
Hybrid Equations (HyEQ) Toolbox v1.0

A Toolbox for Simulating Hybrid Systems in

MATLAB/Simulink R©

David A. Copp and Ricardo G. Sanfelice
Hybrid Dynamics and Control Laboratory

University of Arizona

November 1, 2012

Abstract

This note describes the Hybrid Equations (HyEQ) Toolbox implemented in MATLAB/Simulink for
the simulation of hybrid dynamical systems. This toolbox is capable of simulating individual and inter-
connected hybrid systems where multiple hybrid systems are connected and interact such as a bouncing
ball on a moving platform, fireflies synchronizing their flashing, and more. The Simulink implementation
includes four basic blocks that define the dynamics of a hybrid system. These include a flow map, flow
set, jump map, and jump set. The flows and jumps of the system are computed by the integrator system
which is comprised of blocks that compute the continuous dynamics of the hybrid system, trigger jumps,
update the state of the system and simulation time at jumps, and stop the simulation. We also describe
a “lite simulator” which allows for faster simulation.

Contents

1 Introduction 2

2 Lite HyEQ Solver: A stand-alone MATLAB code for simulation of hybrid systems

without inputs 2

2.1 Solver Function . 5
2.1.1 Events Detection . 7
2.1.2 Jump Map . 8

2.2 Software Requirements . 8
2.3 Configuration of Solver . 8
2.4 Initialization . 8
2.5 Postprocessing and Plotting solutions . 9

3 HyEQ Simulator: A Simulink implementation for simulation of single and interconnected

hybrid systems with inputs 10

3.1 The Integrator System . 11
3.1.1 CT Dynamics . 11
3.1.2 Jump Logic . 12
3.1.3 Update Logic . 12
3.1.4 Stop Logic . 12

3.2 Software Requirements . 13
3.2.1 Configuration of HyEQ Simulator for Windows . 13
3.2.2 Configuration of HyEQ Simulator for Mac . 14

3.3 Configuration of Integration Scheme . 15
3.4 Initialization . 15
3.5 Postprocessing and Plotting solutions . 16

4 Examples 16

5 Closing Remarks 30

6 Acknowledgments 30

1

7 References 30

1 Introduction

A hybrid system is a dynamical system with continuous and discrete dynamics. Several mathematical models
for hybrid systems have appeared in literature. In this paper, we consider the framework for hybrid systems
used in [3,4], where a hybrid system H on a state space R

n with input space R
m is defined by the following

objects:

• A set C ⊂ R
n × R

m called the flow set.

• A function f : Rn × R
m → R

n called the flow map.

• A set D ⊂ R
n × R

m called the jump set.

• A function g : Rn × R
m → R

n called the jump map.

We consider the simulation in MATLAB/Simulink of hybrid systems H = (C, f,D, g) written as

H : x, u ∈ R
m

{

ẋ = f(x, u) (x, u) ∈ C
x+ = g(x, u) (x, u) ∈ D.

(1)

The flow map f defines the continuous dynamics on the flow set C, while the jump map g defines the
discrete dynamics on the jump set D. These objects are referred to as the data of the hybrid system H,
which at times is explicitly denoted as H = (C, f,D, g). We illustrate this framework in a simple, yet rich
in behavior, hybrid system.

Example 1.1 (bouncing ball system) Consider a model for a bouncing ball written as

f(x) :=

[

x2

−γ

]

, C :=
{

x ∈ R
2 | x1 ≥ 0

}

(2)

g(x) :=

[

0
−λx2

]

, D :=
{

x ∈ R
2 | x1 ≤ 0 , x2 ≤ 0

}

(3)

where γ > 0 is the gravity constant and λ ∈ [0, 1) is the restitution coefficient. In this model, we consider
the ball to be bouncing on a floor at a height of 0. This model is re-visited as an example in Section 2 and
Section 4.

The remainder of this note is organized as follows. In Section 2, we introduce the Lite HyEQ Solver
for solving hybrid systems without inputs. In Section 3, we introduce the HyEQ Simulator implemented in
Simulink for solving single and interconnected hybrid systems with inputs. In Section 4, we work through
several examples for the simulation of single and interconnected hybrid systems. In Section 5, we give
directions to where the simulator files can be downloaded.

2 Lite HyEQ Solver: A stand-alone MATLAB code for simulation
of hybrid systems without inputs

One way to simulate hybrid systems is to use ODE function calls with events in MATLAB (see, e.g.,
http://control.ee.ethz.ch/~ifaatic/ex/example1.m). Such an implementation gives fast simulation of
a hybrid system.

In the lite HyEQ solver, four basic functions are used to define the data of the hybrid system H as in (1)
(without inputs):

• The flow map is defined in the MATLAB function f.m. The input to this function is a vector with
components defining the state of the system x. Its output is the value of the flow map f .

2

• The flow set is defined in the MATLAB function C.m. The input to this function is a vector with
components defining the state of the system x. Its output is equal to 1 if the state belongs to the set
C or equal to 0 otherwise.

• The jump map is defined in the MATLAB function g.m. Its input is a vector with components defining
the state of the system x. Its output is the value of the jump map g.

• The jump set is defined in the MATLAB function D.m. Its input is a vector with components defining
the state of the system x. Its output is equal to 1 if the state belongs to D or equal to 0 otherwise.

Our Lite HyEQ Solver uses a main function run.m to initialize, run, and plot solutions for the simulation,
functions f.m, C.m, g.m, and D.m to implement the data of the hybrid system, and HyEQsolver.m which
will solve the differential equations by integrating the continuous dynamics, ẋ = f(x), and jumping by the
update law x+ = g(x). The ODE solver called in HyEQsolver.m initially uses the initial or most recent step
size, and after each integration, the algorithms in HyEQsolver.m check to see if the solution is in the set C,
D, or neither. Depending on which set the solution is in, the simulation is accordingly reset following the
dynamics given in f or g, or the simulation is stopped. This implementation is fast because it also does not
store variables to the workspace and only uses built-in ODE function calls.

Time and jump horizons are set for the simulation using TSPAN = [TSTART TFINAL] as the time interval
of the simulation and JSPAN = [JSTART JSTOP] as the interval for the number of discrete jumps allowed.
The simulation stops when either the time or jump horizon, i.e. the final value of either interval, is reached.

The example below shows how to use the HyEQ solver to simulate a bouncing ball.

Example 1.2 (bouncing ball with Lite HyEQ Solver) Consider the hybrid system model for the bouncing
ball with data given in Example 1.1. For this example, we consider the ball to be bouncing on a floor at
zero height. The constants for the bouncing ball system are γ = 9.81 and λ = 0.8. The following procedure
is used to simulate this example in the Lite HyEQ Solver:

• Inside the MATLAB script run.m, initial conditions, simulation horizons, a rule for jumps, and ODE
solver options are defined. The function HyEQsolver.m is called in order to run the simulation, and a
script for plotting solutions is included.

• Then the MATLAB functions f.m, C.m, g.m, D.m are edited according to the data given above.

• Finally, the simulation is run by clicking the run button in run.m or by calling run.m in the MATLAB
command window.

Example code for each of the MATLAB files run.m, f.m, C.m, g.m, and D.m is given below.

function run

% initial conditions

x1_0 = 1;

x2_0 = 0;

x0 = [x1_0;x2_0];

% simulation horizon

TSPAN=[0 10];

JSPAN = [0 20];

% rule for jumps

% rule = 1 -> priority for jumps

% rule = 2 -> priority for flows

rule = 1;

options = odeset(’RelTol’,1e-6,’MaxStep’,.1);

% simulate

[t j x] = HyEQsolver(@f,@g,@C,@D,x0,TSPAN,JSPAN,rule,options);

% plot solution

figure(1) % position

clf

3

subplot(2,1,1),plotflows(t,j,x(:,1))

grid on

ylabel(’x1’)

subplot(2,1,2),plotjumps(t,j,x(:,1))

grid on

ylabel(’x1’)

figure(2) % velocity

clf

subplot(2,1,1),plotflows(t,j,x(:,2))

grid on

ylabel(’x2’)

subplot(2,1,2),plotjumps(t,j,x(:,2))

grid on

ylabel(’x2’)

% plot hybrid arc

plotHybridArc(t,j,x)

xlabel(’j’)

ylabel(’t’)

zlabel(’x1’)

function xdot = f(x)

% state

x1 = x(1);

x2 = x(2);

% differential equations

xdot = [x2 ; -9.81];

end

function value = C(x)

x1 = x(1);

if x1 >= 0

value = 1;

else

value = 0;

end

end

function xplus = g(x)

% state

x1 = x(1);

x2 = x(2);

xplus = [-x1 ; -0.8*x2];

end

function inside = D(x)

x1 = x(1);

x2 = x(2);

if (x1 <= 0 && x2 <= 0)

inside = 1;

else

inside = 0;

end

end

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−0.5

0

0.5

1

flows [t]

jumps [j]

x
1

x
1

(a) Height

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−5

0

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−5

0

5

flows [t]

jumps [j]

x
2

x
2

(b) Velocity

Figure 1: Solution of Example 1.2

A solution to the bouncing ball system from x(0, 0) = [1, 0]⊤ and with TSPAN = [0 10], JSPAN = [0

20], rule = 1, is depicted in Figure 1(a) (height) and Figure 1(b) (velocity). Both the projection onto t
and j are shown. Figure 2 depicts the corresponding hybrid arc for the position state.

For MATLAB files of this example, see Examples/Example 1.2.

2.1 Solver Function

The solver function HyEQsolver solves the hybrid system using three different functions as shown below.
First, the flows are calculated using the built-in ODE solver function ODE45 in MATLAB. If the solution
leaves the flow set C, the discrete event is detected using the function zeroevents as shown in Section 2.1.1.
When the state jumps, the next value of the state is calculated via the jump map g using the function jump

as shown in Section 2.1.2.

function [t j x] = HyEQsolver(f,g,C,D,x0,TSPAN,JSPAN,rule,options)

% Initial version of code developed by Torstein Ingebrigtsen

%

% HyEQsolver solves hybrid equations

% [t j x] = HyEQsolver(f,g,C,D,x0,TSPAN,JSPAN) will integrate

% x’=f(x) and jump by the rule x = g(x). x is a vector with the same

% length as x0. Both must return a vector with the

% equal length as x0.

%

% inside = C(x) returns 0 if outside of C and 1 inside of C

%

% inside = D(x) returns 0 if outside of D and 1 inside of D

%

% TSPAN = [TSTART TFINAL] is the time interval. JSPAN = [JSTART JSTOP] is

% the interval for discrete jumps. The algorithm stop when the first stop

% condition is reached.

%

% rule for jumps

% rule = 1 (default) -> priority for jumps

% rule = 2 -> priority for flows

5

0

5

10

15

200 1 2 3 4
0

0.5

1

t

j

x
1

Figure 2: Hybrid arc corresponding to a solution of Example 1.2: height

%

% options - options for the solver see odeset f.ex.

% options = odeset(’RelTol’,1e-6);

if ~exist(’rule’,’var’)

rule = 1;

end

if ~exist(’options’,’var’)

options = odeset();

end

% simulation horizon

tstart = TSPAN(1);

tfinal = TSPAN(end);

% simulate

options = odeset(options,’Events’,@(t,x) zeroevents(x,C,D,rule));

tout = tstart;

xout = x0.’;

jout = JSPAN(1);

j = jout(end);

% Jump if jump is prioritized:

if rule == 1

while (j<JSPAN(end))

6

% Check if value it is possible to jump current position

insideD = D(xout(end,:).’);

if insideD == 1

[j tout jout xout] = jump(g,j,tout,jout,xout);

else

break;

end

end

end

fprintf(’Completed: %3.0f%%’,0);

while (j < JSPAN(end) && tout(end) < TSPAN(end))

% Check if it is possible to flow from current position

insideC = C(xout(end,:).’);

if insideC == 1

[t,x] = ode45(@(t,x) f(x),[tout(end) tfinal],xout(end,:).’, options);

nt = length(t);

tout = [tout; t];

xout = [xout; x];

jout = [jout; j*ones(1,nt)’];

end

%Check if it is possible to jump

insideD = D(xout(end,:).’);

if insideD == 0

break;

else

if rule == 1

while (j<JSPAN(end))

% Check if it is possible to jump from current position

insideD = D(xout(end,:).’);

if insideD == 1

[j tout jout xout] = jump(g,j,tout,jout,xout);

else

break;

end

end

else

[j tout jout xout] = jump(g,j,tout,jout,xout);

end

end

fprintf(’\b\b\b\b%3.0f%%’,100*tout(end)/TSPAN(end));

end

t = tout;

x = xout;

j = jout;

fprintf(’\nDone\n’);

end

2.1.1 Events Detection

function [value,isterminal,direction] = zeroevents(x,C,D,rule)

isterminal = 1;

direction = -1;

insideC = C(x);

7

if insideC == 0

% Outside of C

value = 0;

elseif (rule == 1)

% If priority for jump, stop if inside D

insideD = D(x);

if insideD == 1

% Inside D, inside C

value = 0;

else

% outside D, inside C

value = 1;

end

else

% If inside C and not priority for jump or priority of jump and outside

% of D

value = 1;

end

end

2.1.2 Jump Map

function [j tout jout xout] = jump(g,j,tout,jout,xout)

% Jump

j = j+1;

y = g(xout(end,:).’);

% Save results

tout = [tout; tout(end)];

xout = [xout; y.’];

jout = [jout; j];

end

2.2 Software Requirements

In order to run simulations using the Lite HyEQ Solver, MATLAB R13 or newer is required.

