employed
for the design of passivity-based controllers in Section
4. In particular, for the hybrid-specific notion of flow-
passivity, we establish that a static output-feedback law
for the flow input asymptotically stabilizes a compact
set when the resulting closed-loop system has a de-
tectability property and jumps in the solutions are sep-
arated by a (uniformly) nonzero amount of flow time. A
similar result holds also for the jump-passivity case, for
which we establish that static output feedback for the
jump input asymptotically stabilizes a compact set pro-
vided that solutions to the resulting closed-loop system,
besides satisfying a detectability property, are Zeno.

We exercise the results in two applications. The first one
consists of a mechanical system capturing the dynamics
of a simple robotic manipulator that is required to inter-
act physically with the environment through the effect
of a control input affecting the continuous dynamics (see
also [24], [25], [15, Section 7.3], [13, Section 6.5]) . The
second application pertains to the bouncing ball system
[26] with a control input affecting the impacts (see also
[27], [28], [29] and [30], [31] [32] where stabilization and,
respectively, trajectory tracking for the so-called jug-
gling systems, namely mechanical systems controlled at
impacts, has been addressed, and [33] where the stabil-
ity of a controlled bouncing ball system is studied us-
ing Lyapunov-like techniques). Classical passivity-based
control techniques such as passivation by feedback, en-
ergy shaping and damping injection are also applied to
the two applications to illustrate their effectiveness in
the hybrid systems setting.

1.3 Organization

The remainder of the paper is organized as follows. In
Section 2, the two driving applications are presented.
Section 3 introduces definitions of passivity and condi-
tions to link these properties to asymptotic stability. In
Section 4 a passivity-based control result is given and
then applied to the special passivity cases of the two ap-
plications. The obtained passivity-based controllers are
validated via simulations in Section 5.

2 Motivational Applications

In this paper, the two applications shown in Figure 1
drive the study of passivity and passivity-based control
for hybrid systems.
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Fig. 1. Motivational applications.

2.1 Application 1: A point mass interacting with the
environment

We consider the mechanical system depicted in Figure
1(a), which consists of a point mass driven by a con-
trolled force. The mass is constrained to move horizon-
tally and, during its motion, it may come into contact
with a surface located at the origin of the line of motion.
The position and the velocity of the mass have been de-
noted with x1 and x2 respectively.

When the impact velocity is lower than a certain thresh-
old, denoted as x̄2 > 0, a compliant impact model is
adopted [34]. Assuming unitary mass for sake of simplic-
ity, the system is described by the following equations:

ẋ1 = x2, ẋ2 = vc − fc(x), (1)

where vc ∈ R denotes the steering input, fc the contact
force given by

fc(x) =

{

kcx1 + bcx2 if x1 > 0

0 if x1 ≤ 0

in which kc > 0 and bc > 0 are, respectively, the elastic
and damping coefficients of the compliant contactmodel.

When a collision with the surface occurs with a velocity
of the mass greater or equal than x̄2, possible changes in
the contact dynamics, introduced for example by plas-
tic deformations [35] or other mechanical properties of
the contact material [36], are captured by considering an
impulsive impact model with uncertain restitution coef-
ficient. The contact condition can be modeled as

x1 ≥ 0 and x2 ≥ x̄2 (2)

while the new value of the state variables after the im-
pact, denoted in the following with the superscript +,
can be described by the reset law x+

1 = x1, x
+
2 = −eRx2,

where eR ∈ [0, 1] represents the uncertain restitution co-
efficient.

Suppose that the control goal is to stabilize this simple
mechanical system to a fixed position in contact with the
vertical surface, say, the origin. Consider the quadratic
function V (x) = 1

2x
2
1 +

1
2x

2
2 and note that the following

holds:

1) For each x such that (2) holds, since eR ∈ [0, 1],
V (x+) = 1

2x
2
1 +

1
2eR

2x2
2 ≤ V (x).

2) For each x not satisfying (2), if x1 ≤ 0

〈

∇V (x),

[

x2

vc − fc(x)

]〉

= x2(x1 + vc)

and if x1 > 0

〈

∇V (x),

[

x2

vc − fc(x)

]〉

= x2((1− kc)x1 + vc − bcx2).

Picking vc = −x1+ ṽc for x1 ≤ 0 and vc = −(1−kc)x1+
bcx2 + ṽc for x1 > 0, where ṽc is a new input, makes the
right-hand side of the expressions in item 2) above to
be equal to x2ṽc. The resulting expressions imply that
the variation of V during flows is no larger than the
product x2ṽc, which can be interpreted as a passivity
property of the system with input ṽc and output yc :=
x2. However, a similar passivity property does not seem
to hold at jumps for this storage function. This motivates
the generation of passivity-based control designmethods
for hybrid systems that are applicable when passivity
holds only during flows.

2.2 Application 2: A ball bouncing on an actuated sur-
face

Consider the juggling system depicted in Figure 1(b)
which consists of a ball bouncing on a fixed horizontal
surface. The surface, located at the origin of the line
of motion, is equipped with a mechanical actuator that
controls the speed of the ball resulting after impacts.
From a physical viewpoint, control authority may be ob-
tained varying the viscoelastic properties of the surface
and, in turn, the coefficient of restitution of the surface
[34]. The position and the velocity of the ball have been
denoted respectively as x1 and x2. Between bounces the
free motion of the ball is given by

ẋ1 = x2, ẋ2 = −γ , (3)

where γ > 0 is the gravity constant. The conditions at
which impacts occur are modeled as

x1 ≤ 0 and x2 ≤ 0 (4)

while the new value of the state variables after each im-
pact is described by the reset law x+

1 = x1, x
+
2 = vd in
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which vd ∈ R≥0 is the controlled velocity after the im-
pact, capturing the effect of the mechanism installed on
the horizontal surface.

Suppose that the control goal is to stabilize the ball in
contact with the horizontal surface, that is (x1, x2) =
{(0, 0)}. Consider the energy of the system V (x) = γx1+
1
2x

2
2, which is positive definite with respect to the region

of operation {x : x1 ≥ 0}, and note that the following
holds:

1) For each x such that (4) holds, V (x+) − V (x) =
1
2v

2
d − 1

2x
2
2.

2) For each x not satisfying (4),

〈

∇V (x),

[

x2

−γ

]〉

=

0.

Picking vd such that vd = (ce1+(1− c)e2)|x2|, in which
0 < e1 < e2 < 1 and c is a (potentially uncertain) num-
ber in [0, 1], makes the right-hand side of the expressions

in item 1) above to be less or equal than 1
2
(1−e2

2
)

e2
x2vd (see

Section 3.2.2 for details). Indeed, the variation of V dur-
ing jumps is no larger than a function of the product of
x2vd, which can be interpreted as a passivity property of

the system with input vd, output yd := 1
2
(1−e2

2
)

e2
x2, and

storage function V . However, a similar passivity prop-
erty does not seem to hold during flows for this storage
function. This motivates to investigate passivity-based
control design methods for hybrid systems that are ap-
plicable also when passivity holds only during jumps.

3 General Definitions and Results

3.1 Notation and Definitions

Throughout this paper, R and R≥0 denote the field of
real and positive real numbers, respectively. For x ∈ R

n,
|x| and |x|∞ denote respectively the Euclidean and the
infinity norm and, given a compact set A, subset of Rn,
|x|A = miny∈A |x − y| denotes the distance to A from
x. Given sets S1 and S2, the notation f : S1 ⇒ S2

denotes a set-valued map mapping subsets of S1 onto
subsets of S2. Given a set S, S denotes its closure. For
a function V : R

n → R≥0 and a constant c ∈ R≥0,
V −1(c) denotes the c-sublevel set of V , i.e., V −1(c) =
{x ∈ R

n : V (x) ≤ c }. Given a set S and η ∈ S, TS(η)
denotes the tangent cone to the set S at η, where TS(η) is
the set of all vectors w ∈ R

n for which there exist ηi ∈ S
and τi > 0, i ∈ {1, 2, ...}, such that ηi → η, τi ց 0, and
(ηi − η)/τi → w as i → ∞. Given a set S ⊂ R

n × R
m,

we denote Π0(S) := {x ∈ R
n : (x, 0) ∈ S} and Π(S) :=

{x ∈ R
n : ∃u ∈ R

m s.t. (x, u) ∈ S}.

