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Abstract— Results on robustness to measurement noise and
unmodeled dynamics of stability in hybrid systems are pre-
sented. We show that arbitrarily small measurement noise can
lead to lack of existence of solutions in hybrid systems. One
solution to this problem is to pass the measurements through
a filter. Robustness to measurement noise using this filtering
is shown explicitly. We also study the effect of unmodeled
sensor/actuator dynamics in the closed loop and we demonstrate
that stability is robust to a class of singular perturbations.
The results are illustrated for the inverted pendulum on a cart
system when attempting to globally asymptotically stabilize the
inverted position of the pendulum and the neutral cart position.

I. INTRODUCTION

Over the last fifteen years, researchers have begun to
recognize the extra capabilities of hybrid control systems
compared to classical continuous-time control systems. For
example, it is now well-known that hysteresis switching
control can stabilize large classes of nonholonomic systems
even though stabilization is impossible using time-invariant
continuous state feedback, and robust stabilization is impos-
sible using time-invariant locally bounded feedback. See, for
example, [9], [15]. Also, sample and hold control (a special
type of hybrid feedback) can be used to achieve stabilization
that is robust to measurement noise and fast sensor/actuator
dynamics, even if such robustness is impossible using purely
continuous-time feedback. See, for example, [17], [5], [10].

Despite these specific studies, a general investigation of
the robustness of hybrid controllers to measurement noise
and fast sensor/actuator dynamics is absent from the lit-
erature. Noise in the measurement of the state arises in
every implemented closed-loop system and it is desired that
the hybrid controller provide certain degree of robustness
to it. It is also common, in the design of a controller, to
consider a simplified model of the system, exhibiting only the
most important dynamics. By doing this, the controller may
be easier to design but sensors/actuators dynamics remain
unmodeled. Suppose that for the nonlinear system

ẋ = f(x, u), (1)

where f does not include any sensor/actuator dynamics, there
exists a hybrid controller, denoted Hc, that renders the origin
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of the closed loop globally asymptotically stable. A follow-
up question is whether the closed loop with the addition of
the unmodeled sensor/actuator dynamics and measurement
noise preserves the properties of the nominal closed loop;
see Figure 1. Singular perturbation arguments show that this
is the case when continuous-time controllers are used (see
[11], [19]), but the answer is unknown for hybrid controllers.
Moreover, when noise enters the conditions where the jumps

Fig. 1. Hybrid control of a continuous-time system with filter/sensor/actuator
dynamics.

and flows for a hybrid system are enabled, solutions may
even fail to exist.

In this paper, we give a general discussion of the issues just
highlighted. If the hybrid controller Hc renders the origin of
the nominal closed loop globally asymptotically stable, we
show that each of the following scenarios:

• hybrid controller Hc connected to the nonlinear system
(1) with filtered measurements;

• hybrid controller Hc connected to the nonlinear system
(1) with sensor dynamics and actuator dynamics;

• hybrid controller Hc connected to the nonlinear system
(1) with sensor dynamics and actuator dynamics that
smooth the control;

all yield semiglobally practically asymptotically stable closed
loops with respect to the same attractor. Moreover, we
describe a particular construction of a hybrid controller Hc,
which borrows ideas from control with patchy vector fields
in [1] and the hybrid approach in [16], and apply it to
the problem of swinging up a pendulum on a cart with
measurement error and control smoothing. In our study, we
rely on the notion of a solution to a hybrid systems used
in [7], [6], [8], but with disturbances explicitly included.
Moreover, we exploit the robustness of stability under set
perturbations established in [8].

II. BACKGROUND

Throughout the paper, B is the closed unit ball, R≥0 :=
[0,+∞), N := {0, 1, 2, . . .}, and |e|∞ = supt∈R≥0

|e(t)|.
Following [7], [8] and also [6] (cf. [12], [3], and [13]), a

solution to a hybrid system is a function defined on a hybrid



time domain satisfying certain conditions. A set S ⊂ R≥0×N

is a compact hybrid time domain if

S =
J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ... ≤ tJ .
The set S is a hybrid time domain if for all (T, J) ∈ S,

S ∩ ([0, T ] × {0, 1, ...J})

is a compact hybrid domain. By a hybrid arc or hybrid
trajectory we understand a pair consisting of a hybrid time
domain domx and a function x : domx → R

n such that
x(t, j) is locally absolutely continuous in t for a fixed j and
(t, j) ∈ domx. We will not mention domx explicitly, but
always assume that given a hybrid arc x, the set domx is
exactly the set on which x is defined. A hybrid arc is called
complete if domx is unbounded and maximal if it is not a
truncation of another arc x′ to some proper subset of domx′.