2.3 Configuration of Solver

Before a simulation is started, it is important to determine the needed integrator scheme, zero-cross detection
settings, precision, and other tolerances. Using the default settings does not always give the most efficient
or most accurate simulations. In the Lite HyEQ Solver, these parameters are edited in the run.m file using

options = odeset(RelTol,1e-6,MaxStep,.1);.

2.4 Initialization

The Lite HyEQ Solver is initialized and run by calling the function run.m. Inside run.m, the initial conditions,
simulation horizons TSPAN and JSPAN, a rule for jumps, and simulation tolerances are defined. After all of
the parameters are defined, the function HyEQsolver is called, and the simulation runs. See below for sample
code to initialize and run the bouncing ball example, Example 1.2.

% initial conditions

x1_0 = 1;

x2_0 = 0;

x0 = [x1_0;x2_0];

8

% simulation horizon

TSPAN=[0 10];

JSPAN = [0 20];

% rule for jumps

% rule = 1 -> priority for jumps

% rule = 2 -> priority for flows

rule = 1;

options = odeset(’RelTol’,1e-6,’MaxStep’,.1);

% simulate

[t j x] = HyEQsolver(@f,@g,@C,@D,x0,TSPAN,JSPAN,rule,options);

2.5 Postprocessing and Plotting solutions

The function run.m is also used to plot solutions after the simulations is complete. See below for sample
code to plot solutions to the bouncing ball example, Example 1.2.

% plot solution

figure(1) % position

clf

subplot(2,1,1),plotflows(t,j,x(:,1))

grid on

ylabel(’x1’)

subplot(2,1,2),plotjumps(t,j,x(:,1))

grid on

ylabel(’x1’)

figure(2) % velocity

clf

subplot(2,1,1),plotflows(t,j,x(:,2))

grid on

ylabel(’x2’)

subplot(2,1,2),plotjumps(t,j,x(:,2))

grid on

ylabel(’x2’)

% plot hybrid arc

plotHybridArc(t,j,x)

xlabel(’j’)

ylabel(’t’)

zlabel(’x1’)

The following functions are used to generate the plots:

• plotflows(t,j,x): plots (in blue) the projection of the trajectory x onto the flow time axis t. The value
of the trajectory for intervals [tj , tj+1] with empty interior is marked with ∗ (in blue). Dashed lines (in
red) connect the value of the trajectory before and after the jump. Figure 9(a) shows a plot created
with this function.

• plotjumps(t,j,x): plots (in red) the projection of the trajectory x onto the jump time j. The initial
and final value of the trajectory on each interval [tj , tj+1] is denoted by ∗ (in red) and the continuous
evolution of the trajectory on each interval is depicted with a dashed line (in blue). Figure 9(a) shows
a plot created with this function.

• plotHybridArc(t,j,x): plots (in black) the trajectory x on hybrid time domains. The intervals [tj , tj+1]
indexed by the corresponding j are depicted in the t− j plane (in red). Figure 10 shows a plot created
with this function.

9

3 HyEQ Simulator: A Simulink implementation for simulation of
single and interconnected hybrid systems with inputs

This model simulates a bouncing ball.

u
state

x

jumps

j

jump set D

x

u
v

D

jump map g

x

u
xplus

g

flows

t

flow set C

x

u
v

C

flow map f

x

u
xdot

f

Integrator System

f

C

g

D

x

t

j

x−

Double Click

to Initialize

Double Click to

Plot Solutions

Figure 3: MATLAB/Simulink implementation of a hybrid system H = (C, f,D, g) with inputs.

Figure 3 shows a Simulink implementation proposed here. In this implementation, four basic blocks are
used to define the data of the hybrid system H:

• The flow map is implemented in an Embedded MATLAB function block executing the function f.m. Its
input is a vector with components defining the state of the system x, and the input u. Its output is
the value of the flow map f which is connected to the input of an integrator.

• The flow set is implemented in an Embedded MATLAB function block executing the function C.m. Its
input is a vector with components x− and input u of the Integrator system. Its output is equal to 1 if
the state belongs to the set C or equal to 0 otherwise. The minus notation denotes the previous value
of the variables (before integration). The value x− is obtained from the state port of the integrator.

• The jump map is implemented in an Embedded MATLAB function block executing the function g.m.
Its input is a vector with components x− and input u of the Integrator system. Its output is the value
of the jump map g.

• The jump set is implemented in an Embedded MATLAB function block executing the function D.m. Its
input is a vector with components x− and input u of the Integrator system. Its output is equal to 1 if
the state belongs to D or equal to 0 otherwise.

10

In our implementation, MATLAB .m files are used. The file initialization.m is used to define initial
variables before simulation. The file postprocessing.m is used to plot the solutions after a simulation is
complete. These two .m files are called by double-clicking the Double Click to... blocks at the top of the
Simulink Model (see Section 3.5 for more information on these .m files and their use).

3.1 The Integrator System

In this section we discuss the internals of the Integrator System shown in Figure 4.

x

4

j

3

t

2

x

1

Update logic

g(x ,u)

j

t

update law

Stop logic

t

j

C

D

stop

Stop

Simulation

STOP

Jump logic

C

D

r

jump
1

s

xo

ICx0

[0; 0; x0(:)]

ICx

[x0]

CT dynamics

f(x,u) dot

D

4

g

3

C

2

f

1

Figure 4: Integrator System

3.1.1 CT Dynamics

This block is shown in Figure 5. It defines the continuous-time (CT) dynamics by assembling the time
derivative of the state [t j x⊤]⊤. States t and j are considered states of the system because they need to be
updated throughout the simulation in order to keep track of the time and number of jumps. Without t and
j, solutions could not be plotted accurately. This is given by

ṫ = 1, j̇ = 0, ẋ = f(x, u) .

Note that input port 1 takes the value of f(x, u) through the output of the Embedded MATLAB function

block f in Figure 3.

dot

1

Jumps

0
Flows

1

f(x,u)

1

Figure 5: CT dynamics

11

3.1.2 Jump Logic

This block is shown in Figure 6. The inputs to the jump logic block are the output of the blocks C and D

indicating whether the state is in those sets or not, and a random signal with uniform distribution in [0, 1].
Figure 6 shows the Simulink blocks used to implement the Jump Logic. The variable rule defines whether
the simulator gives priority to jumps, priority to flows, or no priority. It is initialized in initialization.m.

The output of the Jump Logic is equal to one when:

• the output of the D block is equal to one and rule = 1,

• the output of the C block is equal to zero, the output of the D block is equal to one, and rule = 2,

• the output of the C block is equal to zero, the output of the D block is equal to one, and rule = 3,

• or the output of the C block is equal to one, the output of the D block is equal to one, rule = 3, and
the random signal r is larger or equal than 0.5.