Definition 1 Given setsA, S ⊂ R
n withA ⊂ S, a func-

tion ρ : Rn → R≥0 is said to be positive definite on S

with respect to A if ρ(x) = 0 iff x ∈ A, and ρ(x) > 0 for
all x ∈ S \ A.

WhenA is the origin, Definition 1 reduces to the classical
definition of positive definite function on a set S.

3.2 Passivity Notions

We consider hybrid systems H as in [37,38] given by 2

H















ẋ ∈ F (x, vc) (x, vc) ∈ C

x+ ∈ G(x, vd) (x, vd) ∈ D

y = h(x, v)

(5)

with state x ∈ R
n, input v =

[

v⊤c , v
⊤
d

]⊤ ∈ R
m in which

vc ∈ R
mc and vd ∈ R

md are respectively the inputs
acting on the flows and jumps, and output y ∈ R

p. The
sets C ⊂ R

n × R
mc and D ⊂ R

n × R
md define the flow

and jump sets, respectively; the set-valued mappings F :
R

n×R
mc ⇒ R

n andG : Rn×R
md ⇒ R

n define the flow
map and jump map, respectively. Finally, the function
h : R

n × R
m → R

p defines the output y. Since only
some components of the output y might be involved in
the changes of energy during flows and jumps, we define
yc = hc(x, vc) ∈ R

mc and yd = hd(x, vd) ∈ R
md . Note

that, due to the Lyapunov characterization of passivity
properties, we consider the case when the size of inputs
vc and vd coincide with the size of the outputs yc and yd,
respectively (property that [4] calls duality of the output
and input space).

For this class of hybrid systems, we consider the following
concept of passivity. Below, the functions hc, hd, and a
compact set A ⊂ R

n satisfy hc(A, 0) = hd(A, 0) = 0.

Definition 2 A hybrid system H for which there exists
a function V : Rn → R≥0, called a “storage function,”

• continuous on R
n;

• continuously differentiable on a neighborhood ofΠ
(

C
)

;
• satisfying for some functions ωc : R

mc ×R
n → R and

ωd : Rmc × R
n → R

〈∇V (x), ξ〉 ≤ ωc(vc, x)

∀(x, vc) ∈ C, ξ ∈ F (x, vc)
(6)

V (ξ) − V (x) ≤ ωd(vd, x)

∀(x, vd) ∈ D, ξ ∈ G(x, vd)
(7)

is said to be

2 At times, for simplicity in the notation, we will drop the
dependency on v on the data (C,F,D,G, h) and write, for
example, F (x) instead of F (x, vc) and x ∈ C instead of
(x, vc) ∈ C.
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• passive with respect to a compact set A if

(vc, x) 7→ ωc(vc, x) = v⊤c yc (8)

(vd, x) 7→ ωd(vd, x) = v⊤d yd. (9)

It is then called flow-passive (respectively, jump-
passive) if it is passive with ωd ≡ 0 (respectively,
ωc ≡ 0).

• strictly passive with respect to a compact set A if

(vc, x) 7→ ωc(vc, x) = v⊤c yc − ρc(x)

(vd, x) 7→ ωd(vd, x) = v⊤d yd − ρd(x),

where ρc, ρd : R
n → R≥0 are positive definite with

respect to A. It is then called flow-strictly passive (re-
spectively, jump-strictly passive) if it is strictly passive
with ωd ≡ 0 (respectively, ωc ≡ 0).

• output strictly passive with respect to A if

(vc, x) 7→ ωc(vc, x) = v⊤c yc − y⊤c ρc(yc)

(vd, x) 7→ ωd(vd, x) = v⊤d yd − y⊤d ρd(yd),

where ρc : Rmc → R
mc , ρd : Rmd → R

md are func-
tions such that y⊤c ρc(yc) > 0 for all yc 6= 0 and such
that y⊤d ρd(yd) > 0 for all yd 6= 0, respectively. It is then
called flow-output strictly passive (respectively, jump-
output strictly passive) if it is output strictly passive
with ωd ≡ 0 (respectively, ωc ≡ 0).

The definitions of passivity above include the ones typ-
ically defined for the continuous-time and discrete-time
settings. More importantly, they include the hybrid-
specific cases when passivity holds only for the flow or
jump equation. These hybrid specific cases, denoted
respectively as flow-passivity and jump-passivity, are
motivated by the applications introduced in Sections
2.1 and 2.2 in which energy dissipation happens along
flows or jumps, but not necessarily along both. It will
be shown in Section 3.4 that such notion of passiv-
ity can be linked to asymptotic stability under weaker
conditions than when using the standard notions. In
turn, as it will be shown in Section 4, passivity-based
control techniques for such hybrid specific cases can be
employed to design stabilizing controllers.

3.2.1 Application 1 revisited

Consider the mechanical system introduced in Section
2.1. By considering the Filippov regularization of the
discontinuous contact force fc given by

f r
c (x) =















kcx1 + bcx2 if x1 > 0

con {0, bcx2} if x1 = 0

0 if x1 < 0 ,

(10)

the mechanical system of interest can then be described
by means of the following (regularized) hybrid system

HS



























ẋ ∈ F (x, vc) :=

[

x2

vc − f r
c (x)

]

x ∈ C

x+ = G(x) :=

[

x1

−eRx2

]

x ∈ D

(11)

with state x = [x1, x2]
⊤ ∈ R

2, input vc ∈ R, and sets C
and D given by

C := {x ∈ R
2 : x1 ≤ 0}∪

{x ∈ R
2 : x1 ≥ 0, x2 ≤ x̄2},

D := {x ∈ R
2 : x1 ≥ 0, x2 ≥ x̄2} .

(12)

The following proposition shows that the control input vc
can be designed to obtain a new hybrid system, denoted
as HS1 , which, for a suitable choice of the output yc,
is flow passive with respect to the compact set A =
{(x⋆

1, 0)}, where x⋆
1 ≥ 0 denotes the desired set-point

position for the mass. The choice x⋆
1 ≥ 0 requires the

mass to maintain a contact with the vertical surface.
The idea is then to design the control input following an
energy shaping approach, see among others [7], which
consists of assigning a desired potential energy to the
closed-loop mechanical system.

Proposition 1 Let the control input vc in (11) given by:

vc = v⋆c (x1, ṽc) :=
{

kcx1 − kp(x1 − x⋆
1) + ṽc if x1 > 0

−kp(x1 − x⋆
1) + ṽc if x1 ≤ 0

(13)

in which kp > 0 and ṽc ∈ R is a new input. The resulting
hybrid system given by

HS1



























ẋ ∈ FS1(x, ṽc) :=
[

x2

v⋆c (x1, ṽc)− f r
c (x)

]

x ∈ C

x+ = G(x) x ∈ D

(14)

is flow-passive with respect to the compact set A =
{(x⋆

1, 0)} by considering the storage function

V (x) =
1

2
kp(x1 − x⋆

1)
2 +

1

2
x2
2, (15)

input ṽc, and output yc = hc(x) := x2.

Proof. Observe that V represents the mechanical energy
of the closed-loop system in the case where contact forces
are neglected. From the definition ofA, we have hc(A) =

5



0. Moreover, observe that under the choice (13) we have
that v⋆c (x1, ṽc)− f r

c (x) is given by















−kp(x1 − x⋆
1) + ṽc if x1 < 0

kpx
⋆
1 − ξ + ṽc, ξ ∈ con{0, bcx2} if x1 = 0

−kp(x1 − x⋆
1)− bcx2 + ṽc if x1 > 0 .

Then, along flows, we have

〈

∇V (x),

[

x2

−kp(x1 − x⋆
1) + ṽc

]〉

=

= ṽcx2 = ṽcyc if x1 < 0,
〈

∇V (x),

[

x2

−kp(x1 − x⋆
1)− bcx2 + ṽc

]〉

=

= ṽcx2 − bcx
2
2 = ṽcyc − bcy

2
c if x1 > 0,

〈

∇V (x),

[

x2

kpx
⋆
1 − ξ + ṽc

]〉

≤ ṽcx2 =

= ṽcyc ∀ξ ∈ con{0, bcx2} if x1 = 0

from where we obtain

〈∇V (x), η〉 ≤ ṽcyc ∀η ∈ FS1(x, ṽc) (16)

for all x ∈ C and each ṽc ∈ R. At jumps we have

V (G(x)) − V (x) ≤ −1

2
(1 − eR

2)y2c ≤ 0 (17)

for all x ∈ D.

Equations (16) and (17) are then sufficient to prove that
system (14) is flow-passive with respect to the compact
setA with output yc, input ṽc, and function ωc(ṽc, x) :=
ṽcyc. ⊳

The new input ṽc in (14) can be designed to induce flow-
output strict passivity. In particular, the following result
holds.

Proposition 2 Let the control input ṽc in (13) be

ṽc = −k1x2 + v̂c (18)

in which k1 > 0 is the damping injection gain and v̂c ∈ R

is a new control input. Then, the hybrid system (14) is
flow-output strictly passive with respect to the compact
set A = {(x⋆

1, 0)} with storage function (15), input v̂c,
and output yc = x2.

Proof. By considering the storage function (15), with
the choice (18) along flows it now holds

〈∇V (x), ξ〉 ≤ v̂cyc − k1y
2
c ∀ξ ∈ FS1(x, ṽc) .

Since we have that V (G(x)) − V (x) ≤ 0, as shown in
the proof of Proposition 1, system (14) with ṽc given by
(18) is flow-output strictly passive with respect to the
compact set A = {(x⋆

1, 0)} with output yc = x2, input
v̂c, and functions ωc(v̂c, x) := v̂cyc and ρc(yc) := k1yc. ⊳

Remark. In many robotics applications, nonlinear
Hunt-Crossley [39] contact models are preferred to lin-
ear Kelvin-Voigt models, such as the one employed to
model the contact force fc(x), since they can more ac-
curately describe the behavior of viscous materials [40].
If a Hunt-Crossley model is adopted, the force fc(x)
would be replaced by

f̂c(x) =

{

kcx
n
1 + bcx

n
1x2 if x1 > 0

0 if x1 ≤ 0

in which n ≥ 1. The passivity properties highlighted in
Propositions 1 and 2 would then hold by replacing the
choice v⋆c (x1, ṽc) in (13) with

v̂⋆c (x1, ṽc) :=

{

kcx
n
1 − kp(x1 − x⋆

1) + ṽc if x1 > 0

−kp(x1 − x⋆
1) + ṽc if x1 ≤ 0 .

In fact, under the above choice we have

v̂⋆c (x1, ṽc)− f̂c(x) =
{

−kp(x1 − x⋆
1)− bcx

n
1x2 + ṽc if x1 > 0

−kp(x1 − x⋆
1) + ṽc if x1 ≤ 0,

and then, along flows,

〈

∇V (x),

[

x2

−kp(x1 − x⋆
1)− bcx

n
1x2 + ṽc

]〉

=

= ṽcx2 − bcx
n
1x

2
2 = ṽcyc − bcx

n
1y

2
c if x1 > 0,

〈

∇V (x),

[

x2

−kp(x1 − x⋆
1) + ṽc

]〉

=

= ṽcx2 = ṽcyc if x1 ≤ 0,

from which, since xn
1 > 0 for all x1 > 0, the arguments

in the proof of Propositions 1 can be applied. Moreover,
by choosing the new input ṽc above as in (18), flow-
output strict passivity can be proved as in the proof of
Proposition 2. ⊳

3.2.2 Application 2 revisited

Let us consider the bouncing ball example introduced
in Section 2.2. The system can be written as a hybrid

6



system, HBB , given by

HBB



























ẋ = F (x) :=

[

x2

−γ

]

x ∈ C

x+ = G(x, vd) :=

[

0

vd

]

(x, vd) ∈ D

(19)

in which C := {x ∈ R
2 : x1 ≥ 0},D := {(x, vd) ∈ R

2×
R : x1 ≤ 0, x2 ≤ 0, vd ∈ U(x2)}, where U : R → R≥0

defines the constraint set for the input vd, which, for
0 < e1 < e2 < 1, is given by x2 7→ U(x2) := {vd ∈ R≥0 :
vd = (ce1 + (1 − c)e2)|x2|, c ∈ [0, 1]}. Observe that the
restrictions on the input vd have an intuitive physical
interpretation. In fact, let us pick vd as vd = −ex2, in
which e1 < e < e2 is a constant coefficient. By construc-
tion, vd ∈ U(x2). For the above choice of the controller,
the factor e plays the role of the coefficient of restitution
for the impact between the ball and the surface (see [15]).
The latter in fact is a dimensionless coefficient relating
the velocity x2 of the ball before and after the impact.
Since (e1, e2) ⊂ (0, 1), the choice vd ∈ U(x2) is forcing
impacts to be inelastic and does not allow impacts to
be, respectively, totally inelastic (e = 0) or totally elas-
tic (e = 1). In particular, totally inelastic impacts are
not permitted, in this way, avoiding the existence of so-
lutions corresponding to adhesion to the desired surface
after the first impact. The following passivity property
holds for the hybrid system (19) and the compact set
A = {(0, 0)}.

Proposition 3 The hybrid system (19) with output

yd = hd(x) :=
1

2

(1− e22)

e2
x2 (20)

and input vd is jump-passive with respect to the set A =
{(0, 0)} with storage function V : R2 → R≥0 given by

V (x) :=
1

2
x2
2 + γx1. (21)

Proof. Observe that the function V is positive definite
with respect to A. Along flows it follows that

〈∇V (x), F (x)〉 = 0 . (22)

Along jumps

V (G(x, vd))− V (x) =
1

2
(v2d − x2

2) ≤ vdyd (23)

for all (x, vd) ∈ D. In fact, from the definition of U(x2)
and the fact that every (x, vd) ∈ D is such that x2 ≤ 0,

we have

V (G(x, vd))− V (x) =
1

2
(v2d − x2

2) ≤ −1

2
(1 − e22)x

2
2 =

=
1

2
(1 − e22)|x2|x2 ≤ 1

2

(1 − e22)

e2
vdx2 = vdyd .

Properties (22) and (23) of the flow and jump maps are
sufficient to prove that system (19) is jump-passive with
respect to the compact set A = {(0, 0)} with input vd,
output yd given by (20), and ωd(vd, x) := vdyd. ⊳

Following Proposition 3, it is now possible to design the
input vd can be designed in order to obtain a new hybrid
system that is jump-output strictly passive.

Proposition 4 Consider system (19) with the control
input vd chosen as

vd = −ecx2 − ṽd, (24)

where 0 < e1 < ec < e2 < 1 and ṽd a new control input
chosen such that ṽd ∈ W (x2), where x2 7→ W (x2) :=
{ṽd ∈ R : |ṽd| ≤ w̄|x2|} in which w̄ := min{ec−e1, e2−
ec}. Then, the resulting closed-loop system, considering
yd = ecx2 as output, ṽd as input, and the storage function
(21) is jump-output strictly passive with respect to the set
A = {(0, 0)}.