A hybrid system H will be given on a state space O by
set-valued mappings F and G describing, respectively, the
continuous and the discrete dynamics, and sets C and D
where these dynamics may occur. A hybrid arc x : domx→
O is a solution to H if x(0, 0) ∈ C ∪D and:

(S1) for all j ∈ N and a.a. t such that (t, j) ∈ domx,

x(t, j) ∈ C, ẋ(t, j) ∈ F (x(t, j));

(S2) for all (t, j) ∈ domx such that (t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)).

Some mild assumptions on the data of H are needed to
guarantee that, among other properties, the sets of solutions
to H have good sequential compactness properties. We
refer the reader to [8] (see also [7]) for details on and
consequences of these assumptions.

Assumption 2.1: State space O is open; sets C and D are
relatively closed in O; mappings F and G are outer semi-
continuous and locally bounded1 on O; F (x) is nonempty
and convex for all x ∈ C; G(x) is nonempty for all x ∈ D.
It was shown in [8] that if C ∪D = O, then solutions exist
for every initial point in O and maximal solutions are either
complete or “blow up”.

III. HYBRID CONTROL OF NONLINEAR SYSTEMS

A. Nominal Hybrid Controller
Consider the nonlinear system (1) where x ∈ R

n, f : R
n×

R
m → R

n is continuous, and a hybrid controller, denoted
Hc, with continuous state xc ∈ R

p, discrete state q ∈ Q ⊂ N,
continuous dynamics

ẋc = fc(x, xc, q)
q̇ = 0

}

when (x, xc, q) ∈ Cc,

and discrete dynamics

x+
c = gc(x, xc, q)
q+ ∈ Qc(x, xc, q)

}

when (x, xc, q) ∈ Dc,

1A set-valued mapping G defined on an open set O is outer semicontin-
uous if for each sequence xi ∈ O converging to a point x ∈ O and each
sequence yi ∈ G(xi) converging to a point y, it holds that y ∈ G(x). It is
locally bounded if, for each compact set K ⊂ O there exists µ > 0 such
that G(K) := ∪x∈KG(x) ⊂ µB.

that renders the set {0}×{0}×Q of the closed-loop system,
denoted Hcl, asymptotically stable with basin of attraction
R

n × R
p ×Q by using the feedback

u = κc(x, xc, q), (2)

where κc : R
n×R

p×Q→ R
m is the output of the controller.

We will assume that the closed-loop Hcl, which is a hybrid
system, satisfies the following assumption.

Assumption 3.1: For the closed-loop hybrid system Hcl,
the set {0} × {0} ×Q is globally asymptotically stable:

1) (local stability) for each ε > 0 there exists δ > 0 such
that for every (x0, x0

c , q
0) satisfying |x0|+|x0

c | ≤ δ and
q0 ∈ Q, the x and xc components of every solution
starting at (x0, x0

c , q
0) satisfy |x(t, j)| + |xc(t, j)| ≤ ε

for all (t, j) in the domain of the solution; and
2) (global convergence) for each (x0, x0

c , q
0) ∈

R
n × R

p × Q, every maximal solution is
complete and the x and xc components satisfy
limt+j→∞ (|x(t, j)| + |xc(t, j)|) = 0. ¥

Under some regularity assumptions on Hc, the closed-loop
system Hcl can be recast in the framework of Section II,
so that Assumption 2.1 and the conditions for existence of
solutions in [8] are met. A particular set of such regularity
assumptions is the following.

Assumption 3.2: The following conditions hold for Hc:
1) The set Q is a finite subset of the integers.
2) The sets Cc and Dc are closed.
3) Cc ∪Dc = R

n × R
p ×Q.

4) The functions κc : R
n × R

p × Q → R
m, fc : R

n ×
R

p ×Q→ R
p, and gc : R

n × R
p ×Q→ R

p are such
that, for each q ∈ Q, the functions κc(·, ·, q), fc(·, ·, q),
and gc(·, ·, q) are continuous.

5) The set-valued mapping Qc : R
n × R

p × R ⇒ Q is
outer semicontinuous and for each (x, xc, q) ∈ Dc,
Qc(x, xc, q) is nonempty. ¥

B. Vulnerability to Measurement Noise
In this section we discuss the behavior of hybrid systems

H under the influence of measurement noise. The general
form of a hybrid system with measurement noise is

ξ̇ ∈ F (ξ, e) ξ +m(e) ∈ C
ξ+ ∈ G(ξ, e) ξ +m(e) ∈ D .

(3)

The signal e and the solution ξ have the same domains. (Note
that given a hybrid time domain S and an exogenous signal
e(t), we can define, with some abuse of notation, e(t, j) :=
e(t) for each (t, j) ∈ S.) The function m : R

n → R
n

“selects” which components of ξ are corrupted with noise,
e.g. state of the plant or state of the controller.

A hybrid arc ξ and a measurement noise signal e are a
solution pair (ξ, e) to the hybrid system H if dom ξ = dom e,
ξ(0, 0) +m(e(0, 0)) ∈ C ∪D, and

(S1e) For all j ∈ N and a.a. t such that (t, j) ∈ dom ξ,

ξ(t, j) +m(e(t, j)) ∈ C, ξ̇(t, j) ∈ F (ξ(t, j), e(t, j)).

(S2e) For all (t, j) ∈ dom ξ such that (t, j+1) ∈ dom ξ,

ξ(t, j) +m(e(t, j)) ∈ D, ξ(t, j+ 1) ∈ G(ξ(t, j), e(t, j)).

However, in the presence of measurement noise there is no
guarantee that solutions exist, even if no such issues arise



for the nominal system. Indeed, being the state ξ = (x, q),
when there exists a point (x∗, q∗) and sequences xi and xk

both approaching x∗ such that (xi, q∗) /∈ C and (xk, q∗) /∈
D then solutions can fail to exist even for arbitrarily small
measurement noise.

This is illustrated as follows. For each q ∈ Q := {−1, 1},
let cq ∈ R≥0, and Cq := {(x, q) ∈ R

n ×Q | q|x| ≤ qcq }.
Define the system

ẋ = f(x, κc(x, q)) (x, q) ∈ C := ∪q∈QCq

q+ = −q (x, q) ∈ D := (Rn ×Q) \C .

(The structure of this system is like what is used in hysteresis
switching between local and global controllers: u = κc(x, 1)
is to be used in C1 (|x| ≤ c1), while u = κc(x,−1) is to
be used in C−1 (|x| ≥ c−1). For details on uniting local and
global controllers see [14].) Suppose that for a given q ∈ Q,
the system is initialized at |x| = cq . Let vk and wk be a
sequences converging to zero satisfying q|x+ vk| > qcq and
, q|x+wk| < qcq . Then x+vk /∈ C for all k and x+wk /∈ D
for all k. If we let e(0) = wk and e(t) = vk for all t > 0
(such signal can be made arbitrarily small), the system (3),
with m being an identity function, has no solutions from
x. Indeed, such a solution could not jump from (x, q), as
(x(0, 0) + e(0), q(0, 0)) 6∈ D. Similarly, it could not flow
from x, since, for small t, (x(t, 0) + e(t), q(t, 0)) 6∈ C.

This situation can be remedied, at least for small mea-
surement noise, if C and D always “overlap”. By this we
mean that for any (x, q) ∈ O, either (x + e, q) ∈ C for
all small e or (x + e, q) ∈ D for all small e. This can be
achieved in the example above by inflating the set D but
with the inflation small enough so that, still, starting from
the condition |x| ≤ c−1 the jump set is not reached.

In general, there always exist inflations of C and D that
preserve semiglobal practical asymptotic stability, however
they only guarantee existence of solutions for small measure-
ment noise. Alternatively, solutions are guaranteed to exist
locally for any locally bounded measurement noise if the
measurement noise does not appear in the flow and jump sets
of the hybrid system. That can be achieved by filtering the
measurements, which will be described in the next section.

IV. ROBUSTNESS TO NOISE VIA FILTERED
MEASUREMENTS

In this section, we consider the nonlinear system given by
(1) with the addition of the measured output

y = x+ e,

where e is an exogenous bounded signal. Our goal is to
augment the controller Hc that nominally stabilizes the
system so that the resulting closed-loop system preserves
semiglobal practical stability for small measurement noise.

To overcome the existence of solutions problem, we pass
y through a linear filter with matrices (Af , Bf , Lf ) and
parameter ε. The filter is designed to be asymptotically stable
and at jumps, its state is reset to the current value of y:

Assumption 4.1: The matrices (Af , Bf , Lf ) are such that
Af is Hurwitz and −LfA

−1

f Bf = I .
Then, the output of the filter replaces the state x in the

feedback law κc and in the flow and jump conditions, thereby
guaranteeing local existence of solutions. Denoting the state

of the filter by ζ ∈ R
r, we can write the resulting closed

loop, denoted Hε
cl, as follows

ẋ = f(x, κc(Lfζ, xc, q))
ẋc = fc(Lfζ, xc, q)
q̇ = 0

εζ̇ = Afζ +Bf (x+ e)











when
(Lfζ, xc, q) ∈ Cc

x+ = x
x+

c = gc(Lfζ, xc, q)
q+ ∈ Qc(Lfζ, xc, q)
ζ+ = −A−1

f Bf (x+ e)















when
(Lfζ, xc, q) ∈ Dc .

It can be shown that for every compact set of initial condi-
tions and positive number ν, the solutions to the family of
hybrid systems Hε

cl with small enough parameter ε satisfy a
KLL bound with an offset given by ν.

Theorem 4.2: Under Assumptions 3.1, 3.2, and 4.1, there
exists β ∈ KLL and for each µ > 0 and ν > 0, there exist
ε∗ > 0 and δ > 0 such that, for all ε ∈ (0, ε∗] and |e|∞ ≤ δ,
the solutions to Hε

cl satisfy

|x(t, j)| + |xc(t, j)| ≤ β(|x0| + |x0
c |, t, j) + ν

for all initial conditions (x0, x0
c , q

0, ζ0) ∈ R
n×R

m×Q×R
r

with |x0| + |x0
c | ≤ µ and |ζ0| ≤ µ.

V. ROBUSTNESS TO CERTAIN SINGULAR PERTURBATIONS

A. Fast actuator and sensor dynamics
We now analyze the robustness of the closed-loop Hcl de-

fined in Section III-A to unmodeled sensor/actuator dynam-
ics. Figure 1 shows the closed-loop Hcl with two additional
blocks: a model for the sensor and a model for the actuator.
Such blocks can be modeled as stable filters with parameters
that depend on the characteristics of the sensors and actuators
used in the loop. To simplify the controller design procedure,
these dynamics are usually not included in the model of the
nonlinear system (1) for which a hybrid controller Hc is to
be designed.

We denote the state of the filter that models the sensor
dynamics by ζs ∈ R

rs with matrices (As, Bs, Ls) and
parameter ε, and the state of the filter that models the actuator
dynamics by ζa ∈ R

ra with matrices (Aa, Ba, La) and
parameter ε. For the case of study, it is reasonable to assume
that the added sensors and actuators are stable with unity DC
gain:

Assumption 5.1: The matrices (As, Bs, Ls) and
(Aa, Ba, La) are such that As and Aa are Hurwitz,
−LsA

−1
s Bs = I and −LaA

−1
a Ba = I .

Since the filters are not internal components of the hybrid
controller, their state cannot be reset at jumps (cf. the filter
in Section IV). We employ temporal regularization with
parameter τ to eliminate Zeno solutions. Augmenting Hcl

by adding filters and by the temporal regularization leads to
a family Hε

cl given as follows

ẋ = f(x, Laζa)
ẋc = fc(Lsζs, xc, q)
q̇ = 0
τ̇ = −τ + τ∗

εζ̇s = Asζs +Bs(x+ e)

εζ̇a = Aaζa +Baκc(Lsζs, xc, q)



























when
(Lsζs, xc, q) ∈ Cc

or τ ≤ τ



x+ = x
x+

c = gc(Lsζs, xc, q)
q+ ∈ Qc(Lsζs, xc, q)
ζ+
s = ζs
ζ+
a = ζa
τ+ = 0



























when
(Lsζs, xc, q) ∈ Dc

and τ ≥ τ

where τ∗ is a constant satisfying τ∗ > τ . The following
result states that for fast enough sensors and actuators and
small enough temporal regularization parameter, the closed
loop has the semiglobal practical asymptotic stability prop-
erty.

Theorem 5.2: Under Assumptions 3.1, 4.1, and 5.1 there
exists β ∈ KLL, for each µ > 0 and ν > 0 there exist
τ∗ > 0 and δ > 0, and for each τ ∈ (0, τ ∗] there exist
ε∗ > 0 such that, for each τ ∈ (0, τ ∗], each ε ∈ (0, ε∗(τ)],
and each |e|∞ ≤ δ, the solutions to Hε

cl satisfy
|x(t, j)| + |xc(t, j)| ≤ β(|x0| + |x0

c |, t, j) + ν

for all initial conditions (x0, x0
c , q

0, ζ0
s , ζ

0
a , τ

0) with |x0| +
|x0

c | ≤ µ, |ζ0
s | ≤ µ, and |ζ0

a | ≤ µ.
B. Fast sensor dynamics and control smoothing

The control law generated by the hybrid controller Hc

given in equation (2) can have jumps in its value when
q switches. In many applications it is not possible for the
actuator to switch between control laws instantaneously;
moreover, especially when the control law κc(·, ·, q) is con-
tinuous for each q ∈ Q, it is desired to have a smooth
transition between them when q change. We now add such
operation to the nominal closed loop and we show that
the robustness properties are practically and semiglobally
preserved.

Figure 2 shows the final closed loop that we denote as
Hε

cl. We model the smoothing control block by filtering the
variable q with a linear filter with matrices (Au, Bu, Lu) and
parameter ε, and then computing (possibly by the actuator)
the control law

α(x, xc, Luζu) =
∑

q∈Q

λq(Luζu)κc(x, xc, q)

where for each q ∈ Q, λq : R → [0, 1] is continuous and
λq(q) = 1. Since the filter for q may not be part of the
controller, its state cannot be reset at jumps. We also include
the sensor dynamics in the loop as in Section V-A.

The closed loop Hε
cl can be written as

ẋ = f (x, α(x, xc, Luζu))
ẋc = fc(Lsζs, xc, q)
q̇ = 0
τ̇ = −τ + τ∗

εζ̇s = Asζs +Bs(x+ e)

εζ̇u = Auζu +Buq



























when
(Lsζs, xc, q) ∈ Cc

or τ ≤ τ

x+ = x
x+

c = gc(Lsζs, xc, q)
q+ ∈ Qc(Lsζs, xc, q)
ζ+
u = ζu
ζ+
s = ζs
τ+ = 0



























when
(Lsζs, xc, q) ∈ Dc

and
τ ≥ τ .

The result for this system is the same as the result in Theorem
5.2. The specific statement is thus omitted. In Section VII,
we add fast sensor dynamics and control smoothing to the
problem of swinging up a pendulum on a cart.

Fig. 2. Closed-loop system with fast sensor dynamics and control smoothing.

C. When there are no instantaneous Zeno solutions
We remark that if there are no instantaneous Zeno solu-

tions to Hcl then Hcl is uniformly non-Zeno on compact
sets, i.e., for each compact set K there exist T > 0
and a positive integer J such that |t′ − t| ≤ T implies
|j′ − j| ≤ J for all solutions φ to Hcl and all sets S
such that φ(domφ ∩ S) ⊂ K, (t, j) ∈ domφ ∩ S, and
(t′, j′) ∈ domφ ∩ S. (See [6] or [8].) In fact, if Hcl has no
instantaneous Zeno solutions then Hε

cl has no instantaneous
Zeno solutions and thus is uniformly non-Zeno on compact
sets. In this case, the singular perturbation arguments used
above go through without the temporal regularization. The
details are omitted for now. This observation will be used
for the simulations in Section VII.

VI. A CLASS OF STABILIZING HYBRID CONTROLLERS

Up to this point we have assumed the existence of a hybrid
controller Hc for system (1) that yields global stability of
{0}×{0}×Q for the closed-loop Hcl. This section discusses
a particular construction for Hc, a static hybrid controller.

We start by considering two families of sets, {Ωq}q∈Q
and

{Cq}q∈Q
, and a family of feedback functions {κc(·, q)}q∈Q.

