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SUMMARY

This paper investigates stability of nonlinear control systems under intermittent information. Following
recent results in the literature, we replace the traditional periodic paradigm, where the up-to-date information
is transmitted and control laws are executed in a periodic fashion, with the event-triggered paradigm.
Building on the small gain theorem, we develop input-output triggered control algorithms yielding stable
closed-loop systems. In other words, based on the currently available (but outdated) measurements of the
outputs and external inputs of a plant, a mechanism triggering when to obtain new measurements and
update the control inputs is provided. Depending on the noise environment, the developed algorithm yields
stable, asymptotically stable, and Lp-stable (with bias) closed-loop systems. Control loops are modeled as
interconnections of hybrid systems for which novel results on Lp-stability are presented. The prediction
of a triggering event is achieved by employing Lp-gains over a finite horizon. By resorting to convex
programming, a method to compute Lp-gains over a finite horizon is devised. Finally, our approach is
successfully applied to a trajectory tracking problem for unicycles. Copyright c© 2014 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

In order to address demands of the modern world, the control community has recently put under
scrutiny its fundamental concept – feedback. These efforts tackle the question: “How often should
information between systems be exchanged in order to meet a desired performance?” The desired
performance can be estimation quality or stability. This paper is concerned with stability of
nonlinear control systems under intermittent information. Under the term intermittent information,
we refer to both intermittent feedback (a user-designed property as in [1], [2], [3] and [4]) and
intrinsic properties of control systems such as packet collisions, sampling period, processing time,
network throughput, scheduling protocols, lossy communication channels, occlusions of sensors or a
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limited communication/sensing range (see [5] and the references in [1]). User-designed intermittent
feedback is motivated by rational use of expensive resources at hand in an effort to decrease energy
consumption as well as processing and sensing requirements. In addition, intermittent feedback
allows multitasking by not utilizing resources all the time for a sole task.

1.1. Background

The traditional digital control theory provides rules of thumb to determine stabilizing sampling
periods for linear systems (e.g., 20 times the time constant of the dominant pole [6]). When it
comes to nonlinear systems, approximate discrete-time models are derived and analyzed because
nonlinear systems, in general, cannot be discretized in closed form [7]. These traditional approaches
are characterized by periodic sampling.

Several authors have recently devised aperiodic (or intermittent) sampling policies that provably
stabilize control systems. Typically, one first designs a controller without taking into account a
communication network and then, in the second step, one determines how often control and sensor
signals have to be transmitted over the network so that the closed-loop system remains stable. We
classify the recent approaches for nonlinear control systems as follows:

(i) Small gain theorem approaches [8], [9];
(ii) Dissipativity and passivity-based approaches [10], [11], [12];

(iii) Input-to-State Stability (ISS) approaches [4], [13], [14], [15]; and
(iv) Other approaches [2], [3], [16], [17].

Event-triggered and self-triggered realizations of intermittent feedback are proposed in [4], [13],
[14], [15] and [10]. In these event-driven approaches, one defines a desired performance, and
sampling (i.e., transmission of up-to-date information) is triggered when an event representing the
unwanted performance occurs. The work in [15] applies event-triggering to control, estimation and
optimization tasks. The work in [10] utilizes the dissipative formalism of nonlinear systems, and
employs passivity properties of feedback interconnected systems in order to reach an event-triggered
control strategy for stabilization of passive and output passive systems. In [12], the authors propose
an event-triggered output feedback control approach for time-invariant input-feedforward output-
feedback passive plants and controllers (in addition to some other technical conditions imposed on
plants and controllers). A particular limitation of the results in [12] is that the number of inputs and
outputs of the plant and controller must be equal (due to this, this approach cannot be applied to the
systems in the examples in Section 6). The event-triggered approach of [17] converts a trajectory
tracking control problem into stabilization problem for an autonomous system and then applies an
invariance principle for hybrid systems in order to solve the tracking problem. It is worth mentioning
that [17] is tailored for a trajectory tracking problem of unicycles which is quite similar to our
case study in Section 6. However, while the results of [17] hold for a certain class of trajectories
(i.e., trajectories generated with a non-constant linear velocity and angular velocity which does not
change the sign nor converges to zero), we do not impose such requirements on the trajectories.
In addition, [17] assumes that the trajectory is known a priori by the controller while we make
no such assumption herein. Lastly, notice that the self-triggered counterparts of the event-triggered
approaches from [12] and [17] are yet to be devised.

In self-triggered approaches, the current sample is used to determine the next sampling instant,
i.e., to predict the occurrence of the triggering event. In comparison with event-triggering, where
sensor readings are constantly obtained and analyzed in order to detect events (even though the
control signals are updated only upon event detection), self-triggering decreases requirements posed
on sensors and processors in embedded systems. The pioneering work on self-triggering, intended
to maintain L2-gains of linear control systems below a certain value, is found in [18] and [19].
A comprehensive comparison of our work with [18] and [19] is provided in Subsection 6.1. The
authors in [14] extend event-triggering presented in [4] and develop state-triggering: self-triggering
based on the value of the system state in the last feedback transmission. The work in [16] utilizes
Lyapunov theory and develops event-triggered trajectory tracking for nonlinear systems affine in
controls.
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1.2. Contributions

The approach in [8] and [9] is developed for general nonlinear controllers and plants that render
closed-loop systems stable, asymptotically stable or exponentially stable in the absence of a
communication network. The generality of nonlinear models considered in [8] and [9] allows for
analysis of time-varying closed-loop systems with external inputs/disturbances, output feedback and
dynamic controllers. In addition, the methodology from [8] and [9] yields stable, asymptotically
stable, exponentially stable or Lp-stable control systems under intermittent information. The
principal requirement in [8] and [9] is Lp-stability of the closed-loop system. In other words,
if a certain controller does not yield the closed-loop system Lp-stable, one can seek for another
controller. Hence, unlike related works, our requirements are on the closed-loop systems and not on
the plant and controller per se. On the other hand, the work in [2] does not consider external inputs,
and the results for nonlinear systems are provided for a class of exponentially stable closed-loop
systems in the absence of communication networks. The authors in [3] do not consider external
inputs and exponential stability of systems with specific nonlinearities is analyzed. The work in
[16] investigates state feedback for nonlinear systems affine in controls and static controllers. A
comparison of our approach and the approach from [16] can be found in [20]. The ISS approaches
assume state feedback, static controllers, and do not consider external inputs. In addition, the results
of [13] and [14] are applicable to state-dependent homogeneous systems and polynomial systems.
The work in [10] analyzes passive plants, proportional controllers and does not take into account
external inputs.

The main limitation of the approach in [8] and [9] is periodicity of the transmission instants
inherited from the standard definition of Lp-gains. Recall that the standard Lp-gain is not a function
of time (i.e., there is no prediction of when some event might happen) nor state. To circumvent
this limitation (while retaining the generality of [8] and [9]), we devise an input-output triggered
approach employing Lp-gains over a finite horizon in the small gain theorem. Under the term
input-output triggering, we refer to self-triggering based on the values of the plant’s external input
and output in the last feedback transmission. The triggering event, that is to be precluded in our
approach, is the violation of the small gain condition.

The main contributions of this paper are:

a) The design of an input-output triggered sampling policy yielding stability of nonlinear
systems employing the small gain theorem;

b) The consideration of realistic communication channels and sensors in the stability analysis;
c) The formulation of novel conditions for Lp-stability (over a finite horizon) of hybrid systems;

and
d) The design of a novel method for computing Lp-gains over a finite horizon by resorting to

convex programming.

In addition, our approach does not require construction of storage nor Lyapunov functions which
can be a difficult task for a given problem.

1.3. Paper Organization

In Section 2, we provide an example that motivates the results and approach proposed in this paper.
Section 3 formulates the problem of intermittent feedback under various assumptions. Section 4
presents the notation and definitions utilized in this paper. The methodology brought together to
solve the problem via input-output triggering is presented in Section 5. The proposed input-output
triggered sampling policy is verified on a trajectory tracking problem in Section 6 and compared
with a related work. Conclusions and future challenges are in Section 7. Proofs and several technical
results are included in the Appendix.
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Figure 1. An illustration of the trajectory tracking problem considered in this paper.

2. MOTIVATIONAL EXAMPLE

Using laser-based or radar-based sensors, Autonomous Cruise Control (ACC) technology allows a
vehicle to slow down when approaching another vehicle and accelerate to the desired speed when
traffic allows. Besides reducing driver fatigue, improving comfort and fuel economy, ACC is also
intended to keep cars from crashing [21]. The sampling periods of ACC loops are typically fixed and
designed for the worst case scenario (e.g., fast and heavy traffic). Furthermore, these fixed sampling
periods are often determined experimentally and are based on the traditional rules of thumb (e.g., 20
times the time constant of the dominant pole). Intuitively, the sampling periods of ACC loops should
not remain constant as the desired speed, distance between the cars, the environment (urban on non-
urban), and paths (straight or turns) change. The work presented herein quantifies this intuition.

Consider the trajectory tracking controller in [22] as an example of a simple ACC. In [22], a
velocity-controlled unicycle robot R1 given by

ẋR1 = vR1 cos θR1, ẏR1 = vR1 sin θR1, θ̇R1 = ωR1 (1)

tracks a trajectory generated by a virtual velocity-controlled unicycle robot R2 with states xR2, yR2

and θR2, and linear and angular velocities vR2 and ωR2, respectively. See Figure 1 for an illustration.
The tracking error xp in the coordinate frame {M} of robot R1 is

xp =

xp1xp2
xp3

 =

 cos θR1 sin θR1 0
− sin θR1 cos θR1 0

0 0 1

xR2 − xR1

yR2 − yR1

θR2 − θR1

 . (2)

After differentiating (2), we obtain:

ẋp =

ωR1xp2 − vR1 + vR2 cosxp3
−ωR1xp1 + vR2 sinxp3

ωR2 − ωR1

 . (3)

System (3) can be interpreted as a plant with state xp and external inputs vR2 and ωR2. Take the
output of the plant to be y = xp and introduce ωp := [vR2 ωR2]>. The plant is controlled through
control signals vR1 and ωR1. In order to compute vR1 and ωR1, and track an unknown trajectory (a
trajectory is given by vR2(t), ωR2(t) and initial conditions of xR2, yR2 and θR2), robot R1 needs to
know the state of the plant xp and the inputs to R2, i.e., vR2 and ωR2. Following [22], choose the
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Figure 2. A diagram of a control system with the plant and controller interacting over a communication
network with intermittent information updates. The three switches indicate that the information between the

plant and controller are exchanged at discrete time instants belonging to a set T .

following control law:

vR1 = vR2 cosxp3 + k1xp1,

ωR1 = ωR2 + k2vR2
sinxp3
xp3

xp2 + k3xp3, (4)

where k1, k2 and k3 are positive control gains. Let us introduce u := [vR1 ωR1]>. Proposition 3.1
in [22] shows that the control law (4) makes the origin xp = [0 0 0]> of the plant (3) globally
asymptotically stable provided that vR2(t), ωR2(t) and their derivatives are bounded for all times
t ≥ 0 and limt→∞ vR2(t) 6= 0 or limt→∞ ωR2(t) 6= 0.