Under these events, the output of this block, which is connected to the integrator external reset input,
triggers a reset of the integrator, that is, a jump of H. The reset or jump is activated since the configuration
of the reset input is set to “level hold”, which executes resets when this external input is equal to one (if the
next input remains set to one, multiple resets would be triggered). Otherwise, the output is equal to zero.

rule=1: out = D

rlule=2: out = D and ~C

rule=3: out = (D and ~C) or (D and C and r>0.5)

other : out = 0

jump

1

Multiport

Switch

1

2

3

*

AND
OR

NOT
AND

0

rule

Compare

To Constant

>= 0.5

r

3

D

2

C

1

Figure 6: Jump Logic

3.1.3 Update Logic

This block is shown in Figure 7. The update logic uses the state port information of the integrator. This
port reports the value of the state of the integrator, [t j x⊤]⊤, at the exact instant that the reset condition
becomes true. Notice that x− differs from x since at a jump, x− indicates the value of the state that triggers
the jump, but it is never assigned as the output of the integrator. In other words, “x ∈ D” is checked using
x− and if true, x is reset to g(x−, u). Notice, however, that u is the same because at a jump, u indicates the
next evaluated value of the input, and it is assigned as the output of the integrator. The flow time t is kept
constant at jumps and j is incremented by one. More precisely

t+ = t−, j+ = j− + 1, x+ = g(x−, u)

where [t− j− x−⊤
]⊤ is the state that triggers the jump.

3.1.4 Stop Logic

This block is shown in Figure 8. It stops the simulation under any of the following events:

• The flow time is larger than or equal to the maximum flow time specified by T .

• The jump time is larger than or equal to the maximum number of jumps specified by J .

12

update law

1

1

t−

3

j−

2

g(x−,u)

1

Figure 7: Update Logic

• The state of the hybrid system x is neither in C nor in D.

Under any of these events, the output of the logic operator connected to the Stop block becomes one, stopping
the simulation. Note that the inputs C and D are routed from the output of the blocks computing whether
the state is in C or D and use the value of x−.

stop

1

Logical

Operator1

OR

Logical

Operator

NOR

Jump Horizon, J

>= J

Flow Horizon, T

>= T

D

4

C

3

j

2

t

1

Figure 8: Stop Logic

3.2 Software Requirements

In order to run simulations using the HyEQ Simulator, MATLAB/Simulink and a supported ANSI, C, or
C++ 32-bit compiler must be installed. We now briefly describe how to install necessary compilers for
Windows and Mac. For more information on supported compilers, please visit http://www.mathworks.

com/support/compilers/R2012a/win32.html.

3.2.1 Configuration of HyEQ Simulator for Windows

For 32-bit Windows, the LCC compiler is included with MATLAB. First, open MATLAB and then locate
and choose a compiler for building MEX-files by typing

>> mex -setup

into the MATLAB command window. Then, follow the prompts as shown below.

>> mex -setup

Welcome to mex -setup. This utility will help you set up

a default compiler. For a list of supported compilers, see

http://www.mathworks.com/support/compilers/R2012a/win32.html

13

Please choose your compiler for building MEX-files:

Would you like mex to locate installed compilers [y]/n? y

Select a compiler:

[1] Lcc-win32 C 2.4.1

[0] None

Compiler: 1

Please verify your choices:

Compiler: Lcc-win32 C 2.4.1

Are these correct [y]/n? y

Done . . .

For 64-bit Windows, a C-compiler is not supplied with MATLAB. Before running the HyEQ Toolbox in
MATLAB/Simulink, please follow the following steps:

1. If you don’t have Microsoft .NET Framework 4 on your computer, download and install it from http:

//www.microsoft.com/en-us/download/details.aspx?id=17851.

2. Then download and installMicrosoft Windows SDK from http://www.microsoft.com/en-us/download/

details.aspx?id=8279.

3. Then perform the steps outlined above for 32-bit Windows to setup and install the compiler.

3.2.2 Configuration of HyEQ Simulator for Mac

From a Mac terminal window, check that the file gcc-4.0 is in the folder /usr/bin. If it is not there, make
a symbolic link there to where it currently is. This will generate a symbolic link for gcc that MATLAB can
find to compile the simulation files (the version “4.0” in the gcc link may need to be adjusted according to
the MATLAB version being used). In OSX Lion, change folder to /usr/bin and then

sudo ln -s /Developer/usr/bin/gcc-4.0 gcc-4.0

This should generate

>> mex -setup

Options files control which compiler to use, the compiler and link command

options, and the runtime libraries to link against.

Using the ’mex -setup’ command selects an options file that is

placed in ~/.matlab/R2012a and used by default for ’mex’. An options

file in the current working directory or specified on the command line

overrides the default options file in ~/.matlab/R2012a.

To override the default options file, use the ’mex -f’ command

(see ’mex -help’ for more information).

The options files available for MEX are:

14

1: /Applications/MATLAB_R2012a.app/bin/gccopts.sh :

Template Options file for building gcc MEX-files

2: /Applications/MATLAB_R2012a.app/bin/mexopts.sh :

Template Options file for building MEX-files via the system ANSI compiler

0: Exit with no changes

Enter the number of the compiler (0-2): 1

DONE!

3.3 Configuration of Integration Scheme

Before a simulation is started, it is important to determine the needed integrator scheme, zero-cross de-
tection settings, precision, and other tolerances. Using the default settings does not always give the most
efficient or most accurate simulations. One way to edit these settings is to open the Simulink Model, select
Simulation>Configuration Parameters>Solver, and change the settings there. We have made this simple
by defining variables for configuration parameters in the initialization.m file. The last few lines of the
initialization.m file look like that given below.

%configuration of solver

RelTol = 1e-8;

MaxStep = .001;

In these lines, “RelTol = 1e-8” and “MaxStep = .001” define the relative tolerance and maximum step
size of the ODE solver, respectively. These parameters greatly affect the speed and accuracy of solutions.

3.4 Initialization

When the block labeled Double Click to Initialize at the top of the Simulink Model is double-clicked, the
simulation variables are initialized by calling the script initialization.m. The script initialization.m
defines the initial conditions by defining the initial values of the state components, any necessary parameters,
the maximum flow time specified by T , the maximum number of jumps specified by J , and tolerances used
when simulating. These can be changed by editing the script file initialization.m. See below for sample
code to initialize the bouncing ball example, Example 1.3.

% initialization for bouncing ball example

clear all

% initial conditions

x0 = [1;0];

% simulation horizon

T = 10;

J = 20;

% rule for jumps

% rule = 1 -> priority for jumps

% rule = 2 -> priority for flows

% rule = 3 -> no priority, random selection when simultaneous conditions

rule = 1;

%configuration of solver

RelTol = 1e-8;

MaxStep = .001;

It is important to note that variables called in the Embedded MATLAB function blocks must be added as
inputs and labeled as “parameters”. This can be done by opening the Embedded MATLAB function block

selecting Tools>Edit Data/Ports and setting the scope to Parameter.