These sets and the control laws are designed so that when 1)
a trajectory hits the boundary of the current Cq set and may
be able to flow with larger q, it does not belong to Ωα with
α smaller than the current mode; 2) trajectories that never
switch converge to the origin; 3) the trajectories do not go
unbounded; and 4) every control law corresponding to a q
such that 0 ∈ Cq renders the origin of the closed loop stable
(these ideas are similar to the ones in [16]). More precisely:

Assumption 6.1: The set Q is finite, ∪q∈QΩq = R
n and,

for each q ∈ Q,
1) Ωq and Cq are closed and satisfy Ωq ⊂ Cq ,
2) The map κq : R

n → R
m, defined by x 7→ κc(x, q) is

continuous.
3) The trajectories of ẋ = f(x, κc(x, q)) starting in Cq

have the following properties:
a) If x(0) ∈ Ωq and x(t) ∈ ∂Cq\ {0} for some

t ≥ 0 then x(t) /∈ Ωα for any α < q.
b) If x(t) ∈ Cq for all t in its domain and x is

maximal, then x is complete and limt→∞x(t)=0.
c) There does not exists an unbounded trajectory.
d) For each εq > 0 there exists δq > 0 such that

|x(0)| ≤ δq implies |x(t)| ≤ εq for all t where
x(·) is defined. (Notice that if 0 /∈ Cq then, since
Cq is closed, there is nothing to check.)

For each q ∈ Q, we define Dq := Rn\Cq . Then we
define Dc := {(x, q) ∈ R

n ×Q | x ∈ Dq } and Cc :=



{(x, q) ∈ R
n ×Q | x ∈ Cq } and note that Cc ∪ Dc =

R
n × Q. Then the closed loop system Hcl obtained from

connecting this particular controller Hc with the nonlinear
system (1) is given by

ẋ = f(x, κc(x, q)) (x, q) ∈ Cc

q+ ∈ Qc(x, q) (x, q) ∈ Dc
(4)

where Qc(x, q) :=
{

{α ∈ Q | α > q , x ∈ Ωα } if x ∈ Dq\ (∪α<qΩα)
{α ∈ Q | x ∈ Ωα } if x ∈ Dq ∩ (∪α<qΩα) .

It follows from the fact that ∪α<qΩα is closed that Qc is
outer semicontinuous. It also follows that Qc is nonempty
on Dc. Indeed, if x ∈ Dq then, since the sets Ωα are closed
and Ωq ⊂ Cq and Dq = Rn\Cq , we have x ∈ ∪α6=qΩα.
Thus x ∈ Dq\ (∪α<qΩα) implies x ∈ ∪α>qΩα.

Theorem 6.2: Under Assumption 6.1, the closed-loop sys-
tem (4) has the set {0} ×Q globally asymptotically stable.

VII. EXAMPLE: INVERTED PENDULUM ON A CART

We consider the problem of swinging a pendulum on
a cart to the upright position by acting on the cart and
simultaneously stabilizing the cart to the neutral position.
Swing up of the pendulum has been considered frequently
in the literature. See, for example, [2], [20], [4]. The inverted
pendulum on a cart system, after a preliminary state feedback
of the form2 ũ = ψ(x) + φ(x)u, is given by (see e.g. [18])

ẋ1 = x2, ẋ2 = sin(x1) + cos(x1)u, ẋ3 = x4, ẋ4 = u (5)

where x1 represents the angle of the pendulum from the up
vertical position, x2 is the angular velocity, x3 is the cart
position and x4 is the cart velocity. Note that for simplicity,
we have normalized the constants.

We consider a hybrid swing-up strategy that chooses the
appropriate feedback control law depending on the location
of the pendulum. Let W be the energy of the pendulum,
W (x) = 1

2
x2

2 + cos(x1), and let c1, c2 be constants that
are sufficiently close to but larger than minx∈R4 W (x) and
satisfy c1 > c2. Take U3a and U3b, U3a ⊂ U3b, to be closed
neighborhoods of the origin in R

2 such that for the system
ẋ = f(x, u), there exists a state feedback law κ̃ that renders
the origin (in R

4) locally asymptotically stable with basin of
attraction containing U3b×R

2 and such that solutions starting
in U3a × R

2 do not reach the boundary of U3b × R
2. Such

a construction is given in [18] for example. Then, for each
q ∈ Q := {1, 2, 3}, we define sets Ωq and Cq (Ωq ⊂ Cq) as
follows

Ω1 = C1 =
{

x ∈ R
4 | W (x) ≤ c1

}

,

Ω3 = U3a × R
2, C3 = U3b × R

2,

Ω2 =
{

x ∈ R2 \ U3a × R
2 | W (x) ≥ c1

}

,

C2 =
{

x ∈ R2 \ U3a × R
2 | W (x) ≥ c2

}

.

When the pendulum is in the region q, the control law is
given by κc(·, q), q ∈ Q. The control law for C1 is given by
κ1 which drives the system away from the resting condition.

