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Abstract— In this paper, we address the problem of trajectory
tracking for a class of underactuated vehicles with full torque
actuation and only one dimensional force actuation (thrust). For
this class of vehicles, the desired thrust is defined by a saturated
control law that achieves global asymptotic stabilization of the
position tracking error. The proposed control law also assures
that the third component of the angular velocity is regulated
to zero. To accomplish this task we propose a hybrid controller
that is designed using backstepping techniques and recent
developments on synergistic Lyapunov functions. Simulations
validating the results are also provided.

I. INTRODUCTION

Over the last few years, the increasing number of appli-

cations for autonomous vehicles and the widespread avail-

ability of these platforms has nurtured the research of novel

control techniques that enable them to perform complex

tasks. Among several interesting contributions, we may point

out the results reported in [3], [4] which deal with the

problem of stabilizing a fully actuated rigid body vehicle,

resorting to state feedback and output feedback control laws,

respectively. However, vehicles are seldom fully actuated,

thus motivating a number of different approaches to the

control of underactuated vehicles. In the literature, we may

find the works reported in [8], [1], [12], [5], with applications

to both Unmanned Air Vehicles (UAVs) and Underwater

Autonomous Vehicles (AUVs). However, each of these con-

tributions is hindered by the topological obstacles to global

stabilization on SO(3). In fact, it is impossible to globally

stabilize a given set point on the SO(3) manifold by means

of continuous feedback [2]. The controller presented in [7]

works around this issue by globally stabilizing a given set

point by means of discontinuous feedback. However, it has

been proved in [15] that a given point in a compact manifold

cannot be globally robustly stabilized by means of continu-

ous nor discontinuous feedback, in the sense that there exist

vanishing noise signals that prevents its stabilization (see

also [23]).
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In this paper, we resort to the hybrid systems framework

presented in [10], [9] to tackle the problem of designing a

controller for underactuated vehicles which is able to track

a desired position reference trajectory globally and robustly.

This framework has already been proved useful for global

stabilization of a fully actuated vehicle by means of rotation

matrix feedback [19], [6] and also to achieve global reference

tracking for a fully actuated vehicle by means of quaternion

feedback [16]. In this paper, we draw inspiration from [18]

and design a controller that achieves global reference track-

ing for a class of underactuated vehicles that have full torque

actuation but only one dimensional force actuation (thrust).

Typically, the torque actuation is used to tilt the thrust along a

desired direction, allowing for appropriate reference tracking.

The controller presented in this paper is not only global, but

also robust to small perturbations in the dynamics of the

state.

The remainder of this paper is organized as follows. In

Section II, we present notational conventions that are used

throughout the paper. Section III describes the problem setup

which is addressed in the subsequent sections. In Section IV

we present the controller design that achieves the desired

goal. Simulation results are provided in Section V so as

to demonstrate the controller’s performance. Finally, some

concluding remarks are given in Section VI.

II. NOTATION & PRELIMINARIES

The attitude of a rigid body is described unequivocally by

an element R of SO(3) defined as follows.

Definition 1: SO(3) denotes the Special Orthogonal

Group of order 3, given by

SO(3) := {R ∈ R
3×3 : R⊤R = I3, det(R) = 1}. �

The Lie algebra of SO(3) is given in the following definition.

Definition 2: The Lie Algebra of the SO(3) group is

denoted by so(3) and is given by

so(3) := {M ∈ R
3×3 :M = −M⊤}. �

Let Sn ⊂ R
n+1 denote the n-dimensional sphere, defined

by S
n := {x ∈ R

n+1 : x⊤x = 1}, and let the operator

S : R3 → so(3) denote the bijection between R
3 and so(3)

(with inverse S−1 : so(3) → R
3), such that S (x) y = x× y

for any x, y ∈ R
3.

Other global representations of the attitude of a rigid body

include the unit quaternion representation q =
[

η ǫ⊤
]⊤

∈
S
3. The mapping R : S3 → SO(3), given by

R(q) := I3 + 2ηS (ǫ) + 2S (ǫ)
2

,

is known as the Rodrigues formula and it maps a given

quaternion to a rotation matrix. This mapping is a local



diffeomorphism but many-to-one globally, since R(q) =
R(−q). Quaternion multiplication is given by the mapping

⊗ : S3 × S
3 → S

3, defined as

q1 ⊗ q2 =

[

η1η2 − ǫ⊤1 ǫ2
η1ǫ2 + η2ǫ1 + S (ǫ1) ǫ2

]

.

The inverse of the unit quaternion is given by q−1 = [η −
ǫ⊤]⊤ and is such that q ⊗ q−1 = q−1 ⊗ q = [1 0 0 0]⊤.

Moreover, the following relationship holds: R(q)v = q ⊗
ν(v) ⊗ q−1 for any v ∈ R

3, with ν(v) := [0 v⊤]⊤. Notice

that q ⊗ ν(ω) = [q]⊗ω, with

[q]⊗ :=

[

ǫ⊤

ηI3 + S (ǫ)

]

.

For more information on quaternion algebra, the reader is

referred to [25] or [13]. It is important to note that for any

continuous path R : [0, 1] 7→ SO(3) and for any q(0) ∈ S
3

such that R(q(0)) = R(0), there exists a unique continuous

path q(t) : [0, 1] 7→ S
3 such that R(q(t)) = R(t) for all t ∈

[0, 1] (c.f. [2]). This is known as the path lifting property and,

in particular, it means that the solution R(t) to Ṙ = RS (ω)
can be uniquely lifted to a path q(t) in S

3 that satisfies

q̇ =
1

2
q ⊗ ν(ω).

The following notation is also used in the sequel:

• The canonical basis for R
n is the set

n
⋃

i=1

{ei}, where

ei ∈ R
n is a vector whose entries are zeros, except for

the i-th entry which is 1;

• The inner product between two vectors x, y ∈ R
n is

given by 〈x, y〉 := x⊤y;

• The gradient of a scalar field V : Rn → R is given by

∇V (x) :=
[

∂V (x)
∂x1

. . . ∂V (x)
∂xn

]⊤

.

Next we summarize the hybrid systems framework as

described in [10]. A hybrid system H in R
n is defined as

H =

{

ξ̇ ∈ F (ξ) ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D

where the data (F,C,G,D) is given as follows:

• the set-valued map F : Rn ⇒ R
n is the flow map and

governs the continuous dynamics (also known as flows)

of the hybrid system;

• the set C ⊂ R
n is the flow set and defines the set of

points where the system is allowed to flow;

• the set-valued map G : Rn ⇒ R
n is the jump map and

defines the behavior of the system during jumps;

• the set D ⊂ R
n is the jump set and defines the set of

points where the system is allowed to jump.

The domain of a solution to a hybrid system (t, j) 7→
ξ(t, j) is a subset of R≥0 × N called hybrid time domain.

A solution to a hybrid system is said to be complete if

its domain is unbounded. The following definitions are

important for establishing several invariance principles for

hybrid systems that can be found in [22].

Definition 3 (weak invariance [22, Definition 3.1]): For

a hybrid system H in R
n, the set S ⊂ R

n is said to be

(a) weakly forward invariant if for each ξ(0, 0) ∈ S, there

exists at least one complete solution ξ to H starting from

ξ(0, 0) with ξ(t, j) ∈ S for all (t, j) ∈ dom ξ;

(b) weakly backward invariant if for each q ∈ S, N > 0,

there exist ξ(0, 0) ∈ S and at least one solution ξ to H
starting from ξ(0, 0) such that for some (t∗, j∗) ∈ dom ξ,

t∗ + j∗ ≥ N , we have ξ(t∗, j∗) = q and ξ(t, j) ∈ S for

all (t, j) � (t∗, j∗), (t, j) ∈ dom ξ;

(c) weakly invariant if it is both weakly forward invariant

and weakly backward invariant. �

Next, we present some of the most important definitions

given in [18].

Definition 4 ([18, Section III]): Consider an affine con-

trol system of the form

ż = φ(z, h) + ψ(z, h)u

ḣ = 0

}

(z, h) ∈ Z ×H ,

where the functions φ and ψ are smooth, u ∈ R
m is the

control, the set Z is closed, and the set H is discrete. Smooth

functions V : Z ×H → R≥0 and κ : Z ×H → R
m form a

Synergistic Lyapunov Function and Feedback pair candidate

(SLFF pair candidate) relative to the compact set A ⊂ Z×H
if

• ∀r ≥ 0, {(z, h) ∈ Z ×H : V (z, q) ≤ r} is compact;

• V is positive definite with respect to A;

• For all (z, h) ∈ Z ×H ,

〈∇V (z, h), φ(z, h) + ψ(z, h)κ(z, h)〉 ≤ 0. �

Given a SLFF pair candidate (V, κ), define the set

E :={(z, h) ∈ Z × H :

〈∇V (z, h), φ(z, h) + ψ(z, h)κ(z, h)〉 = 0}.

Let Ψ ⊂ E denote the largest weakly invariant set for the

system

ż = φ(z, h) + ψ(z, h)u

ḣ = 0

}

(z, h) ∈ E ,

and let

ρV (z) := min
h∈H

V (z, h), (1)

µ(V, κ) := inf
(z,h)∈Ψ\A

V (z, h)− ρV (z).

Using the previous definitions, we establish the notion of a

Synergistic Lyapunov Function and Feedback (SLFF) pair.

Definition 5 ([18, Section III]): The SLFF pair candidate

(V, κ) is called Synergistic Lyapunov Function and Feedback

pair relative to A ⊂ Z × H if µ(V, κ) > 0, in which case

µ(V, κ) is called the synergy gap. When µ(V, κ) > δ > 0,

we say that the synergy gap exceeds δ. �

The concept of an SLFF pair under slightly relaxed

conditions is known as a weak SLFF pair and requires the

definition of the set

W := {(z, h) ∈ Z ×H : ψ(z, h)⊤∇V (z, h) = 0},

and of Ω ⊂ E∩W which denotes the largest weakly invariant

set for the system

ż = φ(z, h) + ψ(z, h)u

ḣ = 0

}

(z, h) ∈ E ∩W ,



Also, let

µW(V, κ) := inf
(z,h)∈Ω\A

V (z, h)− ρV (z).

Definition 6 ([18, Section III]): The SLFF pair candidate

(V, κ) is called a weak Synergistic Lyapunov Function and

Feedback pair (wSLFF) relative to the compact set A ⊂
Z ×H if µW(V, κ) > 0, in which case µW(V, κ) is called

the weak synergy gap. When µW(V, κ) > δ > 0, we say that

the weak synergy gap exceeds δ. �

III. PROBLEM SETUP

In this paper, we propose a controller for the class of

underactuated vehicles that are modeled by the following

system of differential equations

ṗ = v (2a)

v̇ = R(q)e3
T

m
− ge3 (2b)

q̇ =
1

2
q ⊗ ν(ω) (2c)

ω̇ = −J−1(S (ω) Jω) + J−1M , (2d)

where e3 = [0 0 1]⊤, p ∈ R
3 denotes the position of the

center of gravity of the vehicle with respect to an inertial

reference frame, v ∈ R
3 denotes the linear velocity, q ∈ S

3

is the quaternion representation of the attitude such that R(q)
maps vectors in the body fixed frame to the inertial reference

frame, ω ∈ R
3 is the angular velocity, T ∈ R denotes

the thrust force, M ∈ R
3 denotes the actuation torque,

g ∈ R represents the acceleration due to gravity, m ∈ R

represents the mass of the vehicle, and J ∈ R
3×3 represents

its tensor of inertia. The reader may find more information

about the given model in [8], and more detailed information

on helicopter modeling in [20].

This simple model captures the most important features of

vectored thrust vehicles, neglecting the so called small-body

forces1, the external forces (except the gravity force), and the

external torques. These effects are usually very difficult to

model and small enough that may be treated as exogenous

disturbances to the nominal system.

In the following assumption we establish the class of

reference trajectories considered in this paper.

Assumption 1: A reference trajectory t 7→ pd(t) is such

that its time derivative t 7→ ṗd(t) is a bounded and complete

solution to

p̈d = fd(ṗd), (3)

for some smooth function fd : R3 → R
3. �

From the boundedness of ṗd, it follows that ṗd(t) ∈ X
for all t ≥ 0, for some compact set X ⊂ R

3. Also,

since fd(ṗd) is continuous, from [11, Theorem 8.4] we

know that fd(X) ⊂ R
3 is also compact. Having established

the assumptions on the reference trajectory, we state the

main goal of the controller design in the following problem

statement.

1The small-body forces usually refer to the forces that are induced upon
torque generation.

Problem 1: Given a reference trajectory verifying As-

sumption 1, design a control law for the system with the

dynamics as in (2) and control inputs (T,M), such that

lim
t→∞

p(t)− pd(t) = 0,

for any initial state (p, v, q, ω)(0). �

Problem 1 is solved by globally asymptotically stabilizing

the point (p0, v0) = 0, where

p0 := p− pd, v0 := v − ṗd,

denote the position and velocity error variables, respectively.

In this paper, we provide a solution to Problem 1 under the

following assumption.

Assumption 2: There exists a continuous control law

u0(p0, v0) that renders the origin of the system

ṗ0 = v0

v̇0 = u0(p0, v0),
(4)

globally asymptotically stable and, given a reference trajec-

tory satisfying Assumption 1, the following holds:

‖u0(p0, v0) + ge3 + ξ‖ 6= 0, (5)

for all p0 ∈ R
3 , v0 ∈ R

3, and for all ξ ∈ fd(X). �

Notice that there exist several control solutions for the

double integrator system (4) (c.f. [21]). However, condi-

tion (5) restricts the number of controllers that are able

to achieve the desired objective. The controllers presented

in [24] and [5] are examples of controllers that meet the

required assumptions. In this paper, we make use of the

saturated feedback controller described in Appendix A.

Any solution (R0, T0) to the equation Re3T/m =
u0(p0, v0) + ge3 + fd(ṗd), satisfies

T0 = m‖u0(p0, v0) + ge3 + fd(ṗd)‖, (6a)

R0e3 =
u0(p0, v0) + ge3 + fd(ṗd)

‖u0(p0, v0) + ge3 + fd(ṗd)‖
. (6b)

Assumption 2 ensures that T0 > 0 and also that R0e3 is

well-defined. However, the solutions to (6b) are not unique

because R0e1 and R0e2 are left undefined. This additional

degree of freedom in the determination of R0 ∈ SO(3)
allows for a second control objective to be specified. For

the sake of simplicity, we pursue the following strategy:

1) Select ω0(t) and R0(0) ∈ SO(3) such that

e⊤3 ω0(t) = 0 and such that the solution R0(t)
to Ṙ0(t) = R0(t)S (ω0(t)) satisfies (6b) for all t ≥ 0;

2) Design a controller such that lim
t→∞

ω(t)− ω0(t) = 0.

With this strategy we ensure that the thrust vector converges

asymptotically to the desired thrust vector and also that the

third component of the angular velocity converges to 0.

From (6b), we are able to verify that

ω0 = S (e3)R
⊤
0

d

dt
(R0) ,

yields the desired result since e⊤3 ω0 = 0 and it complies with

the rotation matrix kinematic model Ṙ0 = R0S (ω0). By the

path lifting property, if R(q0(0)) = R(0) then there exists a

unique solution to q̇0 = q0 ⊗ ν(ω0)/2 such that R(q0(t)) =
R0(t) for all t ≥ 0. At this stage, we can extend the dynamic



system (4) so as to include the quaternion kinematics as well

as a logic variable h ∈ H := {−1, 1} that is used in the

hybrid controller design presented in Section IV. From (2)

and using the error quaternion q1 := q⊗q−1
0 , it is possible to

verify that R(q) = R(q1)R(q0) and, consequently, we obtain

the following dynamic system2

p̈d = fd(ṗd), (7a)

ṗ0 = v0, (7b)

v̇0 = R(q1)f − ge3 − fd(ṗd), (7c)

q̇1 =
1

2
q1 ⊗ ν(ω1 − ω⋆

1), (7d)

ḣ = 0, (7e)

where f := R0e3T0/m, and ω1 is an input obtained from

the original input ω by the following relationship:

ω1 := ω⋆
1 +R0(ω − ω0), (8)

with

ω⋆
1 :=

h

k
[0 2η1S (f)− 2S (f)S (ǫ1)]∇V0(p0, v0), (9)

for some k > 0. Notice that we have used the shorthand

notation f and ω⋆
1 for f(ṗd, p0, v0) and ω⋆

1(ṗd, p0, v0), re-

spectively, in order to ease the notational burden. However,

the reader should remain aware that these quantities vary

with (ṗd, p0, v0).
In the next section, we establish that (V1, κ1) given by

V1(ṗd, p0, v0, q1, h) := V0(p0, v0) + 2k(1− hη1), (10a)

κ1 := 0, (10b)

is a weak Synergistic Lyapunov Function and Feedback

(wSLFF) pair relative to A1 := {(ṗd, p0, v0, q1, h) ∈ R
3 ×

R
3 × R

3 × S
3 ×H : p0 = 0, v0 = 0, q1 = [h 0⊤]⊤}, thus it

is amenable for backstepping.

IV. GLOBAL REFERENCE TRACKING

In this section, we employ the notion of weak Synergistic

Lyapunov Function and Feedback (wSLFF) pairs and use the

backstepping guidelines that are outlined in [18] to derive a

controller that globally tracks a desired reference trajectory.

Let us first rewrite (7) in the form of an affine control

system

ż = φ(z, h) + ψ(z, h)ω1

ḣ = 0

}

(z, h) ∈ Z ×H , (11)

with z := (ṗd, p0, v0, q1) ∈ Z := X × R
3 × R

3 × S
3 and

h ∈ H (recall that X ⊂ R
3 is a compact set such that

ṗd(t) ∈ X for all t ≥ 0). Comparing (11) with (7) and using

the definitions in (8), (9) and (3) we have that

φ(z, h) =









fd(ṗd)
v0

R(q1)f − ge3 − fd(ṗd)
− 1

2 [q1]⊗ω
⋆
1









, ψ(z, h) =









0
0
0

1
2 [q1]⊗









.

(12)

Lemma 1: Let Assumptions 1 and 2 hold. For any k > 0,

the pair (V1, κ1), defined in (10), is a weak SLFF pair relative

2We treat ṗd as state components so that the system is autonomous.

to A1 := {(z, h) ∈ Z ×H : p0 = 0, v0 = 0, q1 = [h 0⊤]⊤}
for the system (12). �

Carrying out the input transformation

M = S (ω) Jω

+ J
(

ω̇0 − S (ω0) (ω − ω0) +R⊤
0 (−ω̇

⋆
1 + u2)

)

,

one is able to check that ω̇1 = u2.

Letting ς := (z, ω1) and Σ := Z × R
3, we define the

hybrid system H := (C,F,D,G) as follows

State: (ς, h) ∈ Σ×H (13a)

Flow Map:

F (ς, h) = (φ(z, h) + ψ(z, h)ω1, κ2(ς, h), 0) (13b)

Flow Set:

C = {(ς, h) ∈ Σ×H : V2(ς, h)− ρV2
(ς) ≤ δ} (13c)

Jump Map:

G(ς, h) = {(ς, h) ∈ Σ×H : V2(ς, h) = ρV2
(ς)} (13d)

Jump Set:

D = {(ς, h) ∈ Σ×H : V2(ς, h)− ρV2
(ς) ≥ δ}, (13e)

where δ ∈ (0, 4k),

κ2(ς, h) := −Γω1 − hkǫ1, (14)

Γ ∈ R
3×3, and

V2(ς, h) := V1(z, h) +
1

2
ω⊤
1 ω1.

In the following theorem, we show that there exists a

controller for (13) that globally asymptotically stabilizes

A2 := {(ς, h) ∈ Σ×H : (z, h) ∈ A1, ω1 = 0}, (15)

with q1 =
[

η1 ǫ⊤1
]⊤

and ρV2
defined in (1).

Theorem 1: Let Assumptions 1 and 2 hold. For any pos-

itive definite Γ ∈ R
3×3, k > 0, the set (15) is globally

asymptotically stable for the hybrid system system H, given

by (13), using the control law (14). �

Since V0(p0, v0) is smooth and (p0, v0) = (0, 0) is a global

minimum for V0(p0, v0), we have that ∇V0(0, 0) = 0 thus,

from (9), we conclude that ω⋆
1 |ς∈A2

= 0. Moreover, from (8)

and from the fact that R0 is an orthogonal transformation we

conclude that ω1|ς∈A2
= 0 if and only if ω = ω0. Then, it is

possible to verify that the global stabilization of A2 for (13)

implies that the state variables of the original system (2)

converge asymptotically as follows

p→ pd, v → ṗd,

q → q0, ω → ω0,

thus solving Problem 1. In the next section, we present some

simulation results that show the behaviour of the closed loop

system resulting from the interconnection of (13) with (14).

In [17], the reader may find a discussion on the robustness

properties of the hybrid controller controller we propose.

V. SIMULATION RESULTS

In this section, we present some simulation results for the

closed loop system. In the simulations, we use parameters



kp = 1, kv = 2, k = 2, Γ = 20I3 and chose

fd(ṗd) =





0 −ν0 0
2ν0 0 0
0 0 0



 ṗd,

with ν0 = 0.9 rad/s with initial condition ṗd(0, 0) =
[0 1.8 0]⊤ m/s and pd(0, 0) = [1 0 0]⊤ m. For the remaining

variables of the system we chose the following set of initial

conditions:

p(0, 0) = pd(0, 0) +





1
0
1



 , v(0, 0) = 0,

q(0, 0) = −q0, ω(0, 0) = 0,

h(0, 0) = 1,

where q0 ∈ S
3 is such that R(q0) ∈ SO(3) satisfies (6b).

Figures 1 and 2 verify that ω is converging asymptotically

to ω0 and that p is converging to pd. Since e⊤3 ω0 = 0, then

Problem 1 is solved by the proposed controller. Also, it is

possible to verify that the rotation subsystem reacts much

faster than the position subsystem, which is an expected be-

haviour since rotating the thrust vector is a primary concern

in achieving the reference tracking objective. Moreover, there

is a jump at t = 0 due to the particular selection of the initial

conditions (notice that q1(0, 0) = [−1 0⊤]⊤ which lies in the

jump set).
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10
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10
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‖
ω
(t
)
−

ω
0
(t
)‖

Fig. 1. Euclidean distance between the the angular velocity of the vehicle
and ω0, as a function of time.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

t [s]

‖p
0
(t
)‖

Fig. 2. Euclidean distance between the vehicle and the reference trajectory,
as a function of time.

Finally, Figure 3 depicts the trajectory of the vehicle in

three dimensional space. It is possible to verify that there

is a certain loss of height before convergence to the desired

trajectory. If this is an issue for the particular application at

hand, then different controller parameters must be selected,

namely, by increasing the controller gains in the z-axis

direction.

Fig. 3. The vectored thrust vehicle’s trajectory in three dimensional space.

VI. CONCLUSIONS

In this paper, we addressed the problem of stabilizing a

class of underactuated vehicles to a given reference trajec-

tory. Making use of recent results on synergistic Lyapunov

function and feedback (SLFF) pairs and using backstepping

we were able to design a hybrid controller that achieves this

goal globally, i.e., starting from any initial condition. We also

presented some simulation results the depict the behavior of

the closed loop system.
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APPENDIX

A. Stabilization of the Double Integrator by Saturated Feed-

back

In this appendix we present a controller that renders the

origin of the system (4) globally asymptotically stable and,

with appropriate tuning, also respects the bounds (5). The

design of any saturated controller requires also the definition

of a saturation function which is given in the following.

Definition 7: A K-saturation function is a smooth non-

decreasing function σK : R → R which satisfies the

following properties

1) σK (0) = 0,

2) sσK (s) > 0 for all s 6= 0,

3) lim
s→±∞

σK (s) = ±K, for some K > 0.

The desired result is given in the following proposition.

Proposition 1: There exists a positive definite and sym-

metric matrix P ∈ R
2×2, and kp, kv > 0 such that the control

law (p0, v0) 7→ u0(p0, v0) satisfying

e⊤i u0(p0, v0) := −σK
(

kpe
⊤
i p0 + kve

⊤
i v0

)

,

for each i ∈ {1, 2, 3}, renders the origin of the system (4)

globally asymptotically stable and

V0 :=
3

∑

i=1

1

2

[

σK (ri) e⊤i v0
]

P

[

σK (ri)
e⊤i v0

]

+

∫ ri

0

σK (ξ) dξ,

(16)

with ri := kpe
⊤
i p0 + kve

⊤
i v0, is such that

〈∇V0(p0, v0), [v
⊤
0 u0(p0, v0)

⊤]⊤〉 < 0 for each (p0, v0) 6= 0
and 〈∇V0(p0, v0), [v

⊤
0 u0(p0, v0)

⊤]⊤〉 = 0 for (p0, v0) = 0.

Proof: This results follows from a application of [14,

Theorem 4.2]. It is straightforward to verify that V0 : R3 ×
R

3 → R is continuously differentiable and positive definite

relative to (p0, v0) = 0. Also, notice that the two following

relations hold

V0(p0, v0) ≥ λmin(P )‖v0‖
2

V0(p0, v0) ≥
3

∑

i=1

∫ ri

0

σK (ξ) dξ. (17a)

Suppose that V0 was not radially unbounded, then as

‖(p0, v0)‖ → ∞ we have that V0 → s0, where s0 > 0
is some finite value. From (17) we have that the norm

of v0 must remain upper bounded. However, if this is the

case then
∑3

i=1

∫ ri

0
σK (ξ) dξ → ∞ as ‖(p0, v0)‖ → ∞,

thus from (17a) we conclude that V0 → ∞ which is a

contradiction. It follows that V0 is radially unbounded. The

time derivative of (16) is given by

〈∇V0(p0, v0),

[

v0
u0(p0, v0)

]

〉 =

3
∑

i=1

(

[

σK (ri) e⊤i v0
]

P

[

∂σK(ri)
∂ri

e⊤i (kpv0 + kvu0(p0, v0))

−σK (ri)

]

− σK (ri) (−kpe
⊤
i v0 + kvσK (ri))

)

.

(18)

Rearranging the terms in (18) and noticing that P ∈ R
2×2

can be written as

P :=

[

a −b
−b c

]

,

for any a, b, c > 0 we obtain the following expression if

kp := c,

〈∇V0(p0, v0),

[

v0
u0(p0, v0)

]

〉 =
3

∑

i=1

−
[

σK (ri) e⊤i v0
]

(

[

kv − b 0
0 0

]

+
∂σK (ri)

∂ri

[

kva − 1

2
(kpa+ kvb)

− 1

2
(kpa+ kvb) kpb

]

)

[

σK (ri)
e⊤i v0

]

It is possible to verify that W0 :=
−〈∇V0(p0, v0), [v

⊤
0 u0(p0, v0)

⊤]⊤〉 is positive definite

for kv = ac/b. It follows that the origin of (4) is globally

asymptotically stable.