15

After the block labeled Double Click to Initialize is double-clicked and the variables initialized, the
simulation is run by clicking the run button or selecting Simulation>Start.

3.5 Postprocessing and Plotting solutions

A similar procedure is used to define the plots of solutions after the simulation is run. The solutions can
be plotted by double-clicking on the block at the top of the Simulink Model labeled Double Click to Plot

Solutions which calls the script postprocessing.m. The script postprocessing.mmay be edited to include
the desired postprocessing and solution plots. See below for sample code to plot solutions to the bouncing
ball example, Example 1.3.

%postprocessing for the bouncing ball example

% plot solution

figure(1)

clf

subplot(2,1,1),plotflows(t,j,x)

grid on

ylabel(’x’)

subplot(2,1,2),plotjumps(t,j,x)

grid on

ylabel(’x’)

% plot hybrid arc

plotHybridArc(t,j,x)

xlabel(’j’)

ylabel(’t’)

zlabel(’x’)

The following functions are used to generate the plots:

• plotflows(t,j,x): plots (in blue) the projection of the trajectory x onto the flow time axis t. The value
of the trajectory for intervals [tj , tj+1] with empty interior is marked with ∗ (in blue). Dashed lines (in
red) connect the value of the trajectory before and after the jump. Figure 9(a) shows a plot created
with this function.

• plotjumps(t,j,x): plots (in red) the projection of the trajectory x onto the jump time j. The initial
and final value of the trajectory on each interval [tj , tj+1] is denoted by ∗ (in red) and the continuous
evolution of the trajectory on each interval is depicted with a dashed line (in blue). Figure 9(a) shows
a plot created with this function.

• plotHybridArc(t,j,x): plots (in black) the trajectory x on hybrid time domains. The intervals [tj , tj+1]
indexed by the corresponding j are depicted in the t− j plane (in red). Figure 10 shows a plot created
with this function.

4 Examples

The examples below illustrate the use of the Simulink implementation above.

Example 1.3 (bouncing ball with input) For the simulation of the bouncing ball system with a constant
input and regular data given by

f(x, u) :=

[

x2

−γ

]

, C :=
{

(x, u) ∈ R
2 × R | x1 ≥ u

}

(4)

g(x, u) :=

[

u
−λx2

]

, D :=
{

(x, u) ∈ R
2 × R | x1 ≤ u , x2 ≤ 0

}

(5)

16

where γ > 0 is the gravity constant, u is the input constant, and λ ∈ [0, 1) is the restitution coefficient. The
MATLAB scripts in each of the function blocks of the implementation above are given as follows. An input
was chosen to be u(t, j) = 0.2 for all (t, j). The constants for the bouncing ball system are γ = 9.81 and
λ = 0.8.

The following procedure is used to simulate this example with HyEQsimulator.mdl:

• HyEQsimulator.mdl is opened in MATLAB/Simulink.

• The Embedded MATLAB function blocks f, C, g, D are edited by double-clicking on the block and
editing the script. In each embedded function block, parameters must be added as inputs and defined
as parameters by selecting Tools>Edit Data/Ports, and setting the scope to Parameter. For this
example, gamma and lambda are defined in this way.

• The initialization script initialization.m is edited by opening the file and editing the script. The
flow time and jump horizons, T and J are defined as well as the initial conditions for the state vector,
x0, and input vector, u0, and a rule for jumps, rule.

• The postprocessing script postprocessing.m is edited by opening the file and editing the script. Flows
and jumps may be plotted by calling the functions plotflows and plotjumps, respectively. The hybrid
arc may be plotted by calling the function plotHybridArc.

• The simulation stop time and other simulation parameters are set to the values defined in initialization.m
by selecting Simulation>Configuration Parameters>Solver and inputting T , RelT ol, MaxStep,
etc..

• The masked integrator system is double-clicked and the simulation horizons and initial conditions are
set as desired.

• The block labeled Double Click to Initialize is double-clicked to initialize variables.

• The simulation is run by clicking the run button or selecting Simulation>Start.

• The block labeled Double Click to Plot Solutions is double-clicked to plot the desired solutions.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.2

0.4

0.6

0.8

1

flows [t]

jumps [j]

x
1

x
1

(a) Height

0 0.5 1 1.5 2 2.5 3 3.5 4
−4

−2

0

2

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−4

−2

0

2

4

flows [t]

jumps [j]

x
2

x
2

(b) Velocity

Figure 9: Solution of Example 1.3

17

0

5

10

15

200 1 2 3
0

0.5

1

t

j

x
1

Figure 10: Hybrid arc corresponding to a solution of Example 1.3: height

function xdot = f(x, u, gamma)

% state

x1 = x(1);

x2 = x(2);

% flow map: xdot=f(x,u);

xdot = [x(2); gamma];

function v = C(x, u)

% flow set

if (x(1) >= u(1)) % flow condition

v = 1; % report flow

else

v = 0; % do not report flow

end

function xplus = g(x, u, lambda)

% jump map

xplus = [u(1); -lambda*x(2)];

function v = D(x, u)

% jump set

if (x(1) <= u(1)) && (x(2) <= 0) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

end

18

A solution to the bouncing ball system from x(0, 0) = [1, 0]⊤ and with T = 10, J = 20, rule = 1, is
depicted in Figure 9(a) (height) and Figure 9(b) (velocity). Both the projection onto t and j are shown.
Figure 10 depicts the corresponding hybrid arc for the position state.

These simulations reflect the expected behavior of the bouncing ball model. Note the only difference
between this example and the example of a bouncing ball without a constant input is that, in this example,
the ball bounces on a platform at a height of the chosen input value 0.2 rather than the ground at a value
of 0.

For MATLAB/Simulink files of this example, see Examples/Example 1.3.

Example 1.4 (alternate way to simulate the bouncing ball)
Consider the bouncing ball system with a constant input and regular data as given in Example 1.3. This

example shows that a MATLAB function block, such as the jump set D, can be replaced with operational
blocks in Simulink. Figure 11 shows this implementation. The other functions and solutions are the same
as in Example 1.3.

This model simulates a bouncing ball.

u
state

x

jumps

j

jump map g

x

u
xplus

g

flows

t

flow set C

x

u
v

C

flow map f

x

u
xdot

f

<=

<=

AND

Integrator System

f

C

g

D

x

t

j

x−

0

Double Click

to Initialize

Double Click to

Plot Solutions

Figure 11: Simulink implementation of bouncing ball example with operator blocks

For MATLAB/Simulink files corresponding to this alternative implementation, see Examples/Example 1.4.

