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Abstract— In this paper, we devise a controller that achieves
global uniform exponential stabilization of linear systems while
avoiding singular input constraints, that is, the proposed con-
troller never crosses a given input value g. We show that it
is possible to solve this problem using two linear controllers
and an appropriate switching logic, which leads to a hybrid
controller.

I. INTRODUCTION

The problem of stabilizing linear systems subject to input

constraints is very well documented in [12] and [5]. These

works discuss controller design strategies for linear plants

with magnitude constraints on the input and analyze their

stability properties. Due to the class of input constraints

considered in the aforementioned works, it is natural that

exponential stability is mostly a local result. In this paper, we

are interested in milder input constraints that allow for global

exponential stabilization. In particular, given g ∈ R
m\{0},

we address the problem of globally uniformly exponentially

stabilizing the origin of a linear system of the form

ẋ = Ax+Bu(x), (1)

subject to the constraint u(x(t)) 6= g for each solution x(t)
to (1) and for all t ≥ 0. Moreover, if the system has a single

input, then we are able to tackle the stronger constraint:

|u(x(t))| 6= g for each solution x(t) to (1) and for all t > 0.

It must be mentioned that if we were to consider global

asymptotic stability or semi-global exponential stability in-

stead of global exponential stability, then it would be possible

to avoid |u(x)| = g using continuous-time controllers, under

certain conditions. The works [15] and [11] highlight some

key obstructions to the global stabilization of linear systems

with saturating controllers. In [2], a saturated control law

that globally asymptotically stabilizes the double integrator

system is provided, but the resulting closed-loop system is
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not robust to arbitrarily small disturbances, as shown in [14].

If we were to consider semi-global exponential stability, then

we would have to restrict the set of initial conditions or

decrease the controller gains. In this situation, the presence of

disturbances could potentially compromise the assumptions

made during the controller design. In both cases, the lower

the value of g, the more limited the controller would be.

To avoid the limitations of continuous controllers men-

tioned above, we devise a hybrid controller for the global

uniform exponential stabilization of (1) while a given input

value g is avoided. Its usefulness is best seen in single input

systems, but it may also be applied to multi-input systems.

The hybrid controller that we propose consists of two linear

state-feedback controllers indexed by the switching variable

q, namely u(x, q) = Kqx, and an appropriate switching

logic which guarantees that: 1) global exponential stability is

not compromised due to switching, 2) the controller avoids

any given input value g ∈ R
m\{0}, and 3) the system is

robust to disturbances. Also, since we are considering hybrid

systems, we make use of the concept of global uniform

exponential stability which is provided in [10]. This concept

has been explored thoroughly on the description of solutions

to switched systems, namely to characterize the stability of

switched linear systems under arbitrary switching (see [8]).

More recently, the paper [16] has presented a different

concept of exponential stability for hybrid systems that is

not used in this paper.

The remainder of the paper is organized as follows. In

Section II, we introduce the notation that is used throughout

the paper. In Section III, we provide a formal definition of

the problem at hand. We present a particular construction

of a hybrid controller which solves the problem and in

Section V we show how the proposed controller can be used

for the global uniform exponential stabilization of the double

integrator system. Finally, some concluding remarks can be

found in Section VI.

II. PRELIMINARIES & NOTATION

A. Differentiable Functions, Euclidