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1 Introduction to a general hybrid system model

A hybrid system is a dynamical system with continuous and discrete dynamics. Several mathematical models
for hybrid systems have appeared in literature. In this paper, we consider the framework for hybrid systems
used in [2,3], where a hybrid system H on a state space Rn is defined by the following objects:

• A set C ⊂ Rn called the flow set.

• A function f: Rn → R called the flow map.

• A set D ⊂ Rn called the jump set.

• A function g: Rn → R called the jump map.

• A set O ⊂ Rn called the state space.

The flow map f defines the continuous dynamics on the flow set C, while the jump map g defines the
discrete dynamics on the jump set D. These objects are referred to as the data of the hybrid system H, which
at times is explicitly denoted as H = (O, f, C, g,D).

2 A Simulink implementation

We consider the simulation in Matlab/Simulink of hybrid systems H = (O, f, C, g,D) written as

H : x ∈ O, u ∈ Rm

{
ẋ = f(x, u) (x, u) ∈ C
x+ = g(x, u) (x, u) ∈ D.

(1)

Figure 1 shows a Simulink implementation proposed here.

Five basic blocks are used to define the dynamics of the hybrid system H:

• The flow map is implemented in an Embedded Matlab function block executing the function f.m. Its
input is a vector with components defining the state of the system x, and the input u. Its output is
the value of the flow map f which is connected to the input of an integrator.

• The flow set is implemented in an Embedded Matlab function block executing the function C.m. Its
input is a vector with components of the state of the Integrator system x− and the input u−, and its
output is equal to 1 if the state belongs to the set C or equal to 0 otherwise. The minus notation
denotes the previous value of the variables (before integration). The value x− is obtained from the
state port of the integrator.

• The jump map is implemented in an Embedded Matlab function block executing the function g.m. Its
input is a vector with components of the state of the Integrator system x− and the input u−, and its
output is the value of the jump map g.

• The jump set is implemented in an Embedded Matlab function block executing the function D.m. Its
input is a vector with components of the state of the Integrator system x− and the input u−, and its
output is equal to 1 if the state belongs to D or equal to 0 otherwise.

• The state space is implemented in an Embedded Matlab function block executing the function O.m. Its
input is a vector with components of the state of the Integrator system x− and the input u−, and its
output is equal to 1 if the state belongs to O or equal to 0 otherwise.
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This model simulates a hybrid system.

u

state space O

z vO

state

x

jumps

j

jump set D

z vD

jump map g

z outg

flows

t

flow set C

z vC

flow map f

z outf

Double Click to

Plot Solutions

Integrator System

f

C

g

D

O

u

t

j

(x,u)

(x−,u−)

Double Click

to  Initialize

IC5

[z0]

IC4

[z0]

IC3

[z0]

IC2

[z0]

IC1

[z0]

IC

[x0]

Figure 1: Matlab/Simulink implementation of a hybrid system H = (O, f, C, g,D) with inputs.

2.1 CT Dynamics

This block defines the continuous dynamics by assembling the time derivative of the state [t j xT ]T . This is
given by

ṫ = 1, j̇ = 0, ẋ = f(x, u) .

Figure 3 depicts this implementation. Note that input port 1 takes the value of f(x, u) through the output
of the Embedded Matlab function block f in Figure 1.

2.2 Jump Logic

The inputs to the jump logic block are the output of the blocks C, D, and O indicating whether the state
is in those sets or not, and a random signal with uniform distribution in [0, 1]. Figure 4 shows that these
signals, and another variable called rule, are the inputs of a Truth Table called Jump Priority.

The Jump Priority Truth Table includes the following logic:

% state

flowFlag = z(1);

jumpFlag = z(2);

stateFlag = z(3);
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Figure 2: Integrator System

randomInput = z(4);

% rule = 1 -> priority for jumps

% rule = 2 -> priority for flows

% rule = 3 -> no priority, random selection when simultaneous conditions

if (rule == 1) & (jumpFlag == 1)

out = 1;

elseif (rule == 1) & (jumpFlag == 0)

out = 0;

elseif (rule == 2) & (flowFlag == 1)

out = 0;

elseif (rule == 2) & (flowFlag == 0) & (jumpFlag == 0)

out = 0;

elseif (rule == 2) & (flowFlag == 0) & (jumpFlag == 1)

out = 1;

elseif (rule == 3)

if (flowFlag == 1) & (jumpFlag == 0)

out = 0;

elseif (flowFlag == 0) & (jumpFlag == 1)

out = 1;

elseif (flowFlag == 1) & (jumpFlag == 1)

if (randomInput >= 0.5)

out = 1;

else

out = 0;
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end

else

out = 0;

end

end

The output of this Truth Table is equal to one only when the output of the D block is equal to one and
rule = 1, or when the output of the D block is equal to one, rule = 3, and the random signal r is larger or
equal than 0.5. Under either event, the output of this block, which is connected to the integrator external
reset input, triggers a reset of the integrator, that is, a jump of H. The reset or jump is activated since the
configuration of the reset input is set to ”level hold”, which executes resets when this external input is equal
to one (if this input remains set to one, multiple resets would be triggered).
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Figure 4: Jump Logic

2.3 Update Logic

The update logic uses the state port information of the integrator. This port reports the value of the state of
the integrator, [t j xT ]T , at the exact instant that the reset condition becomes true. Notice that x− differs
from x since at a jump, x− indicates the value of the state that triggers the jump, that is, x ∈ D, while x
at that same time is equal to the value assigned at the jump by the update logic. This value is given by
g(x−, u−) as Figure 5 illustrates. It also shows that the flow time t is kept constant at jumps and that j is
incremented by one by the Matlab function block j + 1. More precisely

t+ = t−, j+ = j−, x+ = g(x−, u−)

where [t− j− x−T
]T is the state that triggers the jump.

2.4 Stop Logic

This block, shown in Figure 6, stops the simulation under any of the following events:

• The flow time is larger than or equal to the maximum flow time specified by T .
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• The jump time is larger than or equal to the maximum number of jumps specified by J .

• The state of the hybrid system x is neither in C nor in D, or it is not in O.

Under any of these events, the output of the logic operator connected to the Stop block becomes one, stopping
the simulation. Note that the inputs C, D, and O are routed from the output of the blocks computing whether
the state is in C, D, and O, and use the previous value of the state x. This may cause the simulator to
perform an extra iteration before stopping, but this can be resolved by plotting the solution excluding the
data from the last iteration.

stop

1

flowSet

jumpSet

stateSet

Logical

Operator2

NOT

Logical

Operator1

OR

Logical

Operator

NOR

Jump Horizon, J

>= J

Flow Horizon, T

>= T

O

5

D

4

C

3

j

2

t

1

Figure 6: Stop Logic

2.5 Configuration

When the block labeled Double Click to Initialize is double-clicked, the simulation variables are initialized
and the simulation is run by calling the script initialization.m. initialization.m defines the initial conditions
by defining the initial values of the state components, any necessary parameters, the maximum flow time
specified by T , the maximum number of jumps specified by J , and tolerances used when simulating. These
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can be changed by editing the script file initialization.m. See below for sample code to initialize the bouncing
ball example, Example 1.1.

% initialization for bouncing ball example

clear all

% initial conditions

x0 = [1;0];

u0 = 0;

% combine initial conditions

z0 = [x0; u0];

% simulation horizon

T = 10;

J = 20;

% rule for jumps

% rule = 1 -> priority for jumps

% rule = 2 -> priority for flows

% rule = 3 -> no priority, random selection when simultaneous conditions

rule = 1;

% constants

n = 2; %# of state components

m = 1; %# of input components

%solver tolerances

options = odeset(’RelTol’,1e-8,’MaxStep’,.001);

%simulate

sim (’HybridSimulator’)

It is important to note that variables called globally in the Embedded Matlab function blocks must be
assigned values locally in the Model Workspace. This can be done in Simulink by selecting View>Model

Explorer, opening the Model Workspace, and selecting Add>Simulink Signal. Use the same name as
the variable called in the function block. Then the variable must be added to the data/ports in each
respective Embedded Matlab function block by opening each Embedded Matlab function block and selecting
Tools>Edit Data/Ports. Then in the Ports and Data Manager, select Add>Data, name the variables the
same name as in the function, and set the scope to Data Store Memory. See the example files for this
procedure. Figure 7 depicts the model workspace for the interconnection analysis example, Example 1.6.

2.6 Postprocessing and Plotting solutions

A similar prodecure is used to define the plots of solutions after the simulation is run. The solutions can
be plotted by double-clicking on the block labeled Double Click to Plot Solutions which calls the script
postprocessing.m. The script postprocessing.m may be changed to include the desired postprocessing and
solution plots. See below for sample code to plot solutions to the bouncing ball example, Example 1.1.

%postprocessing for the bouncing ball example

% plot solution

figure(1)

clf

subplot(2,1,1),plotflows(t,j,x)

grid on

ylabel(’x’)

subplot(2,1,2),plotjumps(t,j,x)

grid on

ylabel(’x’)

% plot hybrid arc

plotHybridArc(t,j,x)

xlabel(’j’)
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Figure 7: Model Workspace

ylabel(’t’)

zlabel(’x’)

The following functions are used to generate the plots:

• plotflows(t,j,x): plots (in blue) the projection of the trajectory x onto the flow time axis t. The value
of the trajectory for intervals [tj , tj+1] with empty interior is marked with ∗ (in blue). Dashed lines
(in red) connect the value of the trajectory before and after the jump. Figure 8 shows a plot created
with this function.

• plotjumps(t,j,x): plots (in red) the projection of the trajectory x onto the jump time j. The initial
and final value of the trajectory on each interval [tj , tj+1] is denoted by ∗ (in red) and the continuous
evolution of the trajectory on each interval is depicted with a dashed line (in blue). Figure 8 shows a
plot created with this function.