Proof. From the definition of W and ec, we have that
vd ∈ U(x2) for all x2 ≤ 0. In fact, on D we have vd =
−ecx2 − ṽd = ec|x2| − ṽd, and then, from the definition
of W , (ec − w̄)|x2| ≤ vd ≤ (ec + w̄)|x2|. Since min{ec −
e1, e2−ec} ≤ ec−e1, we have that ec−w̄ ≥ e1, and, since
min{ec−e1, e2−ec} ≤ e2−ec, we also have ec+ w̄ ≤ e2,
from which vd ∈ U(x2). Along jumps

V (G(x, ṽd))− V (x) ≤ ṽdyd −
1− ec
ec

y2d

for all ṽd ∈ W (x2), (x, vd) ∈ D. In fact, from the defini-
tion of W and since w̄ ≤ e2 − ec < 1− ec, we have

V (G(x, ṽd))− V (x) =
1

2
(−ecx2 − ṽd)

2 − 1

2
x2
2 =

= −1

2
(1 − e2c)x

2
2 +

1

2
ṽ2d + ecx2ṽd

≤ −1

2
(1 − e2c)x

2
2 +

1

2
|w̄|2x2

2 + ecx2ṽd

≤ −1

2
(1 − e2c)x

2
2 +

1

2
(1 − ec)

2x2
2 + ecx2ṽd

≤ −ec(1 − ec)x
2
2 + ecx2ṽd

≤ −1− ec
ec

y2d + ṽdyd.

Since 〈∇V (x), F (x)〉 = 0 for all x ∈ C, as proved in
Proposition 3, it follows that system (19) is jump-output
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strictly passive with respect to the compact set A =
{(0, 0)} with input ṽd, output yd = ecx2, and functions
ωd(x, ṽd) := ṽdyd and ρd(yd) := ((1 − ec)/ec)yd. ⊳

3.3 Stability and Detectability Notions

Solutions to hybrid systems H are given by pairs of hy-
brid arcs and hybrid inputs defined over extended time
domains called hybrid time domains. A set S ⊂ R≥0×N

is a hybrid time domain if for all (T ′, J ′) ∈ S, the set
S ∩ ([0, T ′]× {0, 1, ...J ′}) can be written as

J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2... ≤ tJ ,
J ∈ N. A hybrid arc x : domx → R

n is such that domx
is a hybrid time domain and t 7→ x(t, j) is absolutely con-
tinuous on the interval {t : (t, j) ∈ domx }. A hybrid
arc is parameterized by (t, j), where t is the ordinary-
time component and j is the discrete-time component
that keeps track of the number of jumps. A hybrid in-
put v : dom v → R

m is such that dom v is a hybrid time
domain and, for each j ∈ N, the function t 7→ v(t, j) is
Lebesgue measurable and locally essentially bounded on
the interval {t : (t, j) ∈ dom v }. Then, given a hybrid
input v : dom v → R

m and an initial condition ξ, a hy-
brid arc φ : domφ → R

n defines a solution pair (φ, v)
to the hybrid system H in (5) if the following conditions
hold:

(S0) (ξ, v(0, 0)) ∈ C ∪ D and domφ = dom v (
= dom(φ, v)) ;

(S1) For each j ∈ N such that
Ij := {t : (t, j) ∈ dom(φ, v) } has nonempty
interior int(Ij), (φ(t, j), v(t, j)) ∈ C for all t ∈
int(Ij), and, for almost all t ∈ Ij ,

d
dt
φ(t, j) ∈

F (φ(t, j), v(t, j));

(S2) For each (t, j) ∈ dom(φ, v) such that (t, j + 1) ∈
dom(φ, v), (φ(t, j), v(t, j)) ∈ D, φ(t, j + 1) ∈
G(φ(t, j), v(t, j)).

A solution pair (φ, v) to H is said to be complete if
dom(φ, v) is unbounded, Zeno if it is complete but the
projection of dom(φ, v) onto R≥0 is bounded, discrete if
its domain is {0}×N, and maximal if there does not ex-
ist another pair (φ, v)′ such that (φ, v) is a truncation of
(φ, v)′ to some proper subset of dom(φ, v)′.

Definition 3 A compact set A ⊂ R
n is said to be

• 0-input stable if for each ε > 0 there exists δ > 0
such that each maximal solution pair (φ, 0) to H with
φ(0, 0) = ξ, |ξ|A ≤ δ, satisfies |φ(t, j)|A ≤ ε for all
(t, j) ∈ domφ;

• 0-input pre-attractive if there exists µ > 0 such that
every maximal solution pair (φ, 0) to H with φ(0, 0) =
ξ, |ξ|A ≤ µ, is bounded and if it is complete satisfies

lim
(t,j)∈domφ,t+j→∞

|φ(t, j)|A = 0;

• 0-input pre-asymptotically stable if it is 0-input stable
and 0-input pre-attractive.

When every maximal solution is complete, the prefix
“pre” can be removed. Asymptotic stability is said to be
global when the attractivity property holds in C ∪D.

We define a general detectability property for hybrid
systemsH, which, in the next section, will permit linking
passivity with stability.

Definition 4 (see Definition 6.2 in [41]) Given sets
A,K ⊂ R

n, the distance to A is 0-input detectable rela-
tive to K for H if every complete solution pair (φ, 0) to
H such that

φ(t, j) ∈ K ∀(t, j) ∈ domφ ⇒
limt+j→∞, (t,j)∈domφ |φ(t, j)|A = 0.

(25)

If H does not have inputs, the distance to A is detectable
relative to K for H if every complete solution φ to H
satisfies (25).

When K is given by the set of points x such that
h(x, 0) = 0, the condition φ(t, j) ∈ K for all (t, j) ∈
dom(φ, 0) is equivalent to holding the output to zero. In
such a case, Definition 4 reduces to the classical notion
of detectability.

3.4 Basic Properties

We relate different forms of passivity to asymptotic sta-
bility with zero input, that is, for the hybrid system H
with v = 0

H0















ẋ ∈ F (x, 0) (x, 0) ∈ C

x+ ∈ G(x, 0) (x, 0) ∈ D

y = h(x, 0).

(26)

Below, let the set X be defined as X := Π0(C)∪Π0(D)∪
G(Π0(D)). Also, we say that a set-valued mapping φ :
S ⇒ R

n with S ⊂ R
n × R

m is outer semicontinuous
relative to S if for any z ∈ S and any sequence {zi}∞i=1
with zi ∈ S, limi→∞ zi = z, and any sequence {wi}∞i=1
with wi ∈ φ(zi) and limi→∞ wi = w we have w ∈ φ(z).

For the next proposition to hold, the data of H0 has to
satisfy the following properties:

8



(A1) The sets Π0(C) and Π0(D) are closed in R
n.

(A2) The set-valued mapping (x, 0) 7→ F (x, 0) is
outer semicontinuous relative to R

n × {0} and lo-
cally bounded, and for all x ∈ Π0(C), F (x, 0) is
nonempty and convex.

(A3) The set-valued mapping (x, 0) 7→ G(x, 0) is
outer semicontinuous relative to R

n × {0} and lo-
cally bounded, and for all x ∈ Π0(D), G(x, 0) is
nonempty.

Observe that property (A1) simply requires that the sets
C and D are closed for the case in which v = 0. 3

Proposition 5 Given a compact set A ⊂ R
n, if the hy-

brid system H0 satisfying (A1)-(A3) is

1) passive with respect to A with a storage function V
that is positive definite on X with respect to A then
A is 0-input stable for H.

2) output strict passive with respect toA with a storage
function V that is positive definite on X with respect
to A and the distance to A is detectable relative to

{

x ∈ Π0(C) : hc(x, 0)
⊤ρc(hc(x, 0)) = 0

}

∪
{

x ∈ Π0(D) : hd(x, 0)
⊤ρd(hd(x, 0)) = 0

}

(27)
for H0 then A is 0-input pre-asymptotically stable
for H.

3) strictly passive with respect toA with a storage func-
tion V that is positive definite on X with respect to
A thenA is 0-input pre-asymptotically stable for H.

Furthermore, if there exist α1, α2 ∈ K∞ such that
α1 (|x|A) ≤ V (x) ≤ α2 (|x|A) for all x ∈ X , the 0-
input stability properties of A asserted in items 1-3 hold
globally.

Proof. According to Definition 2 with v ≡ 0, the passiv-
ity property in item 1 implies that

〈∇V (x), ξ〉 ≤ 0 ∀(x, 0) ∈ C, ∀ξ ∈ F (x, 0) (28)

V (ξ)− V (x)≤ 0 ∀(x, 0) ∈ D, ∀ξ ∈ G(x, 0). (29)

Since H0 satisfies (A1)-(A3), stability of A follows from
Theorem 7.6 in [41]. This proves item 1. The 0-input
stability property in items 2 and 3 follow similarly.

To show pre-attractivity of A under the conditions in
item 2, note that from the output strict passivity prop-

3 The closedness condition for the flow set is restrictive for
certain classes of complementarity systems; see [14].

erty, using Definition 2 with v ≡ 0, we get

〈∇V (x), ξ〉 ≤ −hc(x, 0)
⊤ρc(hc(x, 0))

∀(x, 0) ∈ C, ∀ξ ∈ F (x, 0)
(30)

V (ξ)− V (x) ≤ −hd(x, 0)
⊤ρd(hd(x, 0))

∀(x, 0) ∈ D, ∀ξ ∈ G(x, 0).
(31)

Now consider complete solutions (φ, 0) to H starting
nearby A, which are bounded by stability of A. Note
that H0 satisfying (A1)-(A3) implies that the invari-
ance principle [41, Theorem 4.3] applies. Using the prop-
erty that hc(x, 0)

⊤ρc(hc(x, 0)) > 0 for all yc 6= 0 and
that hd(x, 0)

⊤ρd(hd(x, 0)) > 0 for all yd 6= 0, the in-
variance principle with uc(x) := −hc(x, 0)

⊤ρc(hc(x, 0))
for each x ∈ Π0(C) and uc(x) := −∞ otherwise, and
ud(x) := −hd(x, 0)

⊤ρd(hd(x, 0)) for each x ∈ Π0(D) and
ud(x) := −∞ otherwise, implies that each such com-
plete solution converges to the largest weakly invariant
set contained in

V −1(r) ∩ ({x ∈ Π0(C) : uc(x) = 0 }∪
{x ∈ Π0(D) : ud(x) = 0 })

(32)

or, equivalently, contained in

V −1(r) ∩
({

x ∈ Π0(C) : hc(x, 0)
⊤ρc(hc(x, 0)) = 0

}

∪
{

x ∈ Π0(D) : hd(x, 0)
⊤ρd(hd(x, 0)) = 0

})

(33)
for some r ≥ 0. Due to detectability relative to the set
(27), every solution starting from and staying in (33)
converges to A. Moreover, since V is positive definite
with respect to A, the only invariant set in (33) is for
r = 0. Since the set (33) is included in A for r = 0, it
follows that A is attractive. This establishes item 2.

Using Definition 2 with v ≡ 0, item 3 implies that

〈∇V (x), ξ〉 ≤−ρc(x) ∀(x, 0) ∈ C, ∀ξ ∈ F (x, 0) (34)

V (ξ) − V (x)≤−ρd(x) ∀(x, 0) ∈ D, ∀ξ ∈ G(x, 0). (35)

Then, 0-input pre-asymptotic stability of the set A fol-
lows from [41, Corollary 7.7] (see also [37, Theorem 20])
with uc = −ρc and ud = −ρd.

Finally, when V is radially unbounded, every sublevel
set of V is bounded and the 0-input stability properties
of A asserted in items 1-3 hold globally. ⊳

Remark. The purpose of Proposition 5 is to enable the
stability results established in Proposition 6 below un-
der flow- and jump-passivity conditions. For the case
A = {0}, the property that standard passivity implies
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0-input stability (as in item 1 of Proposition 5) was es-
tablished in [21, Proposition 12.3] (see also [42]) for left-
continuous hybrid systems. Additional dissipativity and
observability conditions leading to asymptotic stability
of the origin were introduced therein. The 0-input sta-
bility property of A in items 1 and 2 of Proposition 5
can be established without insisting on conditions (A1)-
(A3) and, instead, proceeding as in [23, Theorem 2] –
in fact, item 2 of Proposition 5 follows from [23, Theo-
rem 2] when specializing the general dissipativity con-
cept therein to passivity. ⊳

The hybrid specific notions of flow- and jump-passivity
allow to extend the results in Proposition 5 to take ad-
vantage of the passivity properties of the system either
at flows or at jumps. The basic properties of flow- and
jump-passive hybrid systems, as well as their strict and
output versions, are summarized by the following propo-
sition.

Proposition 6 Given a compact set A ⊂ R
n, if the hy-

brid system H0 satisfying (A1)-(A3) is

1) flow-passive or jump-passive with respect to A with
a storage function V that is positive definite on X
with respect to A then A is 0-input stable for H.

2) flow-output strictly passive with respect to A with
a storage function V that is positive definite on X
with respect to A and
2.a) the distance to A is detectable relative to

{

x ∈ Π0(C) : hc(x, 0)
⊤ρc(hc(x, 0)) = 0

}

(36)
for H0,

2.b) every complete solution φ toH0 is such that for
some δ > 0 and some J ∈ N we have tj+1−tj ≥
δ for all j ≥ J ,

then A is 0-input pre-asymptotically stable for H.
3) jump-output strictly passive with respect to A with

a storage function V that is positive definite on X
with respect to A and,
3.a) the distance to A is detectable relative to

{

x ∈ Π0(D) : hd(x, 0)
⊤ρd(hd(x, 0)) = 0

}

(37)
for H0,

3.b) every complete solution φ to H0 is Zeno, 4

then A is 0-input pre-asymptotically stable for H.
4) flow-strict passive with respect to A with a storage

function V that is positive definite on X with re-
spect to A, and 2.b) holds, then A is 0-input pre-
asymptotically stable for H.

4 Item 3.b in Proposition 6 is not needed when the change of
V at jumps is upper bounded by a function that is negative
definite with respect toA. In such a case, asymptotic stability
follows from the relaxed conditions in [38, Section 3.3].

5) jump-strict passive with respect to A with a stor-
age function V that is positive definite on X with
respect to A, and 3.b) holds, then A is 0-input pre-
asymptotically stable for H.

Furthermore, if there exist α1, α2 ∈ K∞ such that
α1 (|x|A) ≤ V (x) ≤ α2 (|x|A) for all x ∈ X , the 0-
input stability properties of A asserted in items 1-5 hold
globally.

Remark. A key difference between the detectability
properties imposed by Proposition 6 and Proposition 5
is that the former proposition requires checking if solu-
tions converge to A from a potentially smaller set, given
by (36) or (37), than the set in Proposition 5, which is
given by (27). Since (36) and (37) are subsets of (27),
following the approach in [23], such a difference is evi-
dent by noting that the detectability property of Propo-
sition 6, respectively Proposition 5, can be conveniently
interpreted as checking if every complete solution to H
with zero input and with flow and jump sets intersected
by the set (36) or (37), respectively (27), converge to A.
In particular, consider the bouncing ball system HBB

defined in (19). According to Proposition 4, the choice vd
in (24) yields a closed-loop system that is jump-output
strictly passive with respect to the setA = {(0, 0)} with
storage function (21), output yd = hd(x) = ecx2, input
ṽd, and function ρd(yd) = ((1− ec)/ec)yd. According to
item 2 in Proposition 5, pre-asymptotic stability with
respect to the set A for the closed-loop system with
zero input can be proved by verifying the detectability
property with respect to the set (27), which results in

C ∪
{

x ∈ Π0(D) : ec(1− ec)x
2
2 = 0

}

=

=
{

x ∈ R
2 : x1 ≥ 0

}

.
(38)

Since this set includes all of the admissible solutions to
the closed-loop system with zero input, asserting that
the detectability in Proposition 5 holds requires check-
ing every possible solution – in fact, the flow and jump
sets are not changed when intersected by (38). On the
other hand, with the knowledge that every solution to
the closed-loop system with zero input is Zeno, which
is a property that can be asserted using sufficient con-
ditions in the literature (see, e.g., [43], [44], [45]), item
2 in Proposition 6 requires the distance to A to be de-
tectable relative to (37), which results to be simply the
origin. Then, since both the flow and jump sets are in-
tersected by (37), which is {(0, 0)}, establishing such a
detectability property reduces to checking that solutions
from the origin stay at the origin. Note that the appli-
cation of [23, Theorem 2] to the bouncing ball system,
which is also considered as an example in [23], only in-
tersects the jump set with {(0, 0)} and leaves the flow
set unchanged. As a consequence, establishing the de-
tectability property in [23, Theorem 2] requires to check
solutions from points in C. For the particular case of the

10



bouncing ball, asymptotic stability of A is established
in [23] using the fact that solutions away from the origin
are not complete and the only complete solution starts
and stays at the origin. ⊳

Remark. A sufficient condition for property 2.b to hold
for the hybrid system H0 is given in [41, Lemma 2.7].
Accordingly, property 2.b holds true ifH0 satisfies (A1)-
(A3) and the jump set does not map points back to D
(for zero input). Observe that this condition does not
require to check solutions to H0. Similarly, a sufficient
condition to assert property 3.b without checking solu-
tions to H0 is given in [45, Theorem 1], which holds for
a class of Lagrangian hybrid systems modeling also me-
chanical systems exhibiting impacts. Results therein link
Zeno behavior and stability of Zeno equilibria to prop-
erties of the coefficient of restitution and the system’s
unilateral constraints. ⊳

Proof of Proposition 6. The proof of item 1 follows di-
rectly from Proposition 5 since, according to Definition
2, both flow-passivity and jump-passivity imply (28) and
(29) with v ≡ 0. It follows that 0-input stability in items
2-5 can be established similarly. Following the proof of
Proposition 5, we show pre-attractivity of A under the
conditions in item 2 of the proposition being proven.
Consider solutions starting nearbyA, which are bounded
by stability of A. From the flow-output strict passivity
property in Definition 2 with v ≡ 0, we get (30) and (31).
Using 2.b) and the property that hc(x, 0)

⊤ρc(hc(x, 0)) >
0 for all yc 6= 0, the special case b) of [41, Corollary 4.4]
with uc(x) := −hc(x, 0)

⊤ρc(hc(x, 0)) for eachx ∈ Π0(C)
and uc(x) := −∞ otherwise, implies that complete solu-
tions (φ, 0) toH converge to the largest weakly invariant
set contained in

V −1(r) ∩ ({x ∈ Π0(C) : uc(x) = 0 }) =
V −1(r) ∩

({

x ∈ Π0(C) : hc(x, 0)
⊤ρc(hc(x, 0)) = 0

})

(39)
for some r ≥ 0. Due to detectability relative to the set
(36), every solution starting from and staying in (39)
converges to A. Since V is positive definite with respect
to A, the only invariant set in (39) is for r = 0. Since the
set (39) is included in A, it follows that A is attractive.
This establishes item 2.

With the aid of the special case a) of [41, Corol-
lary 4.4], the same arguments apply to show item 3
using 3.b) and the function ud defined as ud(x) :=
−hd(x, 0)

⊤ρd(hd(x, 0)) for each x ∈ Π0(D) and
ud(x) := −∞ otherwise.

The proof of items 4 and 5 follow from the proof of items
2 and 3, respectively, with uc = −ρc and ud = −ρd,
where, according to Definition 2, ρc and ρd are positive
definite functions with respect to A given by the flow-
and jump-strict passivity properties, respectively. ⊳

4 Passivity-based Control

The concepts of flow- and jump-passivity introduced in
Definition 2 can be combined with the notion of de-
tectability introduced in Section 3.3 and the properties
of the solution given in Proposition 6 for stabilization
by means of static output feedback. The result given in
the following theorem, in particular, allows to directly
employ passivity-based control paradigms – see for in-
stance [4], [7] – for the hybrid specific cases of flow- and
jump-passivity in hybrid systems.

Theorem 1 Given a compact set A ⊂ R
n and a hybrid

system H satisfying (A1)-(A3) with continuous output
maps x 7→ hc(x) and x 7→ hd(x) the following hold:

1) If H is flow-passive with respect to A with a storage
function V that is positive definite onΠ(C)∪Π(D)∪
G(D) with respect toA and there exists a continuous
function κc : R

mc → R
mc , with y⊤c κc(yc) > 0 for

all yc 6= 0 having defined yc = hc(x), such that the
resulting closed-loop system with vc = −κc(yc) and
vd ≡ 0 has the following properties:
1.1) the distance to A is detectable relative to

{x ∈ Π(C) ∪Π(D) ∪G(D) :

hc(x)
⊤κc(hc(x)) = 0, (x,−κc(hc(x))) ∈ C

}

,

(40)

1.2) every complete solution φ with vd ≡ 0 is such
that for some δ > 0 and some J ∈ N we have
tj+1 − tj ≥ δ for all j ≥ J ,

then the control law vc = −κc(yc), vd ≡ 0 renders
A pre-asymptotically stable.

2) IfH is jump-passive with respect toA with a storage
function V that is positive definite onΠ(C)∪Π(D)∪
G(D) with respect toA and there exists a continuous
function κd : R

md → R
md , with y⊤d κd(yd) > 0 for

all yd 6= 0 having defined yd = hd(x), such that
the resulting closed-loop system with vc ≡ 0 and
vd = −κd(yd) has the following properties:
2.1) the distance to A is detectable relative to

{x ∈ Π(C) ∪ Π(D) ∪G(D) :

hd(x)
⊤κd(hd(x)) = 0, (x,−κd(hd(x))) ∈ D

}

,

(41)

2.2) every complete solution φ with vc ≡ 0 is Zeno,
then the control law vd = −κd(yd), vc ≡ 0 renders
A pre-asymptotically stable.

Furthermore, if there exist α1, α2 ∈ K∞ such that
α1 (|x|A) ≤ V (x) ≤ α2 (|x|A) for all x ∈ Π(C)∪Π(D)∪
G(D), the stability properties of A asserted in items 1-2
hold globally.
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Proof. To show the first item, note that from the defini-
tion of flow-passivity in Definition 2, V satisfies (6) with
ωc in (8) and also (7) with ωd ≡ 0. Then, by choosing
vc = −κc(yc)+ ṽc, with κc as in the assumptions of item
1 and and ṽc ∈ R

mc a new input, from (6) we get

〈∇V (x), ξ〉 ≤ ṽ⊤c yc − y⊤c κc(yc)

∀(x,−κc(yc) + ṽc) ∈ C, ∀ξ ∈ F (x,−κc(yc) + ṽc)
(42)

V (ξ)− V (x) ≤ 0 ∀(x, vd) ∈ D, ∀ξ ∈ G(x, vd). (43)

The closed-loop hybrid system is

Hcl



























ẋ ∈ F (x,−κc(yc) + ṽc)

(x,−κc(yc) + ṽc) ∈ C

x+ ∈ G(x, vd) (x, vd) ∈ D

yc = hc(x) .