2This state feedback is also subject to measurement noise, but the effect
of measurement noise at this location is as in standard ordinary differential
equations. We will ignore this subtlety for simplicity.

We simply choose κ1 ≡ 1. In C2, the control law should
inject enough energy into the system so that U3a is reached.
For that purpose, we let κ2 be a feedback law that stabilizes
W to the value one, e.g. κ2(x) = −x2 cos(x1)(W (x) − 1).
We design the control law for region q = 3 so that it
satisfies the properties of κ̃ above. We construct it by
feedback linearizing the system (5), computing the basin of
attraction with a quadratic Lyapunov function, and extending
the linearized controller so that the cart position and velocity
are stabilized to the origin:

κ3(x) =
sin(x1) + x1 + x2

cos(x1)
+ satλ1

{z4 + sat λ1

2

{z3 + z4}}

U3a =

{

x ∈ R
4

∣

∣

∣

∣

1

2
(x2

1 + x2
2) ≤ c3

}

U3b =

{

x ∈ R
4

∣

∣

∣

∣

1

2
(x2

1 + x2
2) ≤ c4

}

,

where z4 = x4 + 2x2 + x1, z3 = x3 + x4 + x2 + 2x1, and
c4 > c3 > 0. Finally, define κc(·, q) = κq(·).
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Fig. 3. Solution with normally distributed measurement noise with variance
σ = 0.1 starts in Ω1, the mode switches when the solution hits the boundary
of C1 and C2 and then stays in Ω3. The noise is not able to keep the system
away from a neighborhood of the upright condition.

Note that this construction meets the specifications of the
controller proposed in Section VI. Moreover, every solution
to the closed loop defined by the inverted pendulum and
the hybrid controller described above is non-Zeno. Then,
temporal regularization is not required for the closed-loop
with fast sensor dynamics and control smoothing.

We implement the closed-loop system including fast sen-
sor dynamics and control smoothing as discussed in Section
V-B. Since there are three different modes, the control
smoothing is modeled as

u = us(x, ζu) :=

3
∑

q=1

λq(Luζu)uq(x)

where the selection functions λq : R → [0, 1], for each q ∈
Q, are continuous and λq(q) = 1.



Finally, we implement the closed loop in Simulink with

Au =

[

0 1 0
0 0 1
−1 −2 −1

]

, Bu =

[

0
0
2

]

, Lu = [1 0 0]

ε = 0.01, As = −I, Bs = I, Ls = I,

c1 = −0.96, c2 = −0.98, c3 = 0.1, c4 = 0.23, λ1 = 0.5.

Figure 3 shows a closed-loop solution in the (x1, x2) plane
starting at x0 = [−π 0 0 0]T , q0 = 1, ζ0

u = [0 0 0]T , and
with normally distributed noise on each measurement with
σ = 0.1. In the same figure, we also plotted the sets Ωq in
solid and the sets Cq with dashes lines.

To highlight the robustness property to measurement noise,
we increased the magnitude of the noise by setting σ = 1.
The results are shown in Figure 4 and 5. When the noise is
able to kick the solution, for example, outside the set C3,
the controller reaction is to switch the mode from q = 3 to
q = 2. Then, it drives the solution back to Ω3 by switching
the mode back to q = 3. The time between switches in
Figure 5 shows that the controller reacts relatively fast.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Ω1

x1

x 2

Ω2

Ω1 Ω3

Fig. 4. Solution starting with the same initial conditions as before but
with ten times larger measurement noise. The noise is able to drive the
solution outside C3 and therefore, perturb the pendulum from the straight-
up position, but the hybrid controller reacts and steers it back in.

VIII. CONCLUSION

Hybrid systems can have very poor properties with re-
spect to small perturbations that enter the flow and/or jump
equations. In particular, measurement noise can have a
dramatic negative effect on the very existence of solutions.
These problems can be alleviated to a large degree by
introducing measurement filters and exploiting the robust-
ness to perturbations of hybrid control systems that sat-
isfy certain basic conditions. Here, we have pointed out
that hybrid control systems can withstand filtered measure-
ments, a class of singular perturbation, and the continuous-
time implementation of the control signal. These behav-
iors have been illustrated on the problem of swinging up
a pendulum on a cart. Simulations files are available at
http://www.ccec.ece.ucsb.edu/∼rsanfelice/ .
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Fig. 5. Control law and discrete mode for large noise. The mode changes
rapidly between q = 3 and q = 2 when the noise perturbs the mode.
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