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1 A Simulink Model

We consider the simulation in Matlab/Simulink of hybrid systems H = (O, f, C, g,D) written as

H : x ∈ O, u ∈ R
m

{

ẋ = f(x, u) (x, u) ∈ C
x+ = g(x, u) (x, u) ∈ D.

(1)

The reader is referred to [2,3] for an introduction to this class of hybrid systems. Figure 1 shows a Simulink
implementation proposed here.
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Figure 1: Matlab/Simulink implementation of a hybrid system H = (O, f, C, g,D) with inputs.

Five basic blocks are used to define the dynamics of the hybrid system H:
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• The flow map is implemented in a Matlab function block executing the function f.m. Its input is a
vector with components defining the state of the system x, and the inputs u. Its output is the value
of the flow map f which is connected to the input of an integrator.

• The flow set is implemented in a Matlab function block executing the function C.m. Its input is a vector
with components of the state of the Integrator system x′ and the inputs u′, and its output is equal to
1 if the state belongs to the set C or equal to 0 otherwise. The prime notation denotes the previous
value of the variables – the value x′ is obtained from the state port of the integrator.

• The jump map is implemented in a Matlab function block executing the function g.m. Its input is a
vector with components of the state of the Integrator system x′ and the input u′, and its output is the
value of the jump map g.

• The jump set is implemented in a Matlab function block executing the function D.m. Its input is a
vector with components of the state of the Integrator system x′ and the input u′, and its output is
equal to 1 if the state belongs to D or equal to 0 otherwise.

• The state space is implemented in a Matlab function block executing the function O.m. Its input is a
vector with components of the state of the Integrator system x′ and the input u′, and its output is
equal to 1 if the state belongs to O or equal to 0 otherwise.

A script run.m is used to define the simulation variables and run the simulations. It defines the initial
conditions by defining the initial values of the state components, the maximum flow time specified by T , and
the maximum number of jumps specified by J .
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Figure 2: Integrator System
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2 CT Dynamics

This block defines the continuous dynamics of the state [t j xT ]T . These are given by

ṫ = 1, j̇ = 0, ẋ = f(x, u) .

Figure 3 depicts this implementation. Note that input port 1 takes the value of f(x, u) through the output
of the Matlab function block f in Figure 1.
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Figure 3: CT dynamics

3 Jump Logic

The inputs to the jump logic block are the output of the blocks C, D, and O indicating whether the state
is in those sets or not, and a random signal with uniform distribution in [0, 1]. Figure 4 shows that these
signals are the input of a Matlab function block called jump priority. (The initial condition blocks set the
initial value of the signals. These depend on the initial condition z0.) The jump priority block runs the
following function (jumpPriority.m):

function out = jumpPriority(u,rule)

% state

flowFlag = u(1);

jumpFlag = u(2);

stateFlag = u(3);

randomInput = u(4);

% rule = 1 -> priority for jumps

% rule = 2 -> priority for flows

% rule = 3 -> no priority, random selection

% when simultaneous conditions

if (rule == 1) & (jumpFlag == 1)

out = 1;

elseif (rule == 1) & (jumpFlag == 0)

out = 0;

elseif (rule == 2) & (flowFlag == 1)

out = 0;

elseif (rule == 2) & (flowFlag == 0) & (jumpFlag == 0)

out = 0;

elseif (rule == 2) & (flowFlag == 0) & (jumpFlag == 1)

out = 1;

elseif (rule == 3)

if (flowFlag == 1) & (jumpFlag == 0)

out = 0;
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elseif (flowFlag == 0) & (jumpFlag == 1)

out = 1;

elseif (flowFlag == 1) & (jumpFlag == 1)

if (randomInput >= 0.5)

out = 1;

else

out = 0;

end

else

out = 0;

end

end

The output of this function is equal to one only when the output of the D block is equal to one and
rule = 1, or when the output of the D block is equal to one, rule = 3, and the random signal r is larger or
equal than 0.5. Under either event, the output of this block, which is connected to the integrator external
reset input, triggers a reset of the integrator, that is, a jump of H. The reset or jump is activated since the
configuration of the reset input is set to ”level hold”, which executes resets when this external input is equal
to one (if this input remains set to one, multiple resets would be triggered).
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Figure 4: Jump Logic