• plotHybridArc(t,j,x): plots (in black) the trajectory x on hybrid time domains. The intervals [tj , tj+1]
indexed by the corresponding j are depicted in the t− j plane (in red). Figure 10 shows a plot created
with this function.

3 Examples

The examples below illustrate the use of the implementation above.

Example 1.1 (bouncing ball with input) For the simulation of the bouncing ball system with a constant
input and regular data given by
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O := R2, f(x, u) :=

[
x2

−γ

]
, C :=

{
(x, u) ∈ R2 × R | x1 ≥ u

}
(2)

g(x, u) :=

[
u

−λx2

]
, D :=

{
(x, u) ∈ R2 × R | x1 ≤ u , x2 ≤ 0

}
(3)

where γ > 0 is the gravity constant, u is the input constant, and λ ∈ [0, 1) is the restitution coefficient. The
Matlab scripts in each of the function blocks of the implementation above are given as follows. An input was
chosen to be u(t, j) = 0.2 for all (t, j). The constants for the bouncing ball system are g = 9.81 and λ = 0.8.

The following procedure is used to simulate this example:

• HybridSimulator.mdl is opened in Matlab/Simulink.

• The Embedded Matlab function blocks f, C, g, D, O are edited by double-clicking on the block and
editing the script. In each embedded function block, global variables must be defined and added to the
data/ports by selecting Tools>Edit Data/Ports>Add>Data, naming the variables the same as they are
called in the function block and setting the scope to Data Store Memory. For this example, statevect
and inputvect are defined in this way.

• Variables that are defined as global in the embedded function blocks must be defined locally in the
Model Workspace. This is done in the Simulink model by selecting View>Model Explorer, dropping
down the options below HybridSimulator and selecting Model Workspace. Then select Add>Simulink
Signal. Name it the same as the variable is named in the embedded function block, and set the initial
value as desired.

• The initialization script initialization.m is edited by opening the file and editing the script. The flow
time and jump horizons, T and J are defined as well as the initial conditions for the state vector, x0, and
input vector, u0, a rule for jumps, rule, and the number of state components and input components,
n and m.

• The postprocessing script postprocessing.m is edited by opening the file and editing the script. Flows
and jumps may be plotted by calling the functions plotflows and plotjumps, respectively. the hybrid
arc may be plotted by calling the function plotHybridArc.

• The simulation stop time is set to T .

• The block labeled Double Click to Initialize is double-clicked to intialize the variables and run the
simulation.

• The block labeled Double Click to Plot Solutions is double-clicked to plot the desired solutions.

function out = f(z)

% state

x1 = x(1);

x2 = x(2);

%input

u=u(1)

% flow map

x1dot = x2;

x2dot = -9.81;

out = [x1dot; x2dot];

function [v] = C(z)

% state

x1 = x(1);
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Figure 8: Solution of Example 1.1: height

x2 = x(2);

if (x1 >= u) % flow condition

v = 1; % report flow

else

v = 0; % do not report flow

end

function out = g(z)

% state

x1 = x(1);

x2 = x(2);

% jump map

x1plus = u;

x2plus = -0.8*x2;

out = [x1plus; x2plus];

function [v] = D(z)

% state

x1 = x(1);

x2 = x(2);

if (x1 <= u && x2 <= 0) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

end

function [v] = O(z)
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Figure 9: Solution of Example 1.1: velocity

v = 1; % in the state space

A solution to the bouncing ball system from x(0, 0) = [1, 0] and with T = 10, J = 20, rule = 1, is depicted
in Figure 8 (height) and Figure 9 (velocity). Both the projection onto t and j are shown. Figure 10 depicts
the corresponding hybrid arc.

These simulations reflect the expected behavior of the bouncing ball model. Note the only difference
between this example and the example of a bouncing ball without a constant input is that, in this example,
the ball bounces on a platform at a height of the chosen input value 0.2 rather than the ground at a value
of 0.

For Matlab/Simulink files of this example, see Examples/Example 1.1.

Example 1.2 (alternative ways to simulate the bouncing ball)
a) For the simulation of the bouncing ball system with a constant input and regular data as given in
Example 1.1. This example shows that a Matlab function block, such as the jump set D, can be replaced
with operational blocks in Simulink. Figure 11 shows this implementation. The other functions and solutions
are the same as in Example 1.1.

For Matlab/Simulink files of this example, see Examples/Example 1.2a.
b) Another way to simulate a bouncing ball (and hybrid systems in general), is to replace the integrator
with resets implemented in Simulink by ODE function call with events (see, e.g.,
http://control.ee.ethz.ch/∼ifaatic/ex/example1.m). Such an implementation gives faster simulation of a
single hybrid system. A code example is presented below for the bouncing ball example. The results of this
simulation are the same as those in Example 1.1.

% Code developed by Torstein Ingebrigtsen Bo

function [t y j] = hybridsolver( f,g,C,D,y0,TSPAN,JSPAN,rule,options,maxStepCoefficient)

% HYBRIDSOLVER solves hybrid equations

% [t y j] = hybridsolver( f,g,C,D,y0,TSPAN,JSPAN) will integrate

% y’=f(y) and jump by the rule y = g(y). y is a vector with the same

% length as y0. Both must return a vector with the

% equal length as y0.
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%

% inside = C(x) returns 0 if outside of C and 1 inside of C

%

% inside = D(x) returns 0 if outside of D and 1 inside of D

%

% TSPAN = [TSTART TFINAL] is the time interval. JSPAN = [JSTART JSTOP] is

% the interval for discrete jumps. The algorithm stop when the first stop

% condition is reached.

%

% rule for jumps

% rule = 1 -> priority for jumps

% rule = 2 (default) -> priority for flows

%

% options - options for the solver see odeset f.ex.

% options = odeset(’RelTol’,1e-6);

%

% maxStepCoefficient - set the maximum step length. At each run of the

% integrator the option ’MaxStep’ is set to (time length of last

% integration)*maxStepCoefficient.

% Default value = 0.1

%

if ~exist(’rule’,’var’)

rule = 2;

end

if ~exist(’options’,’var’)

options = odeset();

11



This model simulates a bouncing ball.
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Figure 11: Simulink implementation of bouncing ball example with operator blocks

end

if ~exist(’maxStepCoefficient’,’var’)

maxStepCoefficient = .2;

end

% simulation horizon

tstart = TSPAN(1);

tfinal = TSPAN(end);

% simulate

options = odeset(options,’Events’,@(t,x) zeroevents(x,C,D,rule));

tout = tstart;

yout = y0.’;

jout = JSPAN(1);

j = jout(end);

% Jump if jump is prioritized:

if rule == 1

while (j<JSPAN(end))

% Check if value it is possible to jump current position

insideD = D(yout(end,:).’);

if insideD == 1

[j tout yout jout] = jump(g,j,tout,yout,jout);

else
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break;

end

end

end

fprintf(’Completed: %3.0f%%’,0);

while (j < JSPAN(end) && tout(end) < TSPAN(end))

% Check if it is possible to flow from current position

insideC = C(yout(end,:).’);

if insideC == 1

[t,y] = ode45(@(t,x) f(x),[tout(end) tfinal],yout(end,:).’, options);

nt = length(t);

tout = [tout; t];

yout = [yout; y];

jout = [jout; j*ones(1,nt)’];

% A good guess of a valid first time step is the length of

% the last valid time step, so use it for faster computation.

options = odeset(options,’InitialStep’,t(end)-t(nt-1),...

’MaxStep’,(t(end)-t(1))*maxStepCoefficient);

end

%Check if it possible to jump

insideD = D(yout(end,:).’);

if insideD == 0

break;

else

if rule == 1

while (j<JSPAN(end))

% Check if value it is possible to jump current position

insideD = D(yout(end,:).’);

if insideD == 1

[j tout yout jout] = jump(g,j,tout,yout,jout);

else

break;

end

end

else

[j tout yout jout] = jump(g,j,tout,yout,jout);

end

end

fprintf(’\b\b\b\b%3.0f%%’,100*tout(end)/TSPAN(end));

end

t = tout;

y = yout;

j = jout;

fprintf(’\nDone\n’);

end

function [value,isterminal,direction] = zeroevents(x,C,D,rule )

isterminal = 1;

direction = -1;

insideC = C(x);

if insideC == 0

% Outside of C

value = 0;

elseif (rule == 1)

% If priority for jump stop if inside D
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insideD = D(x);

if insideD == 1

% Inside D, inside C

value = 0;

else

% outside D, inside C

value = 1;

end

else

% If inside C and not priority for jump or priority of jump and outside

% of D

value = 1;

end

end

function [j tout yout jout] = jump(g,j,tout,yout,jout)

% Jump

j = j+1;

y = g(yout(end,:).’);

% Save results

tout = [tout; tout(end)];

yout = [yout; y.’];

jout = [jout; j];

end

For Matlab/Simulink files of this example, see Examples/Example 1.2b

Example 1.3 (vehicle following a track with boundaries)
Consider a vehicle traveling along a given track modeled by a Dubins vehicle model with state x where

x is a vector with three components given by ξ̇1 = u1 cos ξ3, ξ̇2 = u1 sin ξ3, and ξ̇3 = u2. u1 is the tangential
velocity of the vehicle, ξ1 and ξ2 describe the vehicle’s position, and ξ3 is the vehicle’s orientation angle.
Also consider a switching controller attempting to keep the vehicle inside the boundaries of the track while
traveling. A state q ∈ {1, 2} is used to define the modes of operation of the controller. The state of the
closed-loop system is given by x := [ξ⊤ q]⊤. For the simulation of the described system with a constant
input and regular data given by

O := R3 × {1, 2}, f(x, u) :=


 u1 cos(ξ3)

u1 sin(ξ3)
u2


0

 , (4)

C :=
{
(x, u) ∈ R3 × {1, 2} | (ξ1 ≤ 1, q = 2) or (ξ1 ≥ −1, q = 1)

}
, (5)

g(x, u) :=


[
ξ
2

]
ξ1 ≤ −1, q = 1[

ξ
1

]
ξ1 ≥ 1, q = 2

, (6)

D :=
{
(x, u) ∈ R3 × {1, 2} | (ξ1 ≥ 1, q = 2) or (ξ1 ≤ −1, q = 1)

}
(7)

When q = 1, the vehicle is traveling to the left, and when q = 2, the vehicle is traveling to the right.
The Matlab scripts in each of the function blocks of the implementation above are given as follows. The
tangential velocity of the vehicle is chosen to be u1 = 1, and the initial orientation angle is chosen to be
ξ3 = π/4 radians.

function out = f(z)

v = 1; %tangential velocity
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Figure 12: Solution of Example 1.3: trajectory

% state

x1 = x(1); %x-position

x2 = x(2); %y-position

x3 = x(3); %orientation angle

q = x(4);

%input

u1 = u(1);

% q = 1 --> going left

% q = 2 --> going right

if q == 1

r = 3*pi/4;

elseif q == 2

r = pi/4;

else

r = 0;

end

% flow map

x1dot = v*cos(x3); %tangential velocity in x-direction

x2dot = v*sin(x3); %tangential velocity in y-direction

x3dot = -x3 + r; %angular velocity

qdot = 0;

out = [x1dot;x2dot;x3dot;qdot];

function [v] = C(z)

% state

x1 = x(1); %x-position
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Figure 13: Hybrid arc corresponding to a solution of Example 1.3: trajectory

x2 = x(2); %y-position

x3 = x(3); %orientation angle

q = x(4);

%input

u1=u(1);

% q = 1 --> going left

% q = 2 --> going right

if (x1 < 1) && (q == 2) % flow condition

v = 1; % report flow

elseif (x1 > -1) && (q == 1) %flow condition

v = 1; %report flow

else

v = 0; % do not report flow

end

function out = g(z)

% state

x1 = x(1); %x-position

x2 = x(2); %y-position

x3 = x(3); %orientation angle

q = x(4);

%input

u1=u(1);

% q = 1 --> going left

% q = 2 --> going right

x1plus=x1;
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x2plus=x2;

x3plus=x3;

qplus = q;

%jump map

if (x1 >= 1) && (q == 2)

qplus = 3-q;

elseif (x1 <= -1) && (q == 1)

qplus = 3-q;

else

qplus = 0;

end

out = [x1plus;x2plus;x3plus;qplus];

function [v] = D(z)

% state

x1 = x(1); %x-position

x2 = x(2); %y-position

x3 = x(3); %orientation angle

q = x(4);

%input

u1=u(1);

% q = 1 --> going left

% q = 2 --> going right

if (x1 >= 1) && (q == 2) % jump condition

v = 1; % report jump

elseif (x1 <= -1) && (q == 1) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

end

function [v] = O(z)

v = 1; % in the state space

A solution to the system of a vehicle following a track in between boundaries at −1 and 1, and with
T = 15, J = 10, rule = 1, is depicted in Figure 12 (trajectory). Both the projection onto t and j are shown.
Figure 13 depicts the corresponding hybrid arc.

For Matlab/Simulink files of this example, see Examples/Example 1.3.

Example 1.4 (interconnection of hybrid systems H1 (bouncing ball) and H2 (moving platform))
Consider a bouncing ball (H1) bouncing on a platform and a platform (H2) at some initial height and

converging to the ground with a height equal to zero. With this interconnection, the bouncing ball will
contact the platform, bounce back up, and cause a jump in height of the platform so that it gets closer to
the ground. After some time, both the ball and the platform will converge to the ground. In order to model
this system, the output of the bouncing ball becomes the input of the moving platform, and vice versa. For
the simulation of the described system with regular data where H1 is given by

O1 := R2 × R, f1(ξ, u1, v1) :=

[
ξ2

−γ − bξ2 + v11

]
, C1 := {(ξ, u1) | ξ1 ≥ u1, u1 ≥ 0} (8)

g1(ξ, u1, v1) :=

[
ξ1 + α1ξ

2
2

e1|ξ2|+ v12

]
, D1 := {(ξ, u1) | ξ1 = u1, u1 ≥ 0} , y1 = h1(ξ) := ξ1 (9)

where γ, b, α1 > 0, e1 ∈ [0, 1), ξ = [ξ1 ξ2]
⊤ is the state, y1 ∈ R is the output, u1 ∈ R and v1 = [v11 v12]

⊤ ∈ R2

are the inputs, and the hybrid system H2 is given by
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O2 := R2 × R, f2(η, u2, v2) :=

[
η2

−η1 − 2η2 + v12

]
, C2 := {(η, u2) | η1 ≤ u2, η1 ≥ 0} (10)

g2(η, u2, v2) :=

[
η1 − α2|η2|
−e2|η2|+ v22

]
, D2 := {(η, u2) | η1 = u2, η1 ≥ 0} , y2 = h2(η) := η1 (11)

where α2 > 0, e2 ∈ [0, 1), η = [η1 η2]
⊤ ∈ R2 is the state, y2 ∈ R is the output, and u2 ∈ R and v2 =

[v21 v22]
⊤ ∈ R2 are the inputs.

Therefore, the interconnection may be defined by the input assignment

u1 = y2, u2 = y1. (12)

v1 and v2 are included as external inputs in the model in order to simulate the effects of environmental
perturbations, such as a wind gust, on the system.

The Matlab scripts in each of the function blocks of the implementation above are given as follows. The
constants for the interconnected system are γ = 0.8, b = 0.1, and α1, α2 = 0.1.

This model simulates the

interconnection of multiple hybrid systems.

v22

v21

v12

v11

state1

x3

state

x

HybridSystem2

u x1−

HybridSystem1

u x1−

z

Double Click 

to Initialize

Double Click to

Plot Solutions

Figure 14: Matlab/Simulink implementation of interconnected hybrid systems H1 and H2

For hybrid system H1:

global n m;

% n = # of state components

% m = # of input components

function out = f(z)

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);
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Figure 15: Solution of Example 1.4: height and velocity

u1 = u(1);

u2 = u(2);

u3 = u(3);

% flow map

x1dot = x2;

x2dot = -0.8-0.1*x2+u2;

out = [x1dot;x2dot];

function [v] = C(z)

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);

if (x1 >= u1) % flow condition

v = 1; % report flow

else

v = 0; % do not report flow

end

function out = g(z)

% state

x = z(1:n);
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Figure 16: Solution of Example 1.4 for system H1: height

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);

%jump map

x1plus=u1+0.1*x2^2;

x2plus=0.8*abs(x2)+u3;

out = [x1plus;x2plus];

function [v] = D(z)

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);

if (x1 <= u1) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump
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Figure 17: Solution of Example 1.4 for system H1: velocity

end

function [v] = O(u)

v = 1; % in the state space

For hybrid system H2:

function out = f(z)

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);

% flow map

x1dot = x2;

x2dot = -x1-2*x2+u2;

out = [x1dot;x2dot];

function [v] = C(z)

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);
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Figure 18: Solution of Example 1.4 for system H2: height

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);

if (x1 <= u1) % flow condition

v = 1; % report flow

else

v = 0; % do not report flow

end

function out = g(z)

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);

% jump map

x1plus = u1-0.1*abs(x2);

x2plus = -0.8*abs(x2)+u3;

out = [x1plus;x2plus];

function [v] = D(z)
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Figure 19: Solution of Example 1.4 for system H2: velocity

% state

x = z(1:n);

x1 = x(1);

x2 = x(2);

%input

u = z(n+1:n+m);

u1 = u(1);

u2 = u(2);

u3 = u(3);

if (x1 >= u1) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

end

function [v] = O(u)

v = 1; % in the state space

A solution to the interconnection of hybrid systems H1 and H2 with T = 18, J = 20, rule = 1, is depicted
in Figure 15. Both the projection onto t and j are shown. A solution to the hybrid system H1 is depicted
in Figure 16 (height) and Figure 17 (velocity). A solution to the hybrid system H2 is depicted in Figure 18
(height) and Figure 19 (velocity).

These simulations reflect the expected behavior of the interconnected hybrid systems. Note that in order
to implement these systems without premature stopping of the simulation, ξ1 in g1 and η1 in g2 can be
changed to u1 and u2, respectively so that ξ+1 = u1 and η+1 = u2.

For Matlab/Simulink files of this example, see Examples/Example 1.4.
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Example 1.5 (biological example: synchronization of two fireflies)
Consider a biological example of the synchronization of two fireflies flashing. The fireflies can be modeled

mathematically as periodic oscillators which tend to synchronize their flashing until they are flashing in
phase with each other. The synchronization of the fireflies can be modeled as an interconnection of two
hybrid systems where each firefly can be modeled as a hybrid system given by

Oi := R2, fi(τi, ui) := 1, (13)

Ci :=
{
(τi, ui) ∈ R2 | 0 < τi < 1

}
∩
{
(τi, ui) ∈ R2 | 0 < ui ≤ 1

}
(14)

gi(τi, ui) :=

{
(1 + ε)τi (1 + ε)τi < 1
0 (1 + ε)τi ≥ 1

(15)

Di :=
{
(τi, ui) ∈ R2 | τi = 1

}
∪
{
(τi, ui) ∈ R2 | ui = 1

}
. (16)

A state value of τi = 1 corresponds to a flash, and after each flash, the firefly automatically resets its
periodic cycle to τi = 0. When one of the fireflies flashes, the other tries to synchronize its flash by jumping
ahead in its periodic cycle. This behavior is captured by the biological coefficient, ε.

The interconnection diagram for this example is simpler than in the previous example because now no
external inputs are being considered. The only event that affects the flashing of a firefly is the flashing of
the other firefly. The interconnection diagram can be seen in Figure 20.