The above asymptotic stability result is obtained assuming instantaneous and continuous
information. In real-life applications, continuous access to the values of y and ωp is rarely
achievable. In other words, the control signal u is typically computed using intermittent
measurements corrupted by noise. The measurements of the outputs and external inputs of the plant
are denoted ŷ and ω̂p, respectively. In general, as new up-to-date values of ŷ and ω̂p arrive, the
control signal may change abruptly. Afterward, the newly computed values u are sent to actuators.
These values might be noisy and intermittently updated as well. Hence, the plant is not controlled
by u but instead by û. An illustration of such a control system is provided in Figure 2.

A goal of this paper is to take advantage of the available information from the plant, i.e., of ŷ and
ω̂p, and design sampling/control update instants T = {t1, t2, . . .} such that stability of the control
system is preserved. As our intuition suggests, different ŷ and ω̂p may yield different time instants
in T . In fact, the intersampling intervals τ1 = t2 − t1, τ2 = t3 − t2, . . ., forR1 are determined based
on the distance from the desired trajectory (i.e., ŷ) and the nature of trajectory (i.e., ω̂p). Driven
by the desire to obtain intersampling instants τi’s as large as possible, we adopt a hybrid systems
modeling formalism and analysis in this paper. Hybrid modeling captures state jumps and permits
the use of multiple models (i.e., switched systems) which in turn can be exploited to maximize
intersampling intervals τi’s. Figure 3 contrasts different methods for computing τi’s. The solid blue
line in Figure 3 represents τi’s computed via the methodology devised in this paper. Apparently, the
use of finite horizon Lp-gains (this notion somewhat corresponds to the notion of individual Lp-
gains considered in [23]) produces larger τi’s in comparison with the use of unified gains. Unified
gains are simply the maximum of all individual gains of a switched system. As discussed in [23],
unified gains are a valid (although quite conservative) choice for the Lp-gain of a switched system.
However, even such conservative Lp-gains of interconnected switched systems, when used in the
small gain theorem, do not suffice to conclude stability of the closed-loop system [23]. Essentially,
one should use the finite horizon Lp-gains of interconnected switched systems in order to decrease
conservativeness, i.e., maximize τi’s, when applying the small gain theorem.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
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Figure 3. A comparison of the intersampling intervals τi’s obtained for different notions of Lp-gains. The
abbreviation UG stands for ’Unified Gain’. Red stems indicate time instants when changes in ω̂p occur. The
solid blue line indicates τi’s generated via the methodology devised in this paper. Definitions of the said

notions appear in Sections 4 and 5.

3. PROBLEM FORMULATION

Consider a nonlinear feedback control system consisting of a plant

ẋp = fp(t, xp, u, ωp),

y = gp(t, xp), (5)

and a controller

ẋc = fc(t, xc, uc, ωc),

yc = gc(t, xc), (6)

interconnected via the assignment

u = yc, uc = y, ωc = ωp, (7)

where xp ∈ Rnp and xc ∈ Rnc are the states, y ∈ Rny and yc ∈ Rnu are the outputs, and (u, ωp) ∈
Rnu ×Rnω and (uc, ωc) ∈ Rny ×Rnω are the inputs of the plant and controller, respectively, where
ωp is an exogenous input to the plant. Following the assignment (7), we model the connections
(or links) between the plant and the controller as communication networks over which intermittent
exchange of information due to sampling takes place. Figure 2 depicts this setting, where the value
of u computed by the controller that arrives to the plant is denoted û. Similarly, the values of y
and ωp that the controller actually receives are denoted ŷ and ω̂p, respectively. In this setting, the
quantity û is the input fed to the plant (5) while the quantities ŷ and ω̂p are the measurement of y
and ωp received by the controller (6).

To study the properties of the feedback control system in Figure 2, define

e =

[
ey
eu

]
:=

[
ŷ − y
û− u

]
(8)

and
eω := ω̂p − ωp. (9)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
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To model intermittent transmission (or sampling) of the values of y and u, the quantities ŷ and û are
updated at time instances t1, t2, . . . , ti, . . . in T , i.e.,†

ŷ(t+i ) = y(ti) + hy(ti)

û(t+i ) = u(ti) + hu(ti)

}
ti ∈ T , (10)

where hy : R→ Rny and hu : R→ Rnu . Similarly, the quantity ω̂p may change discretely reflecting
changes in the plant exogenous input or in the level of plant disturbances. The time instants at which
jumps of ω̂p occur are denoted tδi and belong to the set T δ, which is a subset of T . We assume that
the received values of y, u, and ωp given by ŷ, û, and ω̂p, respectively, remain constant in between
updates, i.e., for each t ∈ [t0,∞) \ T ,

˙̂y = 0, ˙̂u = 0, ˙̂ωp = 0, (11)

which is known as the zero-order hold strategy [24].
The following standing assumption summarizes the properties imposed to the feedback control

system in Figure 2 throughout this paper.

Assumption 1 (standing assumption)
The jump times at the controller and plant end coincide. The set of sampling instants T δ :=
{tδ1, tδ2, . . . , tδi , . . .} at which ω̂p changes its value satisfies T δ ⊂ T , where T := {t1, t2, . . . , ti, . . .},
ti+1 > ti for each ti+1, ti in T .

We are now ready to state the problem studied in this paper.

Problem 1
Determine the set of sampling instants T and T δ to update (ŷ, û) and ω̂p , respectively, such that
the closed-loop system (5)-(6) is stable in the Lp sense.

The following specific scenarios are investigated:

Case 1
The signals û, ŷ, and ω̂p are not corrupted by noise, and ωp is constant between consecutive tδi ’s.

Case 2
The signals û and ŷ are not corrupted by noise while ω̂p is corrupted by noise. In addition, ωp is
arbitrary between consecutive tδi ’s.

Case 3
The signals û, ŷ, and ω̂p are corrupted by noise. In addition, ωp is arbitrary between two consecutive
tδi ’s.

4. PRELIMINARIES

4.1. Notation

To simplify notation, at times we use (x, y) := [x> y>]>. The dimension of a vector x is denoted
nx. Next, let f : R→ Rn be a Lebesgue measurable function on [a, b] ⊂ R. We use

‖f [a, b]‖p :=

(∫
[a,b]

‖f(s)‖pds
) 1
p

to denote the Lp norm of f when restricted to the interval [a, b]. If the corresponding norm is finite,
we write f ∈ Lp[a, b]. In the above expression, ‖ · ‖ refers to the Euclidean norm of a vector. If the

†The formulation of the update law in (10) implies that the jump times at the controller and plant end coincide.
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argument of ‖ · ‖ is a matrix A, then it denotes the induced 2-norm of A. Eigenvalues and singular
values of a matrix A are denoted λi(A) and σi(A), respectively. Given x ∈ Rn, we define

x̄ = (|x1|, |x2|, . . . , |xn|),

where | · | denotes the (scalar) absolute value function. Given x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) ∈ Rn, the partial order � is defined as

x � y ⇐⇒ xi ≤ yi ∀i ∈ {1, · · · , n}.

The set An denotes the set of all n× n matrices and A+
n denotes the subset of all matrices that are

symmetric and have nonnegative entries. Rn+ denotes the nonnegative orthant. The natural numbers
are denoted N or N0 when zero is included.

4.2. Hybrid Systems

Given a (finite or infinite) sequence of time instances t1, t2, . . . , ti, . . . with ti+1 > ti, defining the
set T as in Assumption 1, and an initial time t0 < t1. In this paper we consider hybrid systems
written as

Σδ


χ(t+) = hδχ(t, χ(t)) t ∈ T

χ̇ = fδχ(t, χ, ω)

y = `δχ(t, χ, ω)

}
otherwise ,

(12)

where χ is the state, (ω, δ) is the input, and y is the output. The input δ is given by a piecewise
constant, right-continuous function of time δ : [t0,∞)→ P , which we refer to as the switching
signal, with P an index set (not necessarily a finite set). The functions fδχ and hδχ are regular enough
to guarantee existence of solutions, which, given initial state χ0, initial time t0, and a switching
signal δ : [t0,∞)→ P , are given by right-continuous functions t 7→ χ(t). Jumps of the state χ occur
at each t ∈ T . The value of the state after a jump is given by χ(t+) = limt′↘t χ(t′) for each t ∈ T .
The switching signal δ changes at time instances tδi , defining the set T δ as in Assumption 1, which
is a subset of T .

For notational convenience, we define tδ0 := t0, which is not a switching time, the intersampling
intervals τi = ti+1 − ti for each ti+1, ti in T ∪ {t0} =: T0, and the interswitching intervals τ δi :=
tδi+1 − tδi for each tδi+1, t

δ
i in T δ ∪ {tδ0} =: T δ0 .

The following stability notions for hybrid systems Σδ as in (12) are employed in this paper.

Definition 1 (Lp-stability with bias b)
Let p ∈ [1,∞]. Given a switching signal t 7→ δ(t), the hybrid system Σδ is Lp-stable with bias
b(t) ≡ b ≥ 0 from ω to y with (linear) gain γ ≥ 0 if there exists K ≥ 0 such that, for each
t0 ∈ R and each χ0 ∈ Rnχ , each solution to Σδ from χ0 at t = t0 we have that ‖y[t0, t]‖p ≤
K‖χ0‖+ γ‖ω[t0, t]‖p + ‖b[t0, t]‖p for each t ≥ t0.