4 Update Logic

The update logic uses the state port information of the integrator. This port reports the value of the state
of the integrator, [t j xT ]T , at the exact instant that the reset condition becomes true. Notice that x′ differs
from x since at a jump, x′ indicates the value of the state that triggers the jump, that is, x ∈ D, while x
at that same time is equal to the value assigned at the jump by the update logic. This value is given by
g(x′, u′) as Figure 5 illustrates. It also shows that the flow time t is kept constant at jumps and that j is
incremented by one by the Matlab function block j + 1. More precisely

t+ = t′, j+ = j′, x+ = g(x′, u′)

where [t′ j′ x′T ]T is the state that triggers the jump.

5 Stop Logic

This block, shown in Figure 6, stops the simulation under any of the following events:

• The flow time is larger than or equal to the maximum flow time specified by T .

• The jump time is larger than or equal to the maximum number of jumps specified by J .
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• The state of the hybrid system x is neither in C nor in D, or it is not in O.

Under any of these events, the output of the logic operator connected to the Stop block becomes one, stopping
the simulation. Note that the blocks computing whether the state is in C, D, and O use the current value
of the state x.

stop

1

flowSet

jumpSet

stateSet
O1

MATLAB

Function

Logical

Operator2

NOT

Logical

Operator1

OR

Logical

Operator

NOR

Jump Horizon

>= J

Flow Horizon

>= T

D1

MATLAB

Function

C1

MATLAB

Function

(x,u)3

j

2

t

1

Figure 6: Stop Logic

6 Examples

The examples below illustrate the use of the implementation above. The following functions are used to
generate the plots:

• plotflows(t,j,x): plots (in blue) the projection of the trajectory x onto the flow time axis t. The value
of the trajectory for intervals [tj , tj+1] with empty interior is marked with ∗ (in blue). Dashed lines
(in red) connect the value of the trajectory before and after the jump.

• plotjumps(t,j,x): plots (in red) the projection of the trajectory x onto the jump time j. The initial
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and final value of the trajectory on each interval [tj , tj+1] is denoted by ∗ (in red) and the continuous
evolution of the trajectory on each interval is depicted with a dashed line (in blue).

• plotHybridArc(t,j,x): plots (in black) the trajectory x on hybrid time domains. The intervals [tj , tj+1]
indexed by the corresponding j are depicted in the t− j plane (in red).

Example 1.1 (bouncing ball) For the simulation of the bouncing ball system with regular data, and no
external input, given by

O := R
2, f(x, u) :=

[

x2

−γ

]

, C :=
{

(x, u) ∈ R
2 × R | x1 ≥ 0

}

(2)

g(x, u) :=

[

0
−λx2

]

, D :=
{

(x, u) ∈ R
2 × R | x1 ≤ 0 , x2 ≤ 0

}

(3)

where γ > 0 is the gravity constant and λ ∈ [0, 1) is the restitution coefficient. The Matlab scripts in each
of the function blocks of the implementation above are given as follows. The constants for the bouncing ball
system are g = 9.8 and λ = 0.8.
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Figure 7: Solution to the bouncing ball example: height.

function out = f(n)

% state

x1 = n(1);

x2 = n(2);

% flow map

x1dot = x2;

x2dot = -9.8;

out = [x1dot; x2dot];
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Figure 8: Solution to the bouncing ball example: velocity.

function [v] = C(n)

% state

x1 = n(1);

x2 = n(2);

if (x1 >= 0) % flow condition

v = 1; % report flow

else

v = 0; % do not report flow

end

function out = g(n)

% state

x1 = n(1);

x2 = n(2);

% jump map

x1plus = 0;

x2plus = -0.8*x2;

out = [x1plus; x2plus];

function [v] = D(n)

% state

x1 = n(1);

x2 = n(2);

if (x1 <= 0 && x2 <= 0) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump
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Figure 9: Hybrid arc corresponding to a solution to the bouncing ball example: height.

end

function [v] = O(n)

v = 1; % in the state space

A solution to the bouncing ball system from [1, 0] and with T = 10, J = 20, rule = 1, is depicted in
Figure 7 (height) and Figure 8 (velocity). Both the projection onto t and j are shown. Figure 9 depicts the
corresponding hybrid arc.

These simulations reflect the expected behavior of the bouncing ball model. However, if instead

{

x ∈ R
2 | x1 = 0 , x2 ≤ 0

}

is used as D, the effect of the discretization of the flows would prevent the Jump Logic block from detecting
the jumps since it is very unlikely that the computed solution would hit x1 = 0 exactly. The enlarged jump
set prevents this from happening. Another way to prevent such behavior is by adding special Simulink blocks
with zero-cross detection.

Also note that using [x1,−γx2]
T as the jump map would cause the simulation to stop after the first jump.

In fact, at the jump, due to the discretization effect of the flows mentioned above, x1, x2 < 0. With this new
jump map, x+

1 < 0, x+

2 > 0 and this state is neither in C nor in D. Hence, the simulation is stopped after
the first jump.

Example 1.2 (bouncing ball with input) For the simulation of the bouncing ball system with a constant
input and regular data given by
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O := R
2, f(x, u) :=

[

x2

−γ

]

, C :=
{

(x, u) ∈ R
2 × R | x1 ≥ u

}

(4)

g(x, u) :=

[

u
−λx2

]

, D :=
{

(x, u) ∈ R
2 × R | x1 ≤ u , x2 ≤ 0

}

(5)

where γ > 0 is the gravity constant, u is the input constant, and λ ∈ [0, 1) is the restitution coefficient. The
Matlab scripts in each of the function blocks of the implementation above are given as follows. An input was
chosen to be u(t, j) = 0.2 for all (t, j). The constants for the bouncing ball system are g = 9.81 and λ = 0.8.
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Figure 10: Solution to the bouncing ball with input example: height

function out = f(z)

% state

x1 = x(1);

x2 = x(2);

%input

u=u(1)

% flow map

x1dot = x2;

x2dot = -9.81;

out = [x1dot; x2dot];

function [v] = C(z)

% state

x1 = x(1);

x2 = x(2);

if (x1 >= u) % flow condition
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Figure 11: Solution to the bouncing ball with input example: velocity

v = 1; % report flow

else

v = 0; % do not report flow

end

function out = g(z)

% state

x1 = x(1);

x2 = x(2);

% jump map

x1plus = u;

x2plus = -0.8*x2;

out = [x1plus; x2plus];

function [v] = D(z)

% state

x1 = x(1);

x2 = x(2);

if (x1 <= u && x2 <= 0) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

end

function [v] = O(z)

v = 1; % in the state space

A solution to the bouncing ball system from [1, 0] and with T = 10, J = 20, rule = 1, is depicted in
Figure 10 (height) and Figure 11 (velocity). Both the projection onto t and j are shown. Figure 12 depicts
the corresponding hybrid arc.
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Figure 12: Hybrid arc corresponding to a solution to the bouncing ball with input example: height

These simulations reflect the expected behavior of the bouncing ball model. Note the only difference
between this example and the previous is that the constant input has caused the ball to no longer bounce
on a floor at the value of 0, but rather it bounces at the chosen input value of 0.2.

Example 1.3 (vehicle following a track with boundaries)
Consider a vehicle traveling along a given track modeled by a Dubins vehicle model with state x where

x is a vector with three components given by ξ̇1 = v cos ξ3, ξ̇2 = v sin ξ3, and ξ̇3 = u. v is the tangential
velocity of the vehicle, ξ1 and ξ2 describe the vehicle’s position, and ξ3 is the vehicle’s orientation angle.
Also consider a switching controller attempting to keep the vehicle inside the boundaries of the track while
traveling. A state q ∈ {1, 2} is used to define the modes of operation of the controller. The state of the
closed-loop system is given by x := [ξ⊤ q]⊤. For the simulation of the described system with a constant
input and regular data given by