Example 1.5 (vehicle following a track with boundaries) Consider a vehicle modeled by a Dubins vehicle
model traveling along a given track with state vector x = [ξ1, ξ2, ξ3]

⊤ with dynamics given by ξ̇1 = u cos ξ3,
ξ̇2 = u sin ξ3, and ξ̇3 = −ξ3+r(q). The input u is the tangential velocity of the vehicle, ξ1 and ξ2 describe the
vehicle’s position on the plane, and ξ3 is the vehicle’s orientation angle. Also consider a switching controller
attempting to keep the vehicle inside the boundaries of a track given by {(ξ1, ξ2) : −1 ≤ ξ1 ≤ 1}. A state
q ∈ {1, 2} is used to define the modes of operation of the controller. When q = 1, the vehicle is traveling to
the left, and when q = 2, the vehicle is traveling to the right. A logic variable r is defined in order to steer
the vehicle back inside the boundary. The state of the closed-loop system is given by x := [ξ⊤ q]⊤. A model

19

of such a closed-loop system is given by

f(x, u) :=













u cos(ξ3)
u sin(ξ3)

−ξ3 + r(q)





u









, r(q) :=

{

3π
4

if q = 1
π
4

if q = 2
(6)

C :=
{

(ξ, u) ∈ R
3 × {1, 2} × R | (ξ1 ≤ 1, q = 2) or (ξ1 ≥ −1, q = 1)

}

, (7)

g(ξ, u) :=















[

ξ
2

]

if ξ1 ≤ −1, q = 1
[

ξ
1

]

if ξ1 ≥ 1, q = 2
, (8)

D :=
{

(ξ, u) ∈ R
3 × {1, 2} × R | (ξ1 ≥ 1, q = 2) or (ξ1 ≤ −1, q = 1)

}

(9)

The MATLAB scripts in each of the function blocks of the implementation above are given as follows.
The tangential velocity of the vehicle is chosen to be u = 1, the initial position on the plane is chosen to be
(ξ1, ξ2) = (0, 0), and the initial orientation angle is chosen to be ξ3 = π

4
radians.

0 5 10 15
−2

−1

0

1

2

0 1 2 3
−2

−1

0

1

2

flows [t]

jumps [j]

ξ 1
ξ 1

(a) Trajectory

0123

0
2

4
6

8
10

12
14

−1

0

1

t
j

ξ 1

(b) Hybrid arc

Figure 12: Solution of Example 1.5

function xdot = f(x, u)

% state

xi = z(statevect);

xi1 = xi(1); %x-position

xi2 = xi(2); %y-position

xi3 = xi(3); %orientation angle

q = xi(4);

% q = 1 --> going left

% q = 2 --> going right

if q == 1

r = 3*pi/4;

elseif q == 2

r = pi/4;

else

r = 0;

end

20

% flow map: xidot=f(xi,u);

xi1dot = u*cos(xi3); %tangential velocity in x-direction

xi2dot = u*sin(xi3); %tangential velocity in y-direction

xi3dot = -xi3 + r; %angular velocity

qdot = 0;

xdot = [xi1dot;xi2dot;xi3dot;qdot];

function v = C(x, u)

% state

xi = z(statevect);

xi1 = xi(1); %x-position

xi2 = xi(2); %y-position

xi3 = xi(3); %orientation angle

q = xi(4);

% q = 1 --> going left

% q = 2 --> going right

% flow set

if ((xi1 < 1) && (q == 2)) || ((xi1 > -1) && (q == 1)) % flow condition

v = 1; % report flow

else

v = 0; % do not report flow

end

function xplus = g(x, u)

% state

xi = z(statevect);

xi1 = xi(1); %x-position

xi2 = xi(2); %y-position

xi3 = xi(3); %orientation angle

q = xi(4);

% q = 1 --> going left

% q = 2 --> going right

xi1plus=xi1;

xi2plus=xi2;

xi3plus=xi3;

qplus=q;

% jump map

if ((xi1 >= 1) && (q == 2)) || ((xi1 <= -1) && (q == 1))

qplus = 3-q;

else

qplus = q;

end

xplus = [xi1plus;xi2plus;xi3plus;qplus];

function v = D(x, u)

% state

xi = z(statevect);

xi1 = xi(1); %x-position

xi2 = xi(2); %y-position

xi3 = xi(3); %orientation angle

q = xi(4);

% q = 1 --> going left

% q = 2 --> going right

% jump set

if ((xi1 >= 1) && (q == 2)) || ((xi1 <= -1) && (q == 1)) % jump condition

21

v = 1; % report jump

else

v = 0; % do not report jump

end

A solution to the system of a vehicle following a track in {(ξ1, ξ2) : −1 ≤ ξ1 ≤ 1}, and with T = 15, J = 10,
rule = 1, is depicted in Figure 12(a) (trajectory). Both the projection onto t and j are shown. Figure 12(b)
depicts the corresponding hybrid arc.

For MATLAB/Simulink files of this example, see Examples/Example 1.5.

Example 1.6 (interconnection of hybrid systems H1 (bouncing ball) and H2 (moving platform)) Consider
a bouncing ball (H1) bouncing on a platform (H2) at some initial height and converging to the ground at
zero height. This is an interconnection problem because the current states of each system affect the behavior
of the other system. In this interconnection, the bouncing ball will contact the platform, bounce back up,
and cause a jump in height of the platform so that it gets closer to the ground. After some time, both the
ball and the platform will converge to the ground. In order to model this system, the output of the bouncing
ball becomes the input of the moving platform, and vice versa. For the simulation of the described system
with regular data where H1 is given by

f1(ξ, u1, v1) :=

[

ξ2
−γ − bξ2 + v11

]

, C1 := {(ξ, u1) | ξ1 ≥ u1, u1 ≥ 0} (10)

g1(ξ, u1, v1) :=

[

ξ1 + α1ξ
2
2

e1|ξ2|+ v12

]

, D1 := {(ξ, u1) | ξ1 = u1, u1 ≥ 0} , y1 = h1(ξ) := ξ1 (11)

where γ, b, α1 > 0, e1 ∈ [0, 1), ξ = [ξ1, ξ2]
⊤ is the state, y1 ∈ R is the output, u1 ∈ R and v1 = [v11, v12]

⊤ ∈ R
2

are the inputs, and the hybrid system H2 is given by

f2(η, u2, v2) :=

[

η2
−η1 − 2η2 + v12

]

, C2 := {(η, u2) | η1 ≤ u2, η1 ≥ 0} (12)

g2(η, u2, v2) :=

[

η1 − α2|η2|
−e2|η2|+ v22

]

, D2 := {(η, u2) | η1 = u2, η1 ≥ 0} , y2 = h2(η) := η1 (13)

where α2 > 0, e2 ∈ [0, 1), η = [η1, η2]
⊤ ∈ R

2 is the state, y2 ∈ R is the output, and u2 ∈ R and v2 =
[v21, v22]

⊤ ∈ R
2 are the inputs.