Definition 2 (Lp-stability with bias b over a finite horizon τ )
Let p ∈ [1,∞]. Given a switching signal t 7→ δ(t) and τ ≥ 0, the hybrid system Σδ is Lp-stable
over a finite horizon of length τ with bias b(t) ≡ b ≥ 0 from ω to y with (linear) constant gain
γ̃(τ) ≥ 0 if there exists a constant‡ K̃(τ) ≥ 0 such that, for each t0 ∈ R and each χ0 ∈ Rnχ , each
solution to Σδ from χ0 at t = t0 satisfies ‖y[t0, t]‖p ≤ K̃(τ)‖χ0‖+ γ̃(τ)‖ω[t0, t]‖p + ‖b[t0, t]‖p for
each t ∈ [t0, t0 + τ).

Definition 3 (detectability)
Let p, q ∈ [1,∞]. Given a switching signal t 7→ δ(t), the state χ of Σδ is Lp to Lq detectable from
(y, ω) to χ with (linear) gain γ ≥ 0 if there exists K ≥ 0 such that, for each t0 ∈ R and each
χ0 ∈ Rnχ , each solution to Σδ from χ0 at t = t0 satisfies ‖χ[t0, t]‖q ≤ K‖χ0‖+ γ‖y[t0, t]‖p +
γ‖ω[t0, t]‖p for each t ≥ t0.

‡The parenthesis in K̃ and γ̃ denote explicitly the dependency of these constants on the already chosen τ .
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Definition 3 is taken from [9] while Definition 2 is motivated by [25] and [26]. When b = 0, we say
“Lp-stability” instead of “Lp-stability with bias 0”.

Proposition 1
Given a switching signal t 7→ δ(t), if Σδ is Lp-stable with bias b(t) ≡ b ≥ 0 from ω to y with gain
γ ≥ 0 and Lp to Lp detectable from (y, ω) to χ with gain γ′ ≥ 0 then Σδ is Lp-stable with bias γ′b
from ω to state χ for the given switching signal.

Proof
From the Lp-stability with bias assumption, Definition 1 implies that there exists K ≥ 0 such that
for each t0 and each χ0 we have

‖y[t0, t]‖p ≤ K‖χ0‖+ γ‖ω[t0, t]‖p + ‖b[t0, t]‖p ∀t ≥ t0,

while Lp to Lp detectability from (y, ω) to χ with gain γ′ implies that there exists K ′ ≥ 0 such that

‖χ[t0, t]‖p ≤ K ′‖χ0‖+ γ′‖y[t0, t]‖p + γ′‖ω[t0, t]‖p

for all t ≥ t0. Then, we obtain

‖χ[t0, t]‖p ≤ (Kγ′ +K ′)‖χ0‖+ (γγ′ + γ′)‖ω[t0, t]‖p + γ′‖b[t0, t]‖p (13)

for all t ≥ t0. This proves the claim since (13) corresponds to Lp-stability with bias γ′b, gain
γγ′ + γ′, and constant Kγ′ +K ′.

For a given switching signal δ, the following result provides a set of sufficient conditions for
Lp-stability of a hybrid system Σδ with Lp-stable (over a finite horizon) subsystems.

Theorem 1
Given a switching signal t 7→ δ(t), consider the hybrid system Σδ given by (12). Let K ≥ 0 and
p ∈ [1,∞). Suppose the following properties hold:

(i) For each tδi ∈ T δ0 , there exist constants K̃(τ δi ) and γ̃(τ δi ) such that§

‖y[tδi , t
′]‖p ≤ K̃(τ δi )‖χ(tδ+i )‖+ γ̃(τ δi )‖ω[tδi , t

′]‖p (14)

for all t′ ∈ [tδi , t
δ
i+1) if tδi is not the largest switching time in T δ (in which case τ δi = tδi+1 − tδi )

or for all t′ ∈ [tδi ,∞) if tδi is the largest switching time in T δ (in which case it corresponds to
Lp-stability and one can write K̃ and γ̃), and such that

KM := sup
i
K̃(τ δi ), (15)

γM := sup
i
γ̃(τ δi ), (16)

exist.
(ii) The condition ∑

i

‖χ(tδ+i )‖ ≤ K‖χ(t0)‖, (17)

holds.

Then, Σδ is Lp-stable from ω to y with constant KMK and gain γM for the given δ. For
p =∞, the same result holds with the constant KMK and gain γM when (17) is replaced with
supi ‖χ(tδ+i )‖ ≤ K‖χ(t0)‖.

§For i = 0, we have χ(tδ+0 ) = χ(tδ0), which is equal to χ(t0).
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See Appendix 7.2 for a proof.

Remark 1
The sampling policy designed herein (along with Assumption 2 provided below) ensures that
hypothesis (i) of Theorem 1 always holds. Note that it is not straightforward to verify (17)
beforehand. In fact, the control policy needs to make decisions “on the fly”, based on the available
information regarding previous switching instants, in order to enforce (17) (refer to Section 6 for
further details). For example, condition (17) can be enforced by requiring ‖χ(tδ+i+1)‖ ≤ λ‖χ(tδ+i )‖,
where λ ∈ [0, 1), which is similar to the property exploited in the design of uniformly globally
exponentially stable protocols in [8]. Notice that decision making “on the fly” by exploiting
previously received information is a salient feature of self-triggering.

Building from ideas in [9], the next result proposes an expression of the Lp-gain over a finite
horizon for a generic nonlinear system χ̇ = g̃(t, χ, v) with state χ and input v.

Theorem 2
Given τ ≥ 0 and t0 ∈ R, suppose that there exist A ∈ A+

nχ with ‖A‖ <∞, a continuous function
ỹ : R×Rnχ ×Rnv → Rnχ+ such that

χ̇ = g̃(t, χ, v) � Aχ+ ỹ(t, χ, v), ∀(t, χ, v) ∈ [t0, t0 + τ ]×Rnχ ×Rnv . (18)

Then, for each solution to χ̇ = g̃(t, χ, v) we have

‖χ[t0, t0 + τ ]‖p ≤ K̃(τ)‖χ(t0)‖+ γ̃(τ)‖ỹ[t0, t0 + τ ]‖p, (19)

for all t ∈ [t0, t0 + τ), where

K̃(τ) =

(
exp(‖A‖pτ)− 1

p‖A‖

) 1
p

, (20)

γ̃(τ) =
exp(‖A‖τ)− 1

‖A‖
. (21)

Theorem 2 proposes conditions under which χ̇ = g̃(t, χ, v) is Lp-stable from ỹ to χ over the finite
horizon τ for any p ∈ [1,∞]. Its proof is in Appendix 7.3.

5. INPUT-OUTPUT TRIGGERED CONTROL USING FINITE HORIZON Lp-STABILITY

Inspired by the approach in [8], our solution to Problem 1 determines the sampling instants T
using input-output information of the system resulting from the interconnection between (5) and
(6), namely

x(t+) = x(t)

e(t+) = h(t)

}
t ∈ T (22a)

ẋ = f(t, x, e, ω̂p, eω)

ė = g(t, x, e, ω̂p, eω)

}
otherwise , (22b)

where x := (xp, xc), and functions f , g and h are given by

f(t, x, e, ω̂p, eω) :=

[
fp(t, xp, gc(t, xc) + eu, ω̂p − eω)
fc(t, xc, gp(t, xp) + ey, ω̂p)

]
, h(ti) :=

[
hy(ti)
hu(ti)

]
, (23)

g(t, x, e, ω̂p, eω) := f̂p(t,xp,xc,gp(t,xp)+ey,gc(t,xc)+eu,ω̂p−eω)︸ ︷︷ ︸
≡0 for zero-order-hold estimation strategy

− ∂gp∂t (t,xp)−
∂gp
∂xp

(t,xp)fp(t,xp,gc(t,xc)+eu,ω̂p−eω)

︷ ︸︸ ︷
f̂c(t,xp,xc,gp(t,xp)+ey,gc(t,xc)+eu,ω̂p) − ∂gc∂t (t,xc)− ∂gc∂xc

(t,xc)fc(t,xc,gp(t,xp)+ey,ω̂p)

 , (24)
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where hy and hy are introduced in (10).
By identifying the switching signal δ in (12) with ω̂p¶, we write (22) in the form of a hybrid

system Σδ as in (12) as follows:

x(t+) = x(t)

e(t+) = h(t)

}
t ∈ T (25a)

ẋ = fδ(t, x, e, eω)

ė = gδ(t, x, e, eω)

}
otherwise . (25b)

In this paper, we are interested in changes in Lp-gains (over a finite horizon) of (25) for different
values of the switching signal δ = ω̂p. Note that fδ(t, x, e, eω) and gδ(t, x, e, eω) are alternative (but
equivalent) labels for f(t, x, e, ω̂p, eω) and g(t, x, e, ω̂p, eω). (For convenience, we use the former
when the switching component of our model is explicitly utilized.)

5.1. Why Lp-gains Over a Finite Horizon?

Lp-gains over a finite horizon allow prediction of the triggering event in this paper. In addition, as
suggested by the example in Section 2, they produce less conservative intertransmission intervals
τi’s than classical Lp-gains when used in the small gain theorem. This is due to the fact that Lp-gains
over a finite horizon are monotonically nondecreasing in τ . To show this fact, we use the following
characterization for p ∈ [1,∞) taken from [25], [27] and [28]:

[γ̃(τ)]p := sup
ω∈Lp[t0,t0+τ ]

{∫ t0+τ
t0

‖y(t)‖pdt∫ t0+τ
t0

‖ω(t)‖pdt

}
, (26)

where ‖x(t0)‖ = 0, ‖ω[t0, t0 + τ ]‖p 6= 0, b = 0 and δ is fixed to be constant to generate an output y
and solution x of Σδ. The case p =∞ is similar.

Proposition 2
The function τ 7→ γ̃(τ) is monotonically nondecreasing.

Proof
Take τ > 0 and choose any τ ′ such that τ ′ > τ . According to (26), for the horizon [t0, t0 + τ ′] we
can write

[γ̃(τ ′)]p = sup
ω∈Lp[t0,t0+τ ′]


∫ t0+τ
t0

‖y(t)‖pdt+
∫ t0+τ ′
t0+τ

‖y(t)‖pdt∫ t0+τ
t0

‖ω(t)‖pdt+
∫ t0+τ ′
t0+τ

‖ω(t)‖pdt

 .