(44)

Since κc is continuous, Hcl satisfies assumptions (A1)-
(A3). According to Definition 2, by considering (42) and
(43), system Hcl is flow-output strictly passive with re-
spect to the compact set A with output yc = hc(x), in-
put ṽc, function ωc(ṽc, x) := ṽ⊤c yc and ρc(yc) := κc(yc).
By choosing vd ≡ 0, conditions 2.a) and 2.b) in Propo-
sition 6 follow from conditions 1.1) and 1.2) of the as-
sumptions. Then, from item 2 of Proposition 6, the com-
pact set A is 0-input, namely ṽc = 0 and vd = 0, pre-
asymptotically stable forHcl. This proves the first item.
The second item follows similarly. ⊳

Remark. Theorem 1 extends the classical passivity con-
trol results (see for instance [1], [2], [3], [4]) to the class
of hybrid systems considered in this work. With respect
to other existing approaches available in literature, such
as the ones in [21] for impulsive dynamical systems, the
proposed framework here focuses also on the hybrid spe-
cific cases of flow- and jump-passivity which have been
shown to be relevant in some applications. In fact, the
results in [21] cannot be applied to the two applications
considered in this paper since the output strict passiv-
ity property does not hold both along flows and jumps.
The approach proposed here links passivity to asymp-
totic stability thought detectability and, for the hybrid
specific cases, it requires also some properties of the so-
lutions. Our required detectability conditions are weaker
than the observability property required in [21]. ⊳

Remark. Existence of solutions for the closed-loop hy-
brid system (44) does not follow from the existence of
solutions to H. As a consequence, existence of solutions
to the closed-loop system has to be checked separately.
As shown in the applications next, the sufficient condi-
tions guaranteeing existence of solutions in [37,38] can
be employed for this purpose.” ⊳

In the following sections, Theorem 1 is employed for the
synthesis of passivity-based control laws for the applica-
tions in Sections 2.1 and 2.2.

4.1 Application 1 re-revisited

Consider the hybrid system HS given in Section 3.2.1,
equation (11). The control goal is to stabilize the point
mass to a position in contact with the vertical surface,
namely, to render A = {(x⋆

1, 0)}, with x⋆
1 ≥ 0, globally

asymptotically stable for the closed-loop hybrid system.
Theorem 1 can be employed to assert this property by
means of the energy-based controller (13) (which con-
sists of passivation by feedback and energy shaping) in
which the remaining control input ṽc is synthesized as
a damping injection. This fact is established by the fol-
lowing proposition.

Proposition 7 Consider the hybrid systemHS given by
(11) with control input vc chosen as in (13). The control
law ṽc = −k1yc, with k1 > 0, renders the compact set
A = {(x⋆

1, 0)} globally asymptotically stable.

Proof. According to Proposition 1, the choice (13) trans-
forms system (11) into the hybrid system HS1 in (14)
which is flow-passive with respect to A, with input ṽc,
output yc = x2, and storage function V given by (15).
Following Theorem 1, the choice ṽc = −k1yc, for all
k1 > 0, renders the compact set A stable for the closed
loop hybrid system

Hcl
S1















ẋ ∈ FS1(x,−k1yc) x ∈ C

x+ = G(x) x ∈ D

yc = hc(x) = x2

(45)

with FS1 , G, C and D defined in Section 3.2.1. Observe
that V in (15) is such that

a1|x|2A ≤ V (x) ≤ a2|x|2A ∀x ∈ R
2

with a1 = (1/2)min{kp, 1} and a2 = (1/2)max{kp, 1}.
This fact and the stability of A are sufficient to prove
that all solutions φ to (45) are bounded (in fact,
|φ(t, j)|2A ≤ (1/a1)V (φ(0, 0)) for all (t, j) ∈ domφ). To
show attractivity note that condition 1.1) in Theorem 1
requires that the distance to A is 0-input detectable rel-
ative to the set K := {x ∈ C : yc = 0} = {x ∈ R

2 : x2 =
0}. Observe that if φ(t, j) ∈ K, for all (t, j) ∈ domφ,
from the definitions of C and D, φ(t, j) belongs to
C\D̄ and then, from the definition of the flow map
FS1 , φ(t, j) ∈ A. Then, the distance to A is 0-input de-
tectable relative to K for Hcl

S1 (in fact, it is observable).
To check condition 1.2) in Theorem 1 observe that the
time between consecutive jumps is lower bounded by a
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finite number δ > 0. In fact, In fact, this property fol-
lows by the fact that |G(x)|D ≥ (1 + eR)x̄2 > 0 for all
x ∈ D, i.e., G takes points in D outside D (to C), and
that the flow map is bounded. Observe that it is also
possible to show that condition 1.2) holds true without
checking solutions to Hcl

S1 . In fact, the sufficient con-
ditions [41, Lemma 2.7] hold true for the closed-loop
hybrid system Hcl

S1 , namely, the jump set does not map

points back to D and Hcl
S1 satisfies (A1)-(A3). From the

above arguments it follows from Theorem 1 that the
control law ṽc = −k1yc, for any positive k1, renders the
compact set A = {(x⋆

1, 0)} pre-asymptotically stable.

Asymptotic stability follows from the fact that all maxi-
mal solutions to (45) are also complete and that solutions
exist from every point in C ∪D. First of all, to establish
the existence of nontrivial solutions from each point in
C∪D, it is enough to show that FS1(x,−k1x2) ⊂ TC(x)
for each x ∈ C\D. From the definitions of the sets C
and D, it follows that the tangent cone in C\D is given
by R

2, hence FS1(x,−k1x2) ⊂ TC(x) trivially holds.
Then, the viability condition (VC) in [46, Proposition
2.4] holds true. Moreover, sinceG(D) ⊂ C∪D, also con-
dition (VD) in [46, Proposition 2.4] holds. Then, since
every maximal solution is bounded, [46, Proposition 2.4]
implies that every maximal solution is complete. Global
asymptotic stability follows from the fact that V is ra-
dially unbounded. ⊳

Remark. Observe that, in the limit, the control input
vc in (13) is given by v⋆c (x

⋆
1, 0) = kcx

⋆
1. From a physical

viewpoint, the mass is then applying a force to the ver-
tical surface that can be varied according to the choice
of the set-point position x⋆

1 ≥ 0. Passivity-based control
techniques are in fact employed in several force control
schemes (see [47] and references therein). ⊳

4.2 Application 2 re-revisited

Consider the hybrid system HBB given in Section 2.2.
The goal of the controller is to stabilize the ball to the
origin in contact with the horizontal surface, namely to
render the set A = {(0, 0)} globally asymptotically sta-
ble for the closed-loop hybrid system. By taking advan-
tage of the passivity property of the system shown in
Proposition 3, this goal can be obtained by designing a
passivity-based control law following Theorem 1.

The stabilizing output-feedback law proposed in the fol-
lowing result induces Zeno behavior, which is a property
required to apply Theorem 1 to general hybrid systems,
and to juggling systems in particular, such as HBB.

Proposition 8 Consider the hybrid system HBB given

by (19). Let ē > 0 be such that ē ∈
(

2e1e2
1−e2

2

,
2e2

2

1−e2
2

)

. Then,

the output-feedback law

vd = −ēyd (46)

in which yd is given by (20), renders the compact set
A = {(0, 0)} globally asymptotically stable.

Proof. From Proposition 3, the system HBB is jump-
passive with respect to the compact set A with input
vd, output yd given in (20) and with storage function
V given in (21). The choice vd = −ēyd is such that
y⊤d ēyd > 0 for all yd 6= 0 and such that (x,−ēyd) ∈ D for
all x ∈ Π(D). In fact, from the definition of yd in (20),

we have ēyd = 1
2
ē(1−e2

2
)

e2
x2. From 2e1e2/(1 − e22) < ē <

2e22/(1− e22) we have that e1 < ē1
2
(1−e2

2
)

e2
< e2, and then

e1|x2| < −ēyd < e2|x2| for all x ∈ Π(D). Then, from
Theorem 1, the compact set A is stable for the closed-
loop hybrid system

Hcl
BB

{

ẋ = F (x) x ∈ C

x+ = G(x,−ēyd) (x,−ēyd) ∈ D
(47)

with F ,G, C andD given in Section 3.2.2. On C∪Π(D),
since x1 ≥ 0, it holds that V (x) = (1/2)x2

2 + γ|x1|.
Then, if |x1| ≥ |x2| it holds γ|x1| = γmax{|x1|, |x2|} =

γ|x|∞. Since |x| ≤
√
2|x|∞ then V (x) ≥ γ|x1| ≥

(γ/
√
2)|x|. If |x1| < |x2| then |x2|2 = |x|2∞ ≥ (1/2)|x|2.

Hence, V (x) ≥ (1/2)x2
2 ≥ (1/4)|x|2. Accordingly

α1(|x|) ≤ V (x) ≤ α2(|x|), where the function α1(s) :=

min{(1/4)|s|2, (γ/
√
2)|s|} and α2(s) := (1/2)|s|2+γ|s|.

This fact and stability of A imply that all solutions φ to
(47) are bounded. To show attractivity, condition 2.1) in
Theorem 1 requires that the distance to A is 0-input de-
tectable relative to the setK := {x : yd = 0, (x,−ēyd) ∈
D} = {x ∈ R

2 : x1 = 0, x2 = 0}. Observe that if x ∈ K,
trivially, x ∈ A. Condition 2.2) in Theorem 1 for the hy-
brid system (47) follows using the same arguments as in
[37, Example S4], where it is also shown that all maximal
solutions are complete. More specifically, to establish
the existence of nontrivial solutions from each point in
C ∪ {x : (x,−ēyd) ∈ D}, observe that F (ξ) ⊂ TC(ξ) for
each ξ ∈ C ∪ {x : (x,−ēyd) ∈ D}. In fact, for all ξ ∈ C
such that ξ1 > 0, TC(ξ) = R

2 and, as a consequence,
F (ξ) ⊂ TC(ξ) holds. For all ξ ∈ C such that ξ1 = 0,
TC(ξ) = R≥0 × R and for all ξ ∈ C {x : (x,−ēyd) ∈ D}
such that ξ1 = 0, from the definition of F , we have
ξ2 > 0. Then, once again, F (ξ) ⊂ TC(ξ) holds. More-
over, since G(x,−ēyd) ∈ C ∪ {x : (x,−ēyd) ∈ D}, solu-
tions do not jump out of C ∪ {x : (x,−ēyd) ∈ D}. From
the above arguments and since solutions are bounded,
it follows that all maximal solutions are complete. Zeno
behavior of the solutions can be asserted using the
sufficient condition in [45]. In fact, for the closed hy-
brid system (47), the restitution coefficient is given by
erest = (1/2)ē(1 − e22)/e2 and it is such that erest < 1,
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while the unilateral constraint that defines the rigid
surface is given by x1 = 0 and then, by computing the
second order derivatives, we obtain ẍ1 = ẋ2 = −γ < 0
for all x ∈ A. Finally, global asymptotic stability follows
from the fact that V is radially unbounded. ⊳

5 Simulations

This section presents some numerical results obtained
using the framework for numerical simulations of hybrid
systems available at [48]. More specifically, Sections 5.1
and 5.2 propose simulation results validating the pas-
sivity based control of, respectively, the point mass in-
teracting with the environment and the bouncing ball
system.

5.1 Application 1: Numerical Results

We present numerical results obtained considering the
passivity-based control law derived in subsection 4.1 for
the mechanical system described respectively in Sections
2.1 and 3.2.1. The parameters of the system and of the
passivity-based control law used in the simulations are
M = 1 kg, kc = 8 N/m, bc = 10 Ns/m, x̄2 = 0.1 m/s,
kp = 10, k1 = 2 and x⋆

1 = 0.1 m. As far as the un-
certain restitution coefficient eR is concerned, the sim-
ulations have been obtained by considering the case in
which eR = 1, which corresponds to have no dissipation
along jumps (situation that can be considered “worst
case” for energy dissipation). By considering as initial
condition for the mass a certain constant distance from
the vertical surface, in particular x(0, 0) = (1, 0), for the
position x1 and the velocity x2 we obtained the trajec-
tories depicted respectively in Figures 2 and 3. Observe
that at t = 0, j = 0 the mass, governed by the passivity-
based control law (13) with ṽc = −k1yc, starts accelerat-
ing towards the surface. Then, at t ≈ 0.5 sec the surface
is reached with a velocity larger than x̄2. Accordingly,
the mass instantaneously rebounds subject to the jump
map in (11). After the collision, the ball continues to flow
until another rebound occurs. It is worth to note that,
since during the continuous-time evolution the controller
is dissipating kinetic energy, collisions are achieved with
progressively decreasing impact velocities. As a conse-
quence, once collisions are achieved with a speed lower
or equal than x̄2, the impacts become compliant and the
mass finally remains in contact with the surface reaching
asymptotically the final desired position x⋆

1 = 0.1 m by
flowing only. For the above simulation, the graph of the
position and velocity trajectory with respect to the flow
and jump set has been shown in Figure 4. The value of
the storage function V given in (15) has been depicted in
Figure 5. As expected, along system trajectories, the en-
ergy is decreasing along flows while it remains constant
at jumps.
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Fig. 2. Position x1 of the mass.
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Fig. 3. Velocity x2 of the point mass.
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Fig. 4. Planar plot of the position and velocity trajectories
(blue line) of the point mass. The gray box denotes the union
of the flow set and jump set.
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Fig. 5. Storage function (15) evaluated along a trajectory.

5.2 Application 2: Numerical Results

In this part, we present numerical results obtained with
the passivity-based control law derived in Section 4.2
for the bouncing ball system described respectively in
Sections 2.2 and 3.2.2. The ball is assumed to have a
unitary mass. The parameters of the system and of the
passivity-based control law are g = 9.81 m/s2, γ = 9.81
Kgm/s2, ē = 2.2, e1 = 0.01 and e2 = 0.8. Note that,
since 0.5(1 − e22)/e2 ≈ 0.23, condition e1 < (0.5(1 −
e22)/e2)ē < e2 in Proposition 8 holds. Moreover, observe
that the passivity-based controller imposes a coefficient
of restitution to the closed-loop bouncing ball given by
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0.5ē(1 − e22)/e2 ≈ 0.49. By considering as initial condi-
tion x(0, 0) = (5, 0) for the position x1 and the veloc-
ity x2 of the ball we obtained the hybrid arcs depicted
respectively in Figures 6(a) and 6(b). The graph of the
position and velocity trajectory with respect to the flow
and jump set has been depicted in Figure 7. The stor-
age function V defined in (21), which coincides also with
the mechanical energy of the system, is shown in Figure
8. At jumps it can be observed that the passivity-based
control law is able to reduce the energy of the system,
which on the other side remains constant during flows.
This fact allows the ball to asymptotically approach the
set A = {(0, 0)}. Finally, observe that the obtained so-
lution is Zeno.
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Fig. 6. (a) Position x1 and (b) velocity x2 of the ball.
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Fig. 7. Planar plot of the position and velocity trajectories
(blue line) of the bouncing ball. The gray box denotes the
union of the flow set and jump set.
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6 Conclusion

In this paper we considered the design of passivity-based
controllers for a class of hybrid systems. Motivated by
applications of mechanical systems interacting with the
surrounding environment, a weak notion of passivity,

for systems in which dissipation of energy is allowed to
happen only during the continuous or the discrete time
behavior respectively, has been proposed and linked,
through detectability, to asymptotic stability. These ba-
sic properties have been employed to develop passivity-
based control results and, in particular, to show how
the class of hybrid systems of interest can be stabilized
by means of static output-feedback laws. The proposed
methodology, together with classical techniques such as
passivation by feedback, energy shaping and damping
injection, has been applied to two applications, namely
a mechanical system capturing the dynamics of a simple
robotic manipulator and a bouncing ball system. Simu-
lation results obtained with numerical tools for hybrid
systems simulation have been also presented to show the
effectiveness of the proposed design. The results in this
paper target the particular class of hybrid systems sat-
isfying the stated regularity properties in Section 3.4.
Their applicability to complementarity systems is part of
future work. Future work pertaining applications will be
focused on showing the effectiveness of passivity-based
control paradigms in the control of aerial vehicles phys-
ically interacting with the surrounding environment.
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