Therefore, the interconnection may be defined by the input assignment

u1 = y2, u2 = y1. (14)

The signals v1 and v2 are included as external inputs in the model in order to simulate the effects of
environmental perturbations, such as a wind gust, on the system.

The MATLAB scripts in each of the function blocks of the implementation above are given as follows.
The constants for the interconnected system are γ = 0.8, b = 0.1, and α1, α2 = 0.1.

For hybrid system H1:

function xdot = f(x, u)

% state

xi1 = x(1);

xi2 = x(2);

%input

y2 = u(1);

v11 = u(2);

v12 = u(3);

% flow map

22

This model simulates the

interconnection of multiple hybrid systems.

v22

v21

v12

v11

state1

x3

state

x

HybridSystem2

u x1−

HybridSystem1

u x1−

z

Double Click

to Initialize

Double Click to

Plot Solutions

Figure 13: MATLAB/Simulink implementation of interconnected hybrid systems H1 and H2

0 2 4 6 8 10 12 14 16 18
0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18
−1

−0.5

0

0.5

1

flows [t]

flows [t]

ξ 1
,η

1
ξ 2
,η

2

Figure 14: Solution of Example 1.6: height and velocity

23

0 2 4 6 8 10 12 14 16 18
0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.2

0.4

0.6

0.8

1

flows [t]

jumps [j]

ξ 1
ξ 1

(a) Height

0 2 4 6 8 10 12 14 16 18
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−1

−0.5

0

0.5

1

flows [t]

jumps [j]

ξ 2
ξ 2

(b) Velocity

Figure 15: Solution of Example 1.6 for system H1

%xdot=f(x,u);

xi1dot = xi2;

xi2dot = -0.8-0.1*xi2+v11;

xdot = [xi1dot;xi2dot];

function v = C(x, u)

% state

xi1 = x(1);

xi2 = x(2);

%input

y2 = u(1);

v11 = u(2);

v12 = u(3);

if (xi1 >= y2) % flow condition

v = 1; % report flow

else

v = 0; % do not report flow

end

function xplus = g(x, u)

% state

xi1 = x(1);

xi2 = x(2);

%input

y2 = u(1);

v11 = u(2);

v12 = u(3);

%jump map

xi1plus=y2+0.1*xi2^2;

xi2plus=0.8*abs(xi2)+v12;

xplus = [xi1plus;xi2plus];

function v = D(x, u)

% state

xi1 = x(1);

24

0 2 4 6 8 10 12 14 16 18
0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.2

0.3

0.4

0.5

flows [t]

jumps [j]

η 1
η 1

(a) Height

0 2 4 6 8 10 12 14 16 18
−0.1

−0.05

0

0.05

0.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−0.1

−0.05

0

0.05

0.1

flows [t]

jumps [j]

η 2
η 2

(b) Velocity

Figure 16: Solution of Example 1.6 for system H2

xi2 = x(2);

%input

y2 = u(1);

v11 = u(2);

v12 = u(3);

% jump set

if (xi1 <= y2) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

end

For hybrid system H2:

function xdot = f(x, u)

% state

eta1 = x(1);

eta2 = x(2);

%input

y1 = u(1);

v21 = u(2);

v22 = u(3);

% flow map

eta1dot = eta2;

eta2dot = -eta1-2*eta2+v21;

xdot = [eta1dot;eta2dot];

function v = C(x, u)

% state

eta1 = x(1);

eta2 = x(2);

%input

y1 = u(1);

v21 = u(2);

v22 = u(3);

25

% flow set

if (eta1 <= y1) % flow condition

v = 1; % report flow

else

v = 0; % do not report flow

end

function xplus = g(x, u)

% state

eta1 = x(1);

eta2 = x(2);

%input

y1 = u(1);

v21 = u(2);

v22 = u(3);

% jump map

eta1plus = y1-0.1*abs(eta2);

eta2plus = -0.8*abs(eta2)+v22;

xplus = [eta1plus;eta2plus];

function v = D(x, u)

% state

eta1 = x(1);

eta2 = x(2);

%input

y1 = u(1);

v21 = u(2);

v22 = u(3);

% jump set

if (eta1 >= y1) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

end

A solution to the interconnection of hybrid systems H1 and H2 with T = 18, J = 20, rule = 1, is depicted
in Figure 14. Both the projection onto t and j are shown. A solution to the hybrid system H1 is depicted
in Figure 15(a) (height) and Figure 15(b) (velocity). A solution to the hybrid system H2 is depicted in
Figure 16(a) (height) and Figure 16(b) (velocity).

These simulations reflect the expected behavior of the interconnected hybrid systems.
For MATLAB/Simulink files of this example, see Examples/Example 1.6.

Example 1.7 (biological example: synchronization of two fireflies) Consider a biological example of the
synchronization of two fireflies flashing. The fireflies can be modeled mathematically as periodic oscillators
which tend to synchronize their flashing until they are flashing in phase with each other. A state value of
τi = 1 corresponds to a flash, and after each flash, the firefly automatically resets its internal timer (periodic
cycle) to τi = 0. The synchronization of the fireflies can be modeled as an interconnection of two hybrid
systems because every time one firefly flashes, the other firefly notices and jumps ahead in its internal timer
τ by (1 + ε)τ , where ε is a biologically determined coefficient. This happens until eventually both fireflies
synchronize their internal timers and are flashing simultaneously. Each firefly can be modeled as a hybrid

26

This model simulates the synchronization of fireflies.

state1

x3

state

x

HybridSystem2

u x−

HybridSystem1

u x−

z

Double Click to

Plot Solutions

Double Click

to Initialize

Figure 17: Interconnection Diagram for Example 1.7

system given by

fi(τi, ui) := 1, (15)

Ci :=
{

(τi, ui) ∈ R
2 | 0 ≤ τi ≤ 1

}

∩
{

(τi, ui) ∈ R
2 | 0 ≤ ui ≤ 1

}

(16)

gi(τi, ui) :=

{

(1 + ε)τi (1 + ε)τi < 1
0 (1 + ε)τi ≥ 1

(17)

Di :=
{

(τi, ui) ∈ R
2 | τi = 1

}

∪
{

(τi, ui) ∈ R
2 | ui = 1

}

. (18)

The interconnection diagram for this example is simpler than in the previous example because now no
external inputs are being considered. The only event that affects the flashing of a firefly is the flashing of
the other firefly. The interconnection diagram can be seen in Figure 17.