Now, choose ω ∈ Lp[t0, t0 + τ ′] such that ω(t) = 0 for t ∈ (t0 + τ, t0 + τ ′]. This yields

[γ̃(τ ′)]p = sup
ω∈Lp[t0,t0+τ ′]


∫ t0+τ
t0

‖y(t)‖pdt+
∫ t0+τ ′
t0+τ

‖y(t)‖pdt∫ t0+τ
t0

‖ω(t)‖pdt

 ≥
≥ sup
ω∈Lp[t0,t0+τ ]

{∫ t0+τ
t0

‖y(t)‖pdt∫ t0+τ
t0

‖ω(t)‖pdt

}
= [γ̃(τ)]p.

Taking the pth root of the above inequality shows the claim.

Since a standard (i.e., infinite horizon or classical) Lp-gain γ can be defined as

γ := sup
τ≥0

γ̃(τ), (27)

we conclude that γ̃(τ) ≤ γ for all τ ≥ 0. Lastly, notice that some systems are Lp-stable only over a
finite horizon.

¶This assignment requires the space of δ and ω̂p to match, i.e., P ⊆ Rnω .
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5.2. Proposed Approach

The approach proposed to provide a solution to Problem 1 is as follows. Suppose that tδi and tδi+1

are two consecutive switching instants of the switching signal t 7→ δ(t). Then, the switching signal
t 7→ δ(t) remains constant over [tδi , t

δ
i+1), i.e., δ(t) = r for all t ∈ [tδi , t

δ
i+1) for some r ∈ P . To

determine if a sample should be taken within (tδi , t
δ
i+1), i.e., to determine τi with τi ≤ tδi+1 − tδi ,

suppose that for each t ∈ [tδi , t
δ
i + τi), and for some p ∈ [1,∞], the solution t 7→ (x(t), e(t)) to (25)

resulting from an input t 7→ eω(t) satisfies

ė(t) � Are(t) + ỹr(t, x(t), eω(t)), (28)
‖ỹr[tδi , t]‖p ≤ Kr

n‖x(tδi )‖+ γrn‖(e, eω)[tδi , t]‖p, (29)

where Ar ∈ A+
ne with ‖Ar‖ <∞, ỹr : R×Rnx ×Rnω → Rne+ is continuous, and Kr

n and γrn are
positive constants. From (28), it follows that, for each t ∈ [tδi , t

δ
i + τi), we have

‖e[tδi , t]‖p ≤ K̃r
e (τi)‖e(tδi )‖+ γ̃re (τi)‖ỹr[tδi , t]‖p,

with τ 7→ K̃r
e (τ) and τ 7→ γ̃re (τ) given as

K̃r
e (τ) =

(
exp(‖Ar‖pτ)− 1

p‖Ar‖

) 1
p

, γ̃re (τ) =
exp(‖Ar‖τ)− 1

‖Ar‖
(30)

(see (20) and (21), respectively). Then, interpreting system (25) as the interconnection shown in
Figure 4 between the nominal system Σδn given by

x(t+) = x(t)
}

t ∈ T (31a)

ẋ = fδ(t, x, e, eω)
}

otherwise, (31b)

with input (e, eω) and output ỹr, and the error system Σδe given by

e(t+) = h(t)
}

t ∈ T (32a)

ė = gδ(t, x, e, eω)
}

otherwise, (32b)

with input ỹr and output e, and using a small gain argument, we propose to choose τ > 0 such that
γ̃re (τ) ≤ κ/γrn, where κ ∈ (0, 1). In this way, the small gain condition γrnγ̃re (τ) < 1 is satisfied and
a stabilizing sampling policy is given by τ r ∈ (0, τ r,∗], where‖

τ r,∗ =
1

‖Ar‖
ln

(
κ
‖Ar‖
γrn

+ 1

)
. (34)

This policy yields the closed-loop system (25) Lp-stable over a horizon τ when, over this horizon,
the value of the switching signal is equal to r. We emphasize that the policy (34) is utilized in
all subsequent results. However, different settings (i.e., Cases 1, 2 and 3) lead to different stability
properties of closed-loop systems (refer to the following subsection).

‖Using the expression for γ̃re in (30), we obtain

exp(‖Ar‖τ)− 1

‖Ar‖
≤

κ

γrn
. (33)

Then, solving the above inequality for τ and taking the largest possible value, denoted τr,∗, yields

τr,∗ =
1

‖Ar‖
ln

(
κ
‖Ar‖
γrn

+ 1

)
.
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Figure 4. Interconnection of the nominal hybrid system Σδn and the output error hybrid system Σδe.

5.3. Design of Input-Output Triggering

In this section, we provide a solution to Problem 1 by designing intersampling intervals using input-
output information. The following assumption is imposed in the results to follow.

Assumption 2
For each r ∈ P , there exists a function ỹr such that the following hold:

(i) There exists Ar such that

gr(t, x, e, eω) � Are+ ỹr(t, x, eω) ∀(t, x, e, eω) ∈ [t0,∞)×Rnx ×Rne ×Rnω .

Furthermore, there exists η such that supr∈P ‖Ar‖ ≤ η.
(ii) The system Σrn is Lp-stable from (eω, e) to ỹr with a constant Kr

n and gain γrn. Furthermore,
there exist constants Kn and γn such that supr∈P K

r
n ≤ Kn and supr∈P γ

r
n ≤ γn.

(iii) The state x of Σrn is Lp to Lp detectable from (ỹ, eω, e) with a constant Kr
d and gain γrd .

Furthermore, there exist constants K and γ such that supr∈P K
r
d ≤ K and supr∈P γ

r
d ≤ γ.

5.3.1. Cases 1 and 2: In each of these cases, û and ŷ are transmitted without distortions (and
without transmission delays). Then, the plant and the controller receive precise values of u and y
at transmission instants; namely, hy and hu in (10) are equal to zero. Therefore, the error state e is
reset to zero at every sampling event, in which case, the hybrid system (25) becomes

x(t+) = x(t)

e(t+) = 0

}
t ∈ T (35a)

ẋ = fδ(t, x, e, eω)

ė = gδ(t, x, e, eω)

}
otherwise . (35b)

In particular, for Case 1, the signal eω is also reset to zero at transmission instants, and since ωp is
constant between two consecutive transmission instants, we have that eω ≡ 0 if ω̂p(0) = ωp(0). The
following Lp-stability properties from eω to (x, e) are guaranteed by the proposed policies.

Theorem 3
Given p ∈ [1,∞], suppose that Assumption 2 holds. Let the sampling instants in T be given by
(34), computed for given values of r, that are constant on each intersampling interval, and define
the switching signal δ : [t0,∞)→ P with T δ ⊂ T . Suppose there exists K such that, for the given
switching signal δ, for each (x(t0), e(t0), t0) and each t 7→ eω(t), each solution to (35) is such that
its x component satisfies ∑

tδi∈T δ0

‖x(tδ+i )‖ ≤ K‖x(t0)‖. (36)

Then, there exists τ∗min > 0 such that τ r,∗ ≥ τ∗min for all r ∈ P and, for each (x0, t0), each solution
to (35) satisfies

‖(x, e)[t0, t]‖p ≤ KK̂‖(x, e)(t0)‖+ γ̂‖eω[t0, t]‖p, ∀t ≥ t0, (37)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
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14 D. TOLIĆ, R. G. SANFELICE AND R. FIERRO

for the switching signal δ. (Constants K̂ and γ̂ are defined in Appendix 7.4.)

Remark 2
Property (37) corresponds to Lp stability from eω to (x, e). The existence of τ∗min follows from the
upper bound on ‖Ar‖ and on γrn in items (ii) and (iii) of Assumption 2, respectively. From (34) we
obtain

τ r,∗ =
1

‖Ar‖
ln

(
κ
‖Ar‖
γrn

+ 1

)
≥ 1

η
ln

(
κ
η

γn
+ 1

)
> 0.

Note that since, without loss of generality, there exists γn > 0 such that infr∈P γ
r
n ≥ γn, then we

have that τ r,∗ is upper bounded by τ∗max = lim‖Ar‖↘0
1
‖Ar‖ ln

(
κ‖A

r‖
γn

+ 1
)

= κ
γn

.

Remark 3
For Case 1, inequality (37) becomes ‖(x, e)[t0, t]‖p ≤ KK̂‖(x, e)(t0)‖. In addition, notice
that ‖(x, e)(t+i )‖ ≤ ‖(x, e)(ti)‖, ti ∈ T . Consequently, one can infer stability, asymptotic and
exponential stability after imposing additional structure on fδ(t, x, e, eω) and gδ(t, x, e, eω) in (35)
(refer to [8, 9, Section II], [29] and [30]).

Remark 4
Let us consider the case where u or y (or both) is the output of a state observer. In other words, the
plant or controller (or both) is fed with an estimate provided by an observer. Consequently, in (35a)
we have e(t+) = h(t) for all t ∈ T , where h(t) is the observer error. For p ∈ [1,∞), if the observer
error satisfies the condition that there exists Kh ≥ 0 such that

∑
tδi∈T δ0

‖h(tδi )‖ ≤ K‖e(t0)‖ (e.g.,
exponentially converging observers), then Theorem 3 holds with

‖(x, e)[t0, t]‖p ≤ K1K̂‖(x, e)(t0)‖+ γ̂‖eω[ti, t]‖p, ∀t ≥ t0,

where K1 =
√
nx + ne max

{
K,Kh

}
. For p =∞, the observer error has to be bounded, i.e., there

exists Kh ≥ 0 such that ‖h(t)‖ ≤ Kh‖e(t0)‖ for every t ≥ t0, in order for Theorem 3 to hold.

5.3.2. Case 3: This is the most general case, for which (25) is rewritten as

x(t+) = x(t)

e(t+) = h(t)

}
t ∈ T (38a)

ẋ = fδ(t, x, e, eω)

ė = gδ(t, x, e, eω)

}
otherwise (38b)

where t 7→ h(t) models measurement noise, quantization error, and related perturbations. For this
system, we have the following result.

Theorem 4
Given p ∈ [1,∞], suppose that Assumption 2 holds and that there exists Kh ≥ 0 such that ‖h(t)‖ ≤
Kh for all t ≥ t0. Let the sampling instants in T be given by (34), computed for given values of
r that, at least, are constant on each interval and define the switching signal δ : [t0,∞)→ P with
T δ ⊂ T . Suppose there existsK such that, for the given switching signal δ, for each (x(t0), e(t0), t0)
and each t 7→ eω(t), each solution to (38) is such that its x component satisfies (36). Then, there
exists τ∗min > 0 such that τ r,∗ ≥ τ∗min for all r ∈ P and, for each (x(t0), e(t0), t0), each solution to
(38) satisfies

‖(x, e)[t0, t]‖p ≤ KK̂‖(x, e)(t0)‖+ γ̂‖eω[t0, t]‖p + ‖b̂[t0, t]‖, ∀t ≥ t0 (39)

for the switching signal δ. (Expressions for K̂, γ̂ and b̂(t) are provided in Appendix 7.4.)

Property (39) corresponds to Lp stability from eω to (x, e) with bias b̂(t) ≡ b̂ ≥ 0. See
Appendix 7.4 for a proof.
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Remark 5
Noisy measurements can be a consequence of quantization errors. According to [31],
interconnections of systems with linear Lp-gains prone to quantization errors do not yield closed-
loop systems with linear Lp-gains. Hence, Lp-stability with bias in Theorem 4 cannot be relaxed
without contradicting the points in [31].

Remark 6
Let us consider the case of lossy communication channels. If there is an upper bound on the
maximum number of successive dropouts, say ND ∈ N, simply use τ r,∗/ND as intertransmission
intervals in order for Theorem 4 to hold.

Remark 7
In order to account for possible delays introduced by the communication networks in Figure 2,
one can use scattering transformation for the small gain theorem [32]. Provided that Σδn and Σδe
are input-feedforward output-feedback passive systems satisfying certain conic relations, the work
in [32] makes stability properties of (25) independent of constant time delays and Theorem 4 is
applicable again. In light of [11] and [12], these constant time delays are allowed to be larger than
the intersampling intervals τ r,∗’s.

5.4. Implementation of Input-Output Triggering

Note that condition (28) is only needed over a horizon [tδi , t
δ
i + τi), where τi is yet to be determined.

Asking for this condition to hold for every (x, eω) would be too restrictive or lead to conservative
sampling times. Since x(tδi ) and e(tδi ) are known after every sampling event, then, for the current
constant value of t 7→ δ(t) and the input t 7→ eω(t) over [tδi , t

δ
i + τi), the required property is

guaranteed when
gδ(t, x, e, eω) � Aδe+ ỹδ(t, x, eω(t))

holds for each

t ∈ [tδi , t
δ
i + τi], (x, e) ∈ Si := Reachtδi ,t−tδi ((x(tδi ), e(t

δ
i ))),

where Reachtδi ,t−tδi ((x(tδi ), e(t
δ
i ))) is the reachable set of

ẋ = fδ(t, x, e, eω), ė = gδ(t, x, e, eω) (40)

from (x(tδi ), e(t
δ
i )) at tδi after t− tδi units of time, namely

Reacht,τ (z0) = {z(t′) : z is a solution to (40) from z0 at t, t′ ∈ [t, t+ τ ]}.

Then, exploiting the reachability ideas outlined above, the following algorithm can be used at
each time instant ti, i = 0, 1, 2, . . .:

Step 1. – Obtain measurements ŷ(ti) and ω̂p(ti).
Step 2. – Extract state estimate x̂(ti) from the measurements.
Step 3. – Update the control law (6) with ŷ(ti) and, if (36) is not compromised, with ω̂p(ti).
Step 4. – Actuate the plant with û(ti).
Step 5. – Estimate Si from (5)-(6) using reachability analysis.
Step 6. – Compute (34) and pick τi.

With the objective of obtaining values of γ̃e(τ) in (21) as small as possible, we propose to
minimize ‖A‖. This leads to less conservative τi’s in a solution to Problem 1. Following the
statement of Theorem 2, we consider the following optimization problem: given r ∈ P , t, τ > 0,
and eω : [t, t+ τ ]→ Rnω ,

minimize ‖A‖ (41a)

subject to: A ∈ A+
ne (41b)

gr(t, x, e, eω) � Aē+ ỹr(t, x, eω) (41c)

for all t ∈ [t, t+ τ ], (x, e) ∈ S := Reacht,τ ((x(t), e(t))).
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Proposition 3
The optimization problem (41) is convex.

Proof
It is well known that ‖A‖ is a convex function of A (see [33], Chapter 3). Now, let us prove that
constraints (41b) and (41c) yield a convex set. First, a convex combination of two matrices in A+

ne
is again in A+

ne . This is due to the fact that symmetric matrices with nonnegative elements remain
symmetric with nonnegative elements when multiplied with nonnegative scalars and when added
together. Let us now show that inequality (41c) yields a convex set in A. For any t′ ∈ [t, t+ τ ],
pick any (x′, e′) ∈ S and e′ω ∈ Rnω . Now, let us introduce substitutions E(ē) = gr(t′, x′, e′, e′ω) and
F = ỹr(t′, x′, e′ω). Our goal is to show that if

E(ē′) � A1ē′ + F, (42)
E(ē′) � A2ē′ + F, (43)

then

E(ē′) � [(1− α)A1 + αA2]ē′ + F (44)

where α ∈ [0, 1]. Using (42) and (43), we obtain

(1− α)A1ē′ + αA2ē′ � (1− α)(E(ē′)− F ) + α(E(ē′)− F ) = E(ē′)− F

which is equivalent to (44). Since t′, (x′, e′) and e′ω were picked arbitrarily from [t, t+ τ ], S and
Rnω , respectively, therefore (44) holds for all t ∈ [t, t+ τ ] and all (x, e) ∈ S. The fact that the
intersection of a family of convex sets is a convex set concludes the proof.

6. CASE STUDY - TRAJECTORY TRACKING

In the first part of this section, we apply the input-output triggered update policy (34) to the
trajectory tracking controller presented in Section 2 and exploit the ideas from Section 5.4.
Subsection 6.1 is reserved for a comparison with a related work.

Since the controller (4) is not a dynamic controller, we have fc ≡ 0. Next, we take xc =
(vR1, ωR1) and

u = gc(t, xc) = xc. (45)

Recall that the states of the plant (3) are measured directly, i.e.,

y = gp(t, xp) = xp, (46)

and assume that the communication network for transmitting the control input (vR1, ωR1) to the
actuators of R1 can be neglected due to on-board controllers. Because of the absence of the
communication network for transmitting u and fc ≡ 0, we have that eu ≡ 0. Consequently, we can
exclude xc from x and take x = xp. Notice that fp is given by (3). Recall that the external input is
ωp = (vR2, ωR2). Now we have

e = x̂− x = [e1 e2 e3]>, (47)

and

eω = ω̂p − ωp = [eω,1 eω,2]>. (48)

After substituting (3), (4), (45), (46), (47) and (48) into (23) and (24), we obtain (compare with
expression (25))

ė = −ẋ =

−Q− P (x2 + e2)x2 − k3(x3 + e3)x2 +R+ k1(x1 + e1)− S
ω̂R2x1 + P (x2 + e2)x1 + k3(x3 + e3)x1 − T

eω,2 + P (x2 + e2) + k3(x3 + e3)


︸ ︷︷ ︸

= gδ(t, x, e, eω) = −fδ(t, x, e, eω)

(49)
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and (compare with expression (18))

¯̇e �

 k1 k2|v̂R2|M2 max{|v̂R2|, k3M2}
k2|v̂R2|M2 k2|v̂R2|M1 max{k2|v̂R2|, k3M1}

max{|v̂R2|, k3M2} max{k2|v̂R2|, k3M1} k3


︸ ︷︷ ︸

A = initial point for the convex program (41)

ē+

+

k2|v̂R2|x22 + |k1x1 + eω,1 cosx3 − ω̂R2x2 − k3x2x3|
k2|v̂R2x1x2|+ |ω̂R2x1 + k3x1x3 − T |

k2|v̂R2x2|+ |eω,2 + k3x3|


︸ ︷︷ ︸

ỹ(t, x, ω̂p, eω)

(50)

where

P = k2v̂R2
sin(x3 + e3)

x3 + e3
,

Q = ω̂R2x2,

R = v̂R2 cos(x3 + e3),

S = (v̂R2 − eω,1) cosx3,

T = (v̂R2 − eω,1) sinx3,

and |x1| ≤M1, |x2| ≤M2. Constants M1 and M2 are obtained from the sets Si’s (see the next
paragraph for more details about computing Si’s). We choose k1 = 1.5, k2 = 1.2 and k3 = 1.1.
In addition, in order to make this example more realistic, ωp takes values in [−3, 3]× [−3, 3].
Consequently, reachability sets Si are compact which, in turn, implies finite M1 and M2. Since
scenarios including Case 3 are more realistic, this section includes numerical results for such a
scenario. When emulating noisy environments, we use eω ∈ U([−0.3, 0.3]× [−0.3, 0.3]) and h(t) ∈
U([−0.15, 0.15]× [−0.15, 0.15]× [−0.15, 0.15]) where U(B) denotes the uniform distribution over
a set B.

Before verifying that the hypotheses of Theorem 4 hold and presenting numerical results, let us
provide details behind Steps 1-6. Since the bounds on ωp are known, we confine measurements ω̂p
to the same set, i.e., r ∈ P = [−3, 3]× [−3, 3]. In other words, if we obtain ω̂p(ti) 6∈ P (for instance,
because of measurement noise), we use the closest value in P (with respect to the Euclidean
distance) for ω̂p(ti). Now, after receiving ω̂p(ti) and ŷ(ti), we update control signal u(ti). Next, we
need to determine when to sample again. Utilizing ŷ(ti), we obtain x̂(ti) ∈ ŷ(ti)± [−0.15, 0.15]×
[−0.15, 0.15]× [−0.15, 0.15]. Starting from these x̂(ti), and due to the fact that u(ti) is the linear
and angular velocity of R1 and remains constant until ti+1, we readily compute reachable states
x̂(ti + τi) for any τi ≥ 0 using u(ti) and the bounds on ωp. Because of (47), reachable output errors
e(ti + τi) are immediately computed and sets Si are obtained. Inspecting the form of A in (50),
we infer that the first two components of x are important for (50) to hold on some Si. Due to
the properties of �, we choose the maximum values of |x1| and |x2| in Si denoted M1 and M2,
respectively.