O := R
3 × {1, 2} × R, f(x, u) :=

[

ξ
q

]

, (6)

C :=
{

(x, u) ∈ R
2 × R | (ξ1 ≤ 1, q = 2) ∪ (ξ1 ≥ −1, q = 1)

}

(7)

g(x, u) :=

[

ξ
q

]

, D := (R2 × R) \ C (8)

When q = 1, the vehicle is traveling to the left, and when q = 2, the vehicle is traveling to the right.
The Matlab scripts in each of the function blocks of the implementation above are given as follows. The
tangential velocity of the vehicle is chosen to be v = 1, and the initial orientation angle is chosen to be
x3 = π/4 radians.

function out = f(z)
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Figure 13: Solution to the Dubins path with boundaries: trajectory

v = 1; %tangential velocity

% state

x1 = x(1); %x-position

x2 = x(2); %y-position

x3 = x(3); %orientation angle

q = x(4);

%input

u1 = u(1);

% q = 1 --> going left

% q = 2 --> going right

if q == 1

r = 3*pi/4;

elseif q == 2

r = pi/4;

else

r = 0;

end

% flow map

x1dot = v*cos(x3); %tangential velocity in x-direction

x2dot = v*sin(x3); %tangential velocity in y-direction

x3dot = -x3 + r; %angular velocity

qdot = 0;

out = [x1dot;x2dot;x3dot;qdot];

function [v] = C(z)

% state
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x1 = x(1); %x-position

x2 = x(2); %y-position

x3 = x(3); %orientation angle

q = x(4);

%input

u1=u(1);

% q = 1 --> going left

% q = 2 --> going right

if (x1 < 1) && (q == 2) % flow condition

v = 1; % report flow

elseif (x1 > -1) && (q == 1) %flow condition

v = 1; %report flow

else

v = 0; % do not report flow

end

function out = g(z)

% state

x1 = x(1); %x-position

x2 = x(2); %y-position

x3 = x(3); %orientation angle

q = x(4);

%input

u1=u(1);

% q = 1 --> going left

% q = 2 --> going right
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x1plus=x1;

x2plus=x2;

x3plus=x3;

qplus = q;

%jump map

if (x1 >= 1) && (q == 2)

qplus = 3-q;

elseif (x1 <= -1) && (q == 1)

qplus = 3-q;

else

qplus = 0;

end

out = [x1plus;x2plus;x3plus;qplus];

function [v] = D(z)

% state

x1 = x(1); %x-position

x2 = x(2); %y-position

x3 = x(3); %orientation angle

q = x(4);

%input

u1=u(1);

% q = 1 --> going left

% q = 2 --> going right

if (x1 >= 1) && (q == 2) % jump condition

v = 1; % report jump

elseif (x1 <= -1) && (q == 1) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

end

function [v] = O(z)

v = 1; % in the state space

A solution to the system following a Dubins path with boundaries from [−1, 1] and with T = 15, J = 10,
rule = 1, is depicted in Figure 13 (trajectory). Both the projection onto t and j are shown. Figure 14
depicts the corresponding hybrid arc.

Example 1.4 (interconnection of hybrid systems H1 (bouncing ball) and H2 (moving floor))
Consider a bouncing ball (H1) bouncing on a floor and a floor (H2) at some initial height and converging

to the ground with a height equal to zero. With this interconnection, the bouncing ball will contact the floor,
bounce back up, and cause a jump in height of the floor so that it gets closer to the ground. After some
time, both the ball and the floor will converge to the ground. In order to model this system, the output of
the bouncing ball becomes the input of the moving floor, and vice versa. For the simulation of the described
system with regular data where H1 is given by

O1 := R
2 × R, f1(ξ, u1, v1) :=

[

ξ2
−γ − bξ2 + v11

]

, C1 := {(ξ, u1) | ξ1 ≥ u1, u1 ≥ 0} (9)

g1(ξ, u1, v1) :=

[

ξ1 + α1ξ
2
2

e1|ξ2|+ v12

]