This model simulates the synchronization of fireflies.

state1

x3

state

x

HybridSystem2

u x−

HybridSystem1

u x−

z

Double Click to

Plot Solutions

Double Click

to Initialize

Figure 20: Interconnection Diagram for Example 1.5

For hybrid system Hi:

function out = f(z)

% state

x = z(1:n);

%input

u = z(n+1:n+m);

% flow map
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Figure 21: Solution of Example 1.5 for system H1

xdot = 1;

out = xdot;

function v = C(z)

% state

x = z(1:n);

%input

u = z(n+1:n+m);

if (0 < x < 1) % flow condition

v = 1; % report flow

elseif (0 < u <= 1)

v = 1; % report flow

else

v = 0; % do not report flow

end

function out = g(z)

% state

x = z(1:n);

%input

u = z(n+1:n+m);

% jump map

if (1+e)*x < 1

xplus = (1+e)*x;

elseif x == 1

xplus = 0;

elseif (1+e)*x >= 1
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Figure 22: Solution of Example 1.5 for system H2

xplus = 0;

else

xplus = 0;

end

out = xplus;

function v = D(z)

% state

x = z(1:n);

%input

u = z(n+1:n+m);

if (u >= 1) % jump condition

v = 1; % report jump

elseif (x >= 1) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

end

function v = O(z)

v = 1; % in the state space

A solution to the interconnection of hybrid systems H1 and H2 with T = 15, J = 15, rule = 1, ε = 0.3
is depicted in Figure 23. Both the projection onto t and j are shown. A solution to the hybrid system H1
is depicted in Figure 21. A solution to the hybrid system H2 is depicted in Figure 22.

These simulations reflect the expected behavior of the interconnected hybrid systems. The fireflies initially
flash out of phase with one another and then synchronize to flash in the same phase.
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Figure 23: Solution of Example 1.5 for interconnection of H1 and H2

For Matlab/Simulink files of this example, see Examples/Example 1.5.

Example 1.6 (analysis of interconnection of two hybrid systems)
Consider two interconnected hybrid systems Hi, i ∈ {1, 2}, given by

Hi


ẋi = fi(xi, ũi, ui) := −aixi + biũi + ui (xi, ũi, ui) ∈ Ci

x+
i = gi(xi, ũi, ui) := ũi (xi, ũi, ui) ∈ Di

yi = hi(xi) := xi,

where

Ci := {(xi, ũi, ui) : ũi(xi − εiũi) ≤ 0}, Di := {(xi, ũi, ui) : ũi(xi − εiũi) ≥ 0}, ai, bi, εi > 0 and
xi, ũi, ui ∈ R.

For motivation and analysis of this example, the reader is referred to [4].

Figures 24, 25, and 27 show the solution to this example when a1 = 10, a2 = 30, b1 = .5, b2 = 1,
ε1 = 2, ε2 = 3, and initial conditions x10= x20= 5. The Matlab scripts in each of the function blocks of the
implementation above are given as follows.

For hybrid system H1:

function out = f(z)

% state

x = z(statevect);

x1 = x(1);

%input

u = z(inputvect);
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Figure 24: Solution of Example 1.6 for system H1

u1 = u(1);

u2 = u(2);

u3 = u(3);

% flow map

x1dot = -a1*x1+b1*u1+u2;

out = [x1dot];

function v = C(z)

% state

x = z(statevect);

x1 = x(1);

%input

u = z(inputvect);

u1 = u(1);

u2 = u(2);

u3 = u(3);

%flow set

if (u1*(x1-e1*u1) <= 0) % flow condition

v = 1; % report flow

else

v = 0; % do not report flow

end

function out = g(z)

% state

x = z(statevect);

x1 = x(1);
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Figure 25: Solution of Example 1.6 for system H2

%input

u = z(inputvect);

u1 = u(1);

u2 = u(2);

u3 = u(3);

%jump map

x1plus = u1;

out = [x1plus];

function v = D(z)

% state

x = z(statevect);

x1 = x(1);

%input

u = z(inputvect);

u1 = u(1);

u2 = u(2);

u3 = u(3);

%jump set

if (u1*(x1-e1*u1) >= 0) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

end

function v = O(z)

v = 1; % in the state space
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Figure 26: Solution of Example 1.6 for interconnection of H1 and H2

For hybrid system H2:

function out = f(z)

% state

x = z(statevect);

x1 = x(1);

%input

u = z(inputvect);

u1 = u(1);

u2 = u(2);

u3 = u(3);

% flow map

x1dot = -a2*x1+b2*u1+u2;

out = [x1dot];

function v = C(z)

% state

x = z(statevect);

x1 = x(1);

%input

u = z(inputvect);

u1 = u(1);

u2 = u(2);

u3 = u(3);

%flow set

if (u1*(x1-e2*u1) <= 0) % flow condition

v = 1; % report flow
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Figure 27: Solution of Example 1.6: state of H1, x1, vs. state of H2, x2

else

v = 0; % do not report flow

end

function out = g(z)

% state

x = z(statevect);

x1 = x(1);

%input

u = z(inputvect);

u1 = u(1);

u2 = u(2);

u3 = u(3);

% jump map

x1plus = u1;

out = [x1plus];

function v = D(z)

% state

x = z(statevect);

x1 = x(1);

%input

u = z(inputvect);

u1 = u(1);

u2 = u(2);

u3 = u(3);

%jump set
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if (u1*(x1-e2*u1) >= 0) % jump condition

v = 1; % report jump

else

v = 0; % do not report jump

end

function v = O(z)

v = 1; % in the state space

These simulations reflect the expected behavior the the interconnected hybrid systems. Specifically note
that the origin of the systems are stable with the chosen values for a1, a2, b1, and b2. This can be seen in
Figure 27 as the solution converges to zero from the initial condition of 5.

For Matlab/Simulink files of this example, see Examples/Example 1.6.

Example 1.7 (a simple mathematical example to show different type of simulation results)
Consider the hybrid system with data

O := R, f(x) := −x, C := [0, 1], g(x) := 1 +mod(x, 2), D := {1} ∪ {2} .

Note that solutions from ξ = 1 and ξ = 2 are nonunique. The following simulations show the use of the
variable rule in the Jump Logic block.

Jumps enforced:

A solution from x0 = 1 with T = 10, J = 20, rule = 1 is depicted in Figure 28. The solution jumps from
1 to 2, and from 2 to 1 repetitively.

Flows enforced:

A solution from x0 = 1 with T = 10, J = 20, rule = 2 is depicted in Figure 29. The solution flows for all
time and converges exponentially to zero.

Random rule:

A solution from x0 = 1 with T = 10, J = 20, rule = 3 is depicted in Figure 30. The solution jumps to 2,
then jumps to 1 and flows for the rest of the time converging to zero exponentially.

Enlarging D to

D := [1/50, 1] ∪ {2}

causes the overlap between C and D to be ”thicker”. The simulation result is depicted in Figure 31 with
the same parameters used in the simulation in Figure 30. The plot suggests that the solution jumps several
times until x < 1/50 from where it flows to zero. However, Figure 32, a zoomed version of Figure 31, shows
that initially the solution flows and that at (t, j) = (0.2e − 3, 0) it jumps. After the jump, it continues
flowing, then it jumps a few times, then it flows, etc. The combination of flowing and jumping occurs while
the solution is in the intersection of C and D, where the selection of whether flowing or jumping is done
randomly due to using rule = 3.

This simulation also reveals that this implementation does not precisely generate hybrid arcs. The
maximum step size was set to 0.1e − 3. The solution flows during the first two steps of the integration of
the flows with maximum step size. The value at t = 0.1e − 3 is very close to 1. At t = 0.2e − 3, instead of
assuming a value given by the flow map, the value of the solution is about 0.5, which is the result of the jump
occurring at (0.2e− 3, 0). This is the value stored in x at such time by the integrator. Note that the value
of x′ at (0.2e− 3, 0) is the one given by the flow map that triggers the jump, and if available for recording,
it should be stored in (0.2e− 3, 0). This is a limitation of the current implementation.
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Figure 28: Solution of Example 1.7 with forced jumps logic.

The following simulations show the Stop Logic block stopping the simulation at different events.

Solution outside O:

Replacing O by (−1, 2), a solution starting from x0 = 1 with T = 10, J = 20, rule = 1 fails to exists
after the first jump. This is depicted in Figure 33 (cf. Figure 28)

Solution outside C ∪D:

The same behavior as the one just outlined arises with O = R but with D = {1}. The simulation stops
since the solution leaves C ∪D.

Solution reaches the boundary of C from where jumps are not possible:

Finally, taking O = R and replacing the flow set by [1/2, 1] a solution starting from x0 = 1 with
T = 10, J = 20 and rule = 2 flows for all time until it reaches the boundary of C where jumps are not
possible. Figure 34 shows this.

Note that in this implementation, the Stop Logic is such that when the state of the hybrid system is not
in (C ∪D) ∩ O, then the simulation is stopped. In particular, if this condition becomes true while flowing,
then the last value of the computed solution will not belong to either C or O, or both, depending on the
situation. It could be desired to be able to recompute the solution so that its last point belongs to the
corresponding set. From that point, it should be the case that solutions cannot be continued.
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Figure 29: Solution of Example 1.7 with forced flows logic.

For Matlab/Simulink files of this example, see Examples/Example 1.7.

4 Notes

Matlab/Simulink files corresponding to the simulation technique described in this paper can be found at
Matlab Central and at the author’s website

http://www.u.arizona.edu/∼sricardo/.
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Figure 31: Solution of Example 1.7 with random logic for flowing/jumping.
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Figure 32: Solution of Example 1.7 with random logic for flowing/jumping. Zoomed version.
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Figure 33: Solution of Example 1.7 with forced jump logic and different O.
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Figure 34: Solution of Example 1.7 with forced flow logic.
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