Let us verify that the hypotheses of Theorem 4 hold. Due to (50), we infer that item (i) of
Assumption 2 is fulfilled provided thatM1 andM2 are finite. For this reason, we restrict the analysis
to a set for the state x given by bounded |x1| and |x2|. Next, combining the approach of [25] and
the power iterations method [34], we estimate L2-gains Σδn over P and obtain γn = 96. The upper
bound Kn is obtained similarly. Hence, item (ii) of Assumption 2 holds. Item (iii) of Assumption 2
is inferred from (49) and (50) as follows. It can be shown that

‖x‖2 ≤ k
(
‖ỹ‖2 + ‖(e, eω)‖2

)
for any k ≥ 2. Integrating both sides of the last inequality over [t0, t] for any t ≥ t0 and taking the
square root, yields

‖x[t0, t]‖2 ≤
√
k‖ỹ[t0, t]‖2 +

√
k‖(e, eω)[t0, t]‖2.
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In other words, the state x of the system Σrn is L2 to L2 detectable from (e, eω, ỹ) with the upper
bounds K = 0 and γ =

√
k. Finally, the condition (36) of Theorem 4 is easily verified for an

arbitrary user-selected K ≥ 0, where K captures the desired impact of the initial conditions on the
tracking performance according to (39), as the simulation progresses for a given δ : [t0,∞)→ P .
Recall that the switching signal δ is in fact ω̂p. Accordingly, only after the control law (4) is updated
with the most recent information about ωp, i.e., with ω̂p (and provided that this value is different
from the current value of ω̂p), that time instant becomes a switching instant and the corresponding
x(tδ+i ) contributes to the left hand side of (36). In case (36) might get violated, simply decrease τi’s
in Step 6 or cease switching according to Step 3 (i.e., the left hand side of (36) remains unaltered)
by using the current ω̂p until (36) is no longer compromised (if ever). Furthermore, even from the
viewpoint that ω̂p is a noisy version of ωp, it might not be advantageous (in terms of decreasing the
tracking error) to always update the control law (4) with the incoming information about ωp, i.e.,
with ω̂p. This observation is found in the following paragraph as well.

In the simulations, we choose ωp(t) = (1, 1)t[0,2.26) + (0.6, 0.15)t[2.26,9.25) + (2, 2)t[9.25,12],
where tI is the indicator function on an interval I, i.e., tI = t when t ∈ I and zero otherwise.
The corresponding L2-gains Σδn are as follows: γ(0.6,0.15)n = 22, γ(1,1)n = 53 and γ

(2,2)
n = 56. In

order to illustrate Theorem 4 and the mechanism behind (34), we superpose a continuous signal
eω(t) ∈ [−0.3, 0.3]× [−0.3, 0.3], where t ∈ [0, 12], onto the above ωp(t), and update the control
law with ω̂p being (0.6, 0.15), (1, 1) or (2, 2). This way, we are able to use a fixed γδn between
two switches so that the left hand side of (36) does not increase unnecessarily (and because the
received values are corrupted by noise anyway). In addition, the impact of changes in ŷ on τi’s is
easier to observe. The obtained numerical results are provided in Figure 5. As can be seen from
Figure 5, intersampling intervals τi’s tend to increase as ‖x‖ approaches the origin because M1 and
M2 decrease. In addition, the abrupt changes of τi at 2.26 s and 9.25 s, visible in Figure 5(c), are
the consequence of the abrupt changes in ω̂p. In other words, τi’s adapt to the changes in ω̂p. This
adaptation of τi’s follows from (34) where individual gains are considered instead of the unified gain
[23]. The simulation results obtained using the unified gain supr∈P γ

r
n = γn = 96, achieved when

r = (3, 3), and corresponding A in (34) are shown in Figure 6. Apparently, the use of the unified
gains decreases τi’s, does not allow for adaptation of τi, and yet does not necessarily yield stability
of the closed-loop system since (36) does not have to hold (a similar observation is found in [23]).
Consequently, the number of transmissions in the scenario depicted in Figure 5 is 580, while in the
scenario depicted in Figure 6 is 1377 (refer to Figure 3 as well). Finally, it should be mentioned that
the oscillations of x in Figures 5(a) and 6(a) are an inherited property of the controller, and not a
consequence of intermittent feedback.

6.1. Comparison with Related Work

In this subsection, we compare our methodology and the methodology presented in [18] and [19]
in more detail. This work by Wang and Lemmon appears to be the most similar to our work.
Nevertheless, [18] and [19] aim at a different goal under different assumptions than the work found
herein. The design objective of state-triggering from [18] and [19] is to maintain the L2-gain from
disturbance ωp to xp below a desired threshold. In addition, the approach from [18] and [19] is
developed for linear time-invariant plants driven by full-informationH∞ controllers. In other words,
the approach from [18] and [19] is not applicable to general nonlinear controllers and plants (5)-(6).
In addition, we consider output feedback, while [18] and [19] do not. On the one hand, we take
into account measurement noise, and on the other hand [18] and [19] take into consideration delays
due to nontrivial executions times of control laws. Furthermore, we investigate Lp-stability, where
p ∈ [1,∞], while the related papers investigate L2-stability. The use of the L∞ vector space allows
us to apply our results to stable closed-loop systems in the presence of continuous feedback and
zero disturbance (refer to [29, 35] and Theorem 3), while [18] and [19] require asymptotic stability
when feedback is continuous and disturbance is zero.
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Figure 5. A realistic scenario illustrating input-output triggering: (a) States x of the tracking system; (b)
Norm of (x, e); (c) Values of intersampling intervals τi’s between two consecutive transmissions. Red stems

indicate time instants when changes in δ happen; and, (d) A detail from Figure 5(c).

We now apply our framework to the numerical example from [19]. Let us consider a linearized
inverted pendulum problem given by

ẋp =


0 1 0 0
0 0 −m1g

m2
0

0 0 0 1
0 0 g

l 0


︸ ︷︷ ︸

Â

xp +


0
1
m2

0
−1
m2


︸ ︷︷ ︸
B̂

u+

1
1
1
1


︸︷︷︸
B̂d

ωp,

where m1 is the mass of the pendulum bob, m2 is the cart mass, l is the length of the pendulum
arm, and g is gravitational acceleration. According to [19], we choose m1 = 1, m2 = 10, l = 3, and
g = 10. The full-information H∞ control law is given by u = K̂xp, where K̂ = [2 12 378 210].
The desired threshold on the L2-gain of the closed-loop system is chosen to be γB = 4× 104. The
system state is a four dimensional vector consisting of the cart’s position, the corresponding velocity,
the pendulum bob’s angle with respect to the vertical, and the corresponding velocity.

Next, let us consider the case without delays summarized in [19, Figure 1 & 2]. Since ωp is not
measured and the measurements are not sent to the controller, there is no switching. Hence, ω̂p ≡ 0
is irrelevant and eω = −ωp in this example. From the setting in [19], we infer that eu ≡ 0 and
x = xp. In addition, y = xp due to state feedback. Next, we introduce e = x̂− x = [e1 e2 e3 e4]>.
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Figure 6. A realistic scenario illustrating input-output triggering using the unified gains: (a) States x of the
tracking system; (b) Norm of (x, e); and (c) Values of intersampling intervals τi’s between two consecutive

transmissions. Red stems indicate time instants when changes in δ happen.

Following the exposition at the beginning of Section 5, one obtains:

ẋ = (Â+ B̂K̂)x+ [B̂K̂ − B̂d](e, eω),

ė = −B̂K̂e− (Â+ B̂K̂)x+ B̂deω.

Now, we define ỹ = −(Â+ B̂K̂)x+ B̂deω. One way to proceed further is to find L2-gains from
(eω, e) to ỹ and from (eω, e) to x utilizing [36, Theorem 5.4]. These gains are denoted γ and γd,
respectively. It can be shown that the L2-gain from eω to (x, e), denoted γω, equals

γω =
γd + κ

1− κ
.

Notice that γω is also an upper bound (although quite conservative) for the L2-gain from ωp to state
x. Hence, by choosing τi’s such that γω ≤ γB , the goal of [19] is achieved. Because the problem
of interest is linear and time-invariant, the upper bound (18) holds for all (t, x(t), ω̂p, eω(t)) ∈
R×Rnx ×Rnω ×Rnω with the sameA. Consequently, there is no need for the reachability analysis
(which significantly simplifies the application of our methodology). Both the absence of switching
and the fact that S = R×Rnx ×Rnω ×Rnω produce constant τi’s. However, some other method
for computation of Lp-gains over a finite horizon (other than Theorem 2) may yield variable τi’s for
this example.

Using the MATLAB function norm(·,inf), we obtain γ = 77 and γd = 287. The value κ = 0.9928
corresponds to γω = γB = 4× 104 and τi = 10 ms, i ∈ N0. This intersampling interval equals the
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minimal intersampling interval obtained in [19, Figure 1]. In addition, our intersampling interval is
about an order of magnitude smaller than the maximal intersampling interval obtained in [19, Figure
1]. This slight conservativeness of our intersampling interval is due to Theorem 2 and the fact that
γω is an L2-gain from eω to (x, e) and not from eω to x as in [19]. This suggests a possible avenue
for our future research.

7. CONCLUSION AND FUTURE WORK

In this paper we present a methodology for input-output triggered control of nonlinear systems.
Based on the currently available measurements of the output and external input of the plant,
a sampling policy yielding the closed-loop system stable in some sense is devised. Using the
formalism of Lp-gains and Lp-gains over a finite horizon, the small gain theorem is employed to
prove stability, asymptotic, and Lp-stability (with bias) of the closed-loop system. Different types of
stability are a consequence of different assumptions on the noise environment causing the mismatch
between the actual external input and output of the plant, and the measurements available to the
controller via feedback. The closed-loop systems are modeled as hybrid systems, and a novel result
regarding Lp-stability of such systems is presented. Finally, our input-output triggered sampling
policy is exemplified on a trajectory tracking controller for velocity-controlled unicycles.

The future work is dedicated to applying scattering transformation between the controller and
plant in order to eliminate detrimental effects of delays. Furthermore, actuators with saturation
will be analyzed. In order to obtain larger intertransmission intervals, zero-order hold estimation
strategies will be replaced with model-based estimation of control signals and plant outputs. Finally,
we expect our results (with slight modifications) to hold for input-to-state stability of hybrid systems.