, D1 := {(ξ, u1) | ξ1 = u1, u1 ≥ 0} , y1 = h1(ξ) := ξ1 (10)

where γ, b, α1 > 0, e1 ∈ [0, 1), ξ = [ξ1 ξ2]
⊤ is the state, y1 ∈ R is the output, u1 ∈ R and v1 = [v11 v12]

⊤ ∈ R
2

are the inputs, and the hybrid system H2 is given by
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O2 := R
2 × R, f2(η, u2, v2) :=

[

η2
−η1 − 2η2 + v12

]

, C2 := {(η, u2) | η1 ≤ u2, η1 ≥ 0} (11)

g2(η, u2, v2) :=

[

η1 − α2|η2|
−e2|η2|+ v22

]

, D2 := {(η, u2) | η1 = u2, η1 ≥ 0} , y2 = h2(η) := η1 (12)

where α2 > 0, e2 ∈ [0, 1), η = [η1 η2]
⊤ ∈ R

2 is the state, y2 ∈ R is the output, and u2 ∈ R and
v2 = [v21 v22]

⊤ ∈ R
2 are the inputs.

Therefore, the interconnection may be defined by the input assignment

u1 = y2, u2 = y1. (13)

v1 and v2 are included as external inputs in the model in order to simulate the effects of environmental
perturbations, such as a wind gust, on the system.

The Matlab scripts in each of the function blocks of the implementation above are given as follows. The
constants for the interconnected system are γ = 0.8, b = 0.1, and α1, α2 = 0.1.
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Figure 15: Matlab/Simulink implementation of interconnected hybrid systems H1 and H2

For hybrid system H1:

global n m;

% n = # of state components

% m = # of input components

function out = f1(z)

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);

% flow map

x1dot = x2;

x2dot = -0.8-0.1*x2+u2;

out = [x1dot;x2dot];
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Figure 16: Solution to interconnection example: height

function [v] = C1(z)

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);

if (x1 >= u1) % flow condition

v = 1; % report flow

else

v = 0; % do not report flow

end

function out = g1(z)

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);
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Figure 17: Solution to interconnection example for system H1: height

%jump map

x1plus=u1+0.1*x2^2;

x2plus=0.8*abs(x2)+u3;

out = [x1plus;x2plus];

function [v] = D1(z)

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);

if (x1 <= u1) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

end

function [v] = O1(u)

v = 1; % in the state space

For hybrid system H2:

function out = f2(z)
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Figure 18: Solution to interconnection example for system H1: velocity

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);

% flow map

x1dot = x2;

x2dot = -x1-2*x2+u2;

out = [x1dot;x2dot];

function [v] = C2(z)

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);

if (x1 <= u1) % flow condition

v = 1; % report flow
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Figure 19: Solution to interconnection example for system H2: height

else

v = 0; % do not report flow

end

function out = g2(z)

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);

% jump map

x1plus = u1-0.1*abs(x2);

x2plus = -0.8*abs(x2)+u3;

out = [x1plus;x2plus];

function [v] = D2(z)

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);
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Figure 20: Solution to interconnection example for system H2: velocity

u2 = u(2);

u3 = u(3);

if (x1 >= u1) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

end

function [v] = O2(u)

v = 1; % in the state space

A solution to the interconnection of hybrid systems H1 and H2 with T = 18, J = 20, rule = 1, is depicted
in Figure 16. Both the projection onto t and j are shown. A solution to the hybrid system H1 is depicted
in Figure 17 (height) and Figure 18 (velocity). A solution to the hybrid system H2 is depicted in Figure 19
(height) and Figure 20 (velocity).

These simulations reflect the expected behavior the the interconnected hybrid systems. Note that in
order to implement these systems without premature stopping of the simulation, ξ1 in g1 and η1 in g2 can
be changed to u1 and u2, respectively so that ξ+1 = u1 and η+1 = u2.

Example 1.5 (a simple mathematical example to show different type of simulation results)
Consider the hybrid system with data

O := R, f(x) := −x, C := [0, 1], g(x) := 1 +mod(x, 2), D := {1} ∪ {2} .