0 2 4 6 8 10 12
0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

flows [t]

jumps [j]

τ 1
τ 1

(a) Solution for system H1

0 2 4 6 8 10 12
0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

flows [t]

jumps [j]

τ 2
τ 2

(b) Solution for system H2

Figure 18: Solution of Example 1.7

For hybrid system Hi, i = 1, 2:

function taudot = f(tau, u)

27

0 2 4 6 8 10 12
0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

flows [t]

jumps [j]

τ 1
,τ

2
τ 1
,τ

2

Figure 19: Solution of Example 1.7 for interconnection of H1 and H2

% flow map

taudot = 1;

function v = C(tau, u)

% flow set

if ((tau > 0) && (tau < 1)) || ((u > 0) && (u <= 1)) % flow condition

v = 1; % report flow

else

v = 0; % do not report flow

end

function tauplus = g(tau, u)

% jump map

if (1+e)*tau < 1

tauplus = (1+e)*tau;

elseif (1+e)*tau >= 1

tauplus = 0;

else

tauplus = tau;

end

function v = D(tau, u)

% jump set

if (u >= 1) || (tau >= 1) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

28

end

A solution to the interconnection of hybrid systems H1 and H2 with T = 15, J = 15, rule = 1, ε = 0.3
is depicted in Figure 19. Both the projection onto t and j are shown. A solution to the hybrid system H1

is depicted in Figure 18(a). A solution to the hybrid system H2 is depicted in Figure 18(b).
These simulations reflect the expected behavior of the interconnected hybrid systems. The fireflies initially

flash out of phase with one another and then synchronize to flash in the same phase.
For MATLAB/Simulink files of this example, see Examples/Example 1.7.

Example 1.8 (a simple mathematical example to show different type of simulation results) Consider the
hybrid system with data

f(x) := −x, C := [0, 1], g(x) := 1 +mod(x, 2), D := {1} ∪ {2} .

Note that solutions from ξ = 1 and ξ = 2 are nonunique. The following simulations show the use of the
variable rule in the Jump Logic block.

Jumps enforced:

A solution from x0 = 1 with T = 10, J = 20, rule = 1 is depicted in Figure 20(a). The solution jumps
from 1 to 2, and from 2 to 1 repetitively.

Flows enforced:

A solution from x0 = 1 with T = 10, J = 20, rule = 2 is depicted in Figure 20(b). The solution flows for
all time and converges exponentially to zero.

Random rule:

A solution from x0 = 1 with T = 10, J = 20, rule = 3 is depicted in Figure 20(c). The solution jumps to
2, then jumps to 1 and flows for the rest of the time converging to zero exponentially.

Enlarging D to

D := [1/50, 1]∪ {2}

causes the overlap between C and D to be “thicker”. The simulation result is depicted in Figure 20(d) with
the same parameters used in the simulation in Figure 20(c). The plot suggests that the solution jumps several
times until x < 1/50 from where it flows to zero. However, Figure 20(e), a zoomed version of Figure 20(d),
shows that initially the solution flows and that at (t, j) = (0.2e− 3, 0) it jumps. After the jump, it continues
flowing, then it jumps a few times, then it flows, etc. The combination of flowing and jumping occurs while
the solution is in the intersection of C and D, where the selection of whether flowing or jumping is done
randomly due to using rule = 3.

This simulation also reveals that this implementation does not precisely generate hybrid arcs. The
maximum step size was set to 0.1e − 3. The solution flows during the first two steps of the integration of
the flows with maximum step size. The value at t = 0.1e− 3 is very close to 1. At t = 0.2e− 3, instead of
assuming a value given by the flow map, the value of the solution is about 0.5, which is the result of the jump
occurring at (0.2e− 3, 0). This is the value stored in x at such time by the integrator. Note that the value
of x′ at (0.2e− 3, 0) is the one given by the flow map that triggers the jump, and if available for recording,
it should be stored in (0.2e− 3, 0). This is a limitation of the current implementation.

The following simulations show the Stop Logic block stopping the simulation at different events.

Solution outside C ∪D:

29

Taking D = {1}, a simulation starting from x0 = 1 with T = 10, J = 20, rule = 1 stops since the solution
leaves C ∪D. Figure 21(a) shows this.

Solution reaches the boundary of C from where jumps are not possible:

Replacing the flow set by [1/2, 1] a solution starting from x0 = 1 with T = 10, J = 20 and rule = 2 flows
for all time until it reaches the boundary of C where jumps are not possible. Figure 21(b) shows this.

Note that in this implementation, the Stop Logic is such that when the state of the hybrid system is not
in (C ∪D), then the simulation is stopped. In particular, if this condition becomes true while flowing, then
the last value of the computed solution will not belong to C. It could be desired to be able to recompute
the solution so that its last point belongs to the corresponding set. From that point, it should be the case
that solutions cannot be continued.

For MATLAB/Simulink files of this example, see Examples/Example 1.8.

5 Closing Remarks

MATLAB/Simulink files corresponding to the simulation technique described in this paper can be found at
MATLAB Central and at the author’s website

http://www.u.arizona.edu/~sricardo/.

6 Acknowledgments

We would like to thank Giampiero Campa for his thoughtful feedback and advice as well as Torstein Inge-
brigtsen Bo for his comments and initial version of the lite simulator code.

7 References

[1] David A. Copp and Ricardo G. Sanfelice, Simulating Hybrid Systems in MATLAB/Simulink, v0.6. Hybrid
Dynamics and Control Laboratory, University of Arizona.
[2] http://control.ee.ethz.ch/~ifaatic/ex/example1.m. Institut für Automatik - Automatic Control
Laboratory, ETH Zurich, 2011.
[3] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid dynamical systems. IEEE Control Systems Magazine,
28-93, 2009.
[4] R. G. Sanfelice and A. R. Teel, Dynamical Properties of Hybrid Systems Simulators. Automatica, 46,
No. 2, 239–248, 2010.
[5] Sanfelice, R. G., Interconnections of Hybrid Systems: Some Challenges and Recent Results Journal of
Nonlinear Systems and Applications, 111–121, 2011.

30

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1

1.2

1.4

1.6

1.8

2

flows [t]

jumps [j]

x
x

(a) Forced jumps logic.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

0
0

0.2

0.4

0.6

0.8

1

flows [t]

jumps [j]

x
x

(b) Forced flows logic.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

0 1 2
0

0.5

1

1.5

2

flows [t]

jumps [j]

x
x

(c) Random logic for flowing/jumping.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

flows [t]

jumps [j]

x
x

(d) Random logic for flowing/jumping.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

flows [t]

jumps [j]

x
x

(e) Random logic for flowing/jumping. Zoomed ver-
sion.

Figure 20: Solution of Example 1.8

31

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

0 1
1

1.2

1.4

1.6

1.8

2

flows [t]

jumps [j]

x
x

(a) Forced jump logic and different D.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.4

0.5

0.6

0.7

0.8

0.9

1

flows [t]

jumps [j]

x
x

(b) Forced flow logic.

Figure 21: Solution of Example 1.8 with premature stopping.

32