APPENDIX

7.1. Properties of Matrix Functions

Let f : R→ R be a continuous function. The work in [9] constructs a matrix A such that ‖f(A)‖ =
f(‖A‖) for any f by requiring that matrix A is symmetric, with nonnegative entries and positive
semidefinite. While symmetry of the matrix and nonnegative entries are required throughout [9],
positive semidefiniteness is required only in [9, Lemma 7.1]. Exploiting the fact that f in [9, Lemma
7.1] (i.e., in Theorem 2 herein) is the exponential function f(·) = exp(·) and A is a real symmetric
matrix with nonnegative entries, the following lemmas show that the positive semidefiniteness
requirement of [9, Theorem 5.1] can be relaxed.

Lemma 1
Suppose that f(·) = exp(·) and A is a real n× n symmetric matrix. The eigenvalue of A with the
largest absolute value is real and nonnegative if and only if ‖f(A)‖ = f(‖A‖).

Proof
It is well known that real symmetric matrices can be diagonalized, i.e., A = UDUT where D is a
diagonal matrix and U is an orthogonal matrix. Since the spectral norm is unitarily invariant [37], it
is straightforward to show that the following equalities hold:

‖f(A)‖ = ‖UDUT ‖ = ‖D‖ = ‖diag(f(λ1(A)), f(λ2(A)), . . . , f(λn(A))‖ = max
k
|f(λk(A))|.

(51)

On the other hand, using the definition of the induced matrix 2-norm ‖ · ‖, we have

f(‖A‖) = f(max
k
|σk(A)|). (52)

In addition, real symmetric matrices have the following property

σk(A) = |λk(A)|. (53)
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Using (53), and monotonicity and positivity of the exponential function, we conclude that
expressions (51) and (52) are equal if and only if the eigenvalue of A with the largest absolute
value is real and nonnegative.

For completeness, we now write the following well-known result for symmetric matrices (see, e.g.,
[38, Chapter 8]).

Lemma 2
If A is a symmetric matrix with nonnegative entries, then the eigenvalue of A with the largest
absolute value is real and nonnegative.

7.2. Proof of Theorem 1

We prove this theorem for the case p ∈ [1,∞). The proof for the case p =∞ is similar.
Let us start from some initial condition χ(t0) and apply input ω to a hybrid system Σδ given by

(12) to obtain the state trajectory t 7→ χ(t) and associated output t 7→ y(t). Now, we can write for
every t ≥ t0

‖y[t0, t]‖pp =

∫ t

t0

‖y(s)‖pds =

J−1∑
i=0

∫ tδi+1

tδi

‖y(s)‖pds+

∫ t

tδJ

‖y(s)‖pds

=

J−1∑
i=0

‖y[tδi , t
δ
i+1]‖pp + ‖y[tδJ , t]‖pp, (54)

where J = arg max{j : tδj ≤ t}. From (14) we obtain

‖y[t0, t]‖pp ≤
J−1∑
i=0

(
K̃(τ δi ))‖χ(tδ+i )‖+ γ̃(τ δi )‖ω[tδi , t

δ
i+1]‖p

)p
+

+
(
K̃(τ δJ))‖χ(tδ+J )‖+ γ̃(τ δJ)‖ω[tδJ , t]‖p

)p
. (55)

Using (15) and (16) yields

‖y[t0, t]‖pp ≤
J−1∑
i=0

(
KM‖χ(tδ+i )‖+ γM‖ω[tδi , t

δ
i+1]‖p

)p
+
(
KM‖χ(tδ+J )‖+ γM‖ω[tδJ , t]‖p

)p
.

(56)

In what follows we use the following version of the Minkowski inequality(
M∑
i=1

(ai + bi)
p

)1/p

≤

(
M∑
i=1

api

)1/p

+

(
M∑
i=1

bpi

)1/p

, (57)

where ai, bi ≥ 0 and M ∈ N ∪ {∞}. Taking the pth root of (56) yields

‖y[t0, t]‖p ≤

(
J−1∑
i=0

(
KM‖χ(tδ+i )‖+ γM‖ω[tδi , t

δ
i+1]‖p

)p
+
(
KM‖χ(tδ+J )‖+ γM‖ω[tδJ , t]‖p

)p) 1
p

.

(58)

Applying (57) to the right hand side of (58) with M = J , ai = KM‖χ(tδ+i )‖ and bi =
γM‖ω[tδi , t

δ
i+1]‖p for i ≤ J − 1, bJ = γM‖ω[tδJ , t]‖p, leads to

‖y[t0, t]‖p ≤ KM

(
J∑
i=0

‖χ(tδ+i )‖p
) 1

p

+ γM

(
J−1∑
i=0

‖ω[tδi , t
δ
i+1]‖pp + ‖ω[tδJ , t]‖pp

) 1
p

. (59)
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Applying the inequality (a+ b)1/p ≤ a1/p + b1/p, where a, b ≥ 0, to the first term in (59) multiple
times, and noting that, since tδ0 = t0,

J−1∑
i=0

‖ω[tδi , t
δ
i+1]‖pp + ‖ω[tδJ , t]‖pp = ‖ω[t0, t]‖pp

(as in (54)), we obtain

‖y[t0, t]‖p ≤ KM

( J∑
i=0

‖χ(tδ+i )‖
)

+ γM‖ω[t0, t]‖p. (60)

Applying (17) we obtain

‖y[t0, t]‖p ≤ KMK‖χ(t0)‖+ γM‖ω[t0, t]‖p (61)

for all t ≥ t0.

7.3. Proof of Theorem 2

Let Df(t) denote the left-handed derivative of f : R→ Rn, i.e., Df(t) = limh→0,h<0
f(t+h)−f(t)

h .
The following two lemmas and theorem are taken from [9] and slightly modified.

Lemma 3
Let I = [t0, t1], v ∈ Rn and consider Dv � Av + d(t), v(t0) = v0, ∀t ∈ I , where A ∈ A+

ne ,
‖A‖ <∞, and d(t) : I → Rn is continuous. Then, for all t ∈ I , v(t) is bounded by

v(t) � exp(A(t− t0))v0 +

∫ t

t0

exp(A(t− s))d(s)ds.

Lemma 4 (Young’s Inequality)
Let ∗ denote convolution over the interval I , f ∈ Lp[I] and f ∈ Lq[I]. The Young’s inequality is
‖f ∗ g‖r ≤ ‖f‖p‖g‖q for 1/r = 1/p+ 1/q − 1 where p, q, r > 0.

Theorem 5 (Riesz-Thorin Interpolation Theorem)
Let F : A+

n → A+
n be a linear operator and suppose that p0, p1, q0, q1 ∈ [1,∞] satisfy p0 < p1 and

q0 < q1. For any t ∈ [0, 1] define pt, qt by 1/pt = (1− t)/p0 + t/p1 and 1/qt = (1− t/q0) + t/q1.
Then, ‖F‖pt→qt ≤ ‖F‖1−tp0→q0‖F‖

t
p1→q1 . In particular, if ‖F‖p0→q0 ≤M0 and ‖F‖p1→q1 ≤M1,

then ‖F‖pt→qt ≤M1−t
0 M t

1.

Now we are ready to prove Theorem 2. By the hypotheses of the theorem, we have χ̇ =
g̃(t, χ, v) � Aχ+ ỹ(t, χ, v) for all t ∈ [t0, t0 + τ ], and the ith component of χ̇ is given by:∣∣ d

dtχi(t)
∣∣ =

∣∣limh→0,h<0
χi(t+h)−χi(t)

h

∣∣ ≥ lim
h→0,h<0

|χi(t+ h)| − |χi(t)|
h

= Dχi(t).

Therefore, Dχ � Aχ+ ỹ(t). Using Lemma 3, we can write

χ(t) � exp(A(t− t0))χ(t0) +

∫ t

t0

exp(A(t− s))ỹ(s)ds. (62)

Setting the input term ỹ ≡ 0, we obtain χ(t) � exp (A(t− t0))χ(t0). Taking the norm of both
sides of this inequality and using Lemmas 1 and 2 we obtain:

‖χ(t)‖ ≤ exp (‖A‖(t− t0))‖χ(t0)‖. (63)

Raising to the pth ∈ [1,∞) power and integrating over [t0, t] yields

‖χ[t0, t]‖pp ≤
exp(‖A‖p(t− t0))− 1

p‖A‖
‖χ(t0)‖p.
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Taking the pth root yields

‖χ[t0, t]‖p ≤

(
exp(‖A‖p(t− t0))− 1

p‖A‖

) 1
p

‖χ(t0)‖, p ∈ [1,∞). (64)

The L∞ bound is easily obtained by taking limp→∞ ‖χ[t0, t]‖p obtaining

‖χ[t0, t]‖∞ ≤ exp(‖A‖(t− t0))− 1)‖χ(t0)‖.

Let us now set χ(t0) = 0 and estimate the contribution from the input term. From (62) we have:
χ(t) �

∫ t
t0

exp(A(t− s))ỹ(s)ds. Using Lemmas 1 and 2 we obtain

‖χ(t)‖ ≤
∫ t

t0

exp(‖A‖(t− s))‖ỹ(s)‖ds. (65)

Let us denote φ(s) = exp(‖A‖s). Integrating the previous inequality and using Lemma 4 with
p = q = r = 1 yields the L1-norm estimate:

‖χ[t0, t]‖1 ≤ ‖φ[0, t− t0]‖1‖ỹ[t0, t]‖1. (66)

Taking the max over [t0, t] in (65) and using Lemma 4 with q = r =∞ and p = 1 yields the L∞-
norm estimate:

‖χ[t0, t]‖∞ ≤ ‖φ[0, t− t0]‖1‖ỹ[t0, t]‖∞. (67)

We can think of (62) as a linear operator G mapping ỹ to χ with bound for the norms ‖G‖1 ≤ ‖G‖∗1
and ‖G‖∞ ≤ ‖G‖∗∞ where ‖G‖∗1 and ‖G‖∗∞ are given by (66) and (67), respectively. Because
‖G‖∗1 = ‖G‖∗∞, Theorem 5 gives that ‖G‖p ≤ ‖G‖∗1 = ‖G‖∗∞ for all p ∈ [1,∞]. This yields

‖χ[t0, t]‖p ≤ ‖φ[0, t− t0]‖1‖ỹ[t0, t]‖p, p ∈ [1,∞].

Since ‖φ[0, t− t0]‖1 = exp(‖A‖(t−t0))−1
‖A‖ , we obtain

‖χ[t0, t]‖p ≤
exp(‖A‖(t− t0))− 1

‖A‖
‖ỹ[t0, t]‖p, p ∈ [1,∞]. (68)

After summing up the contributions of (64) and (68), the statement of the theorem follows.