Note that solutions from ξ = 1 and ξ = 2 are nonunique. The following simulations show the use of the
variable rule in the Jump Logic block.
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Jumps enforced:

A solution from x0 = 1 with T = 10, J = 20, rule = 1 is depicted in Figure 21. The solution jumps from
1 to 2, and from 2 to 1 repetitively.
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Figure 21: Solution to Example 1.5 with forced jumps logic.

Flows enforced:

A solution from x0 = 1 with T = 10, J = 20, rule = 2 is depicted in Figure 22. The solution flows for all
time and converges exponentially to zero.

Random rule:

A solution from x0 = 1 with T = 10, J = 20, rule = 3 is depicted in Figure 23. The solution jumps to 2,
then jumps to 1 and flows for the rest of the time converging to zero exponentially.

Enlarging D to

D := [1/50, 1]∪ {2}

causes the overlap between C and D to be ”thicker”. The simulation result is depicted in Figure 24 with
the same parameters used in the simulation in Figure 23. The plot suggests that the solution jumps several
times until x < 1/50 from where it flows to zero. However, Figure 25, a zoomed version of Figure 24, shows
that initially the solution flows and that at (t, j) = (0.2e − 3, 0) it jumps. After the jump, it continues
flowing, then it jumps a few times, then it flows, etc. The combination of flowing and jumping occurs while
the solution is in the intersection of C and D, where the selection of whether flowing or jumping is done
randomly due to using rule = 3.

This simulation also reveals that this implementation does not precisely generate hybrid arcs. The
maximum step size was set to 0.1e − 3. The solution flows during the first two steps of the integration of
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Figure 22: Solution to Example 1.5 with forced flows logic.

the flows with maximum step size. The value at t = 0.1e− 3 is very close to 1. At t = 0.2e− 3, instead of
assuming a value given by the flow map, the value of the solution is about 0.5, which is the result of the jump
occurring at (0.2e− 3, 0). This is the value stored in x at such time by the integrator. Note that the value
of x′ at (0.2e− 3, 0) is the one given by the flow map that triggers the jump, and if available for recording,
it should be stored in (0.2e− 3, 0). This is a limitation of the current implementation.

The following simulations show the Stop Logic block stopping the simulation at different events.

Solution outside O:

Replacing O by (−1, 2), a solution starting from x0 = 1 with T = 10, J = 20, rule = 1 fails to exists
after the first jump. This is depicted in Figure 26 (cf. Figure 21)

Solution outside C ∪D:

The same behavior as the one just outlined arises with O = R but with D = {1}. The simulation stops
since the solution leaves C ∪D. (See also Overlap3.zip).

Solution reaches the boundary of C from where jumps are not possible:

Finally, taking O = R and replacing the flow set by [1/2, 1] a solution starting from x0 = 1 with
T = 10, J = 20 and rule = 2 flows for all time until it reaches the boundary of C where jumps are not
possible. Figure 27 shows this.

Note that in this implementation, the Stop Logic is such that when the state of the hybrid system is not
in (C ∪D) ∩ O, then the simulation is stopped. In particular, if this condition becomes true while flowing,

22



0 2 4 6 8 10 12
0

0.5

1

1.5

2

flows [t]

x

0 1 2
0

0.5

1

1.5

2

jumps [j]

x

Figure 23: Solution to Example 1.5 with random logic for flowing/jumping.

then the last value of the computed solution will not belong to either C or O, or both, depending on the
situation. It could be desired to be able to recompute the solution so that its last point belongs to the
corresponding set. From that point, it should be the case that solutions cannot be continued.
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Figure 24: Solution to Example 1.5 with random logic for flowing/jumping.

7 Notes

Matlab/Simulink files corresponding to the simulation technique described in this paper can be found at
Matlab Central and at the author’s website

http://www.u.arizona.edu/∼sricardo/.
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Figure 25: Solution to Example 1.5 with random logic for flowing/jumping. Zoomed version.
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Figure 26: Solution to Example 1.5 with forced jump logic and different O.
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Figure 27: Solution to Example 1.5 with forced flow logic.
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