7.4. Proof of Results in Section 5.3

The proofs of the results in Section 5.3 use the property over an arbitrary finite interval with constant
δ introduced in the next section. After that, this property is used sequentially, over a finite horizon
of arbitrary length, to obtain an Lp bound on (x, e).

7.4.1. Lp property over an arbitrary finite interval with constant δ: Consider the nontrivial interval
I := [t, t+ τ), t ≥ t0 on which t 7→ δ(t) is constant and with τ > 0 to be defined. Let r be such that
δ(t) = r for all t ∈ I . From item (ii) of Assumption 2, given initial condition x(t), we have, for all
t ∈ I ,

‖ỹr[t, t]‖p ≤ Kr
n‖x(t)‖+ γrn‖(e, eω)[t, t]‖p

≤ Kr
n‖x(t)‖+ γrn‖e[t, t]‖p + γrn‖eω[t, t]‖p. (69)

Item (i) of Assumption 2 allows us to invoke Theorem 2 for Σre on I . Then, we have, for all t ∈ I ,

‖e[t, t]‖p ≤ K̃r
e (τ)‖e(t)‖+ γ̃re (τ)‖ỹr[t, t]‖p (70)
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for any τ chosen as
τ ∈ (0, τ r,∗], (71)

where K̃r
e (τ), γ̃re (τ) are given as in (30) and τ r,∗ is given as in (34). Due to the construction of τ r,∗

and the choice of τ in (71), the open-loop gain of the interconnection (see Figure 4) from eω to e is
γrnγ̃

r
e (τ) is less than κ ∈ (0, 1). Then, combining (69) and (70), we have, for each t ∈ I ,

‖e[t, t]‖p ≤
K̃r
e (τ)

1− γrnγ̃re (τ)
‖e(t)‖+

γ̃re (τ)Kr
n

1− γrnγ̃re (τ)
‖x(t)‖+

γ̃re (τ)γrn
1− γrnγ̃re (τ)

‖eω[t, t]‖p (72)

Next, let us use τ∗max from Remark 2 instead of τ in order to obtain the following upper bound for
K̃r
e (τ) over (0, τ r,∗] and for any r ∈ P:

K̃r
e (τ) ≤ sup

r∈P

(
exp (‖Ar‖pτ∗max)− 1

p‖Ar‖

) 1
p

=: K̃e(τ).

This supremum exists due to Assumption 2. Likewise, γ̃re (τ) can be upper bounded by a constant
γ̃e(τ). Next, using the detectability property in item (iii) of x from (ỹr, eω, e) (with gains K and γ),
and combining (72) and (69), gives

‖(x, e)[t, t]‖p ≤ K̂‖(x(t), e(t))‖+ γ̂‖eω[t, t]‖p (73)

for all t ∈ I , where the constants K̂ and γ̂ are given by

K̂ =
√
nx + ne max

{
K +

γ̃e(τ)Kn + γKn + γγ̃e(τ)Kn

1− κ
,
K̃e(τ) + γγnK̃e(τ) + γK̃e(τ)

1− κ

}
,

γ̂ = γ +
γ̃e(τ)γn + γγn + γγ̃e(τ)γn

1− κ
,

where we have used the bounds on Kr
n and γrn given in item (ii) of Assumption 2. Notice that the

above expressions are independent of r ∈ P .

7.4.2. Extending bounds to (arbitrarily long) finite horizon: Given initial time t0 and initial
condition x0, we use analysis on an arbitrary interval in Section 7.4.1 to design the sampling
instants T to update (ŷ, û) and, in turn, define the instants in T δ at which the signal t 7→ δ(t) is
allowed to switch. In this way, using t = t0, x(t) = x0, e(t) = e0, pick τ0 to satisfy (71) to define
I0 := [t0, t0 + τ0), over which t 7→ δ(t) is constant, i.e., δ(t) = r0 for all t ∈ I0, for some r0 ∈ P .
Then, as previously explained, we obtain, for all t ∈ I0,

‖(x, e)[t0, t]‖p ≤ Kr0‖(x0, e0)‖+ γr0‖eω[t0, t]‖p. (74)

Now, at t = t0 + τ0 a sampling event occurs, which updates (x, e) according to (25a), and,
potentially, δ changes value. Then, using t = t1, x(t) = x(t+1 ), e(t) = limt↗t1 h(t) =: e(t1), pick
τ1 to satisfy (71) to define I1 := [t1, t1 + τ1), over which t 7→ δ(t) is constant, i.e., δ(t) = r1 for all
t ∈ I1, for some r1 ∈ P . Then, as before, we obtain, for all t ∈ I1,

‖(x, e)[t1, t]‖p ≤ Kr1‖(x(t1), e(t+1 ))‖+ γr1‖eω[t1, t]‖p. (75)

Proceeding in this way for subsequent sampling intervals, in particular, for the i-th sampling
time, we use t = ti, x(t) = x(ti), e(t) = limt↗ti h(t) =: e(t+i ), pick τi to satisfy (71) to define
Ii := [ti, t1 + τi), over which t 7→ δ(t) is constant, i.e., δ(t) = ri for all t ∈ Ii, for some ri ∈ P .
Now, we obtain, for all t ∈ Ii,

‖(x, e)[ti, t]‖p ≤ Kri‖(x(ti), e(t
+
i ))‖+ γri‖eω[ti, t]‖p. (76)

In fact, the above construction of ti’s can be performed for any t ≥ t0, combining (76) over each Ii
interval with i ∈ {0, 1, 2, . . . , N}, where N is such that [0, t] ⊂ ∪Ni=0Ii and [0, t] 6⊂ ∪N−1i=0 Ii.

Now we are ready to prove the results in Section 5.3.
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7.4.3. Proof of Theorem 3: Let us now apply Theorem 1 with (x, e) playing the role of y and eω
playing the role of ω. According to Theorem 1, we are interested only in instants ti ∈ T that are
followed by a change of the value of δ, i.e., in tδi ∈ T δ. Recall that, due to (73), we have KM ≤ K̂
and γM ≤ γ̂; hence, the suprema in (15) and (16) exist. Next, we need to verify that there exists
K1 ≥ 0 such that

∑
tδi∈T δ0

‖(x(tδi ), e(t
δ+
i ))‖ ≤ K1‖(x(t0), e(t0))‖. Due to the perfect resets of e at

tδi ∈ T δ, given by (35a), and hypothesis (36), we infer that K1 = K for Cases 1 and 2. In other
words, (37) holds for Cases 1 and 2.

The case for p =∞ follows similarly.

7.4.4. Proof of Theorem 4: Notice that h(t) in Theorem 4 is more general than h(t) in Remark 4.
Consequently, the condition (ii) of Theorem 1 is no longer satisfied. In order to take into account
the setting of Theorem 4, we rewrite (70) as follows

‖e[t0, t]‖p ≤ K̃r
e (τ r0,∗)‖e(t0)‖+ γ̃re (τ r0,∗)‖ỹr[t0, t]‖p,

for all t ∈ I0 = [t0, t0 + τ r0,∗), and

‖e[ti, t]‖p ≤ K̃r
e (τ ri,∗)‖h(ti)‖+ γ̃re (τ ri,∗)‖ỹr[ti, t]‖p ≤ K̃r

e (τ ri,∗)Kh + γ̃re (τ ri,∗)‖ỹr[ti, t]‖p

=

(
exp(‖Ari‖pτ ri,∗)− 1

p‖Ari‖

) 1
p

Kh + γ̃re (τ ri,∗)‖ỹr[ti, t]‖p

=

[∫ ti+τ
ri,∗

ti

∥∥∥ exp
(
‖Ari‖(s− ti)

)
Kh

∥∥∥pds] 1
p

+ γ̃re (τ ri,∗)‖ỹr[ti, t]‖p

≤

[∫ ti+τ
ri,∗

ti

∥∥ exp
(
‖Ari‖τ ri,∗

)
Kh

∥∥∥pds] 1
p

+ γ̃re (τ ri,∗)‖ỹr[ti, t]‖p

= ‖bri [ti, ti + τ ri,∗]‖p + γ̃re (τ ri,∗)‖ỹr[ti, t]‖p,

for all t ∈ Ii = [ti, ti + τ ri,∗) with i ∈ {0, 1, 2, . . . , N}, where N is such that [0, t] ⊂
∪Ni=0Ii and [0, t] 6⊂ ∪N−1i=0 Ii, and bri(t) ≡ bri = exp

(
‖Ari‖τ ri,∗

)
Kh. Notice that supr∈P b

r ≤
Kh exp(ητ∗max) =: b ≡ b(t), where η is defined in (ii) of Assumption 2 and τ∗max in Remark 2, is
a suitable uniform choice over all Ii intervals. Next, let us use the following bounds over each
interval:

‖e[ti, t]‖p ≤ K̃r
e (τ ri,∗)‖e(ti)‖+ γ̃re (τ ri,∗)‖ỹr[ti, t]‖p + ‖b[ti, t]‖p,

for all t ∈ Ii = [ti, ti + τ ri,∗), where ‖e(ti)‖ = 0 for i ∈ {1, 2, ..., N}. Notice that the above systems
are Lp-stable with the same bias b(t) ≡ b over intervals Ii.

In the same manner as before, we now apply the small-gain theorem over each interval Ii and
utilize item (iii) of Assumption 2. Afterwards, we apply Theorem 1 to the resulting Lp-stable
systems with bias over each interval Ii. [Notice that Theorem 1 readily extends to Lp-stability
with bias. By adding ‖b[tδi , tδi+1]‖p and ‖b[tδJ , t]‖p to the respective terms on the right hand side
of (55) and following the remainder of the proof in Section 7.2, one arrives at ‖y[t0, t]‖p ≤
KMK‖χ(t0)‖+ γM‖ω[t0, t]‖p + ‖b[t0, t]‖p for all t ≥ t0.] In other words, following the exposition
below (70), one readily obtains:

‖(x, e)[t0, t]‖p ≤ KK̂‖(x, e)(t0)‖+ γ̂‖eω[t0, t]‖p + ‖b̂[t0, t]‖, ∀t ≥ t0,

where
b̂(t) ≡ b̂ =

γγn + γ

1− κ
Kh exp(ητ∗max).

The case of p =∞ is similar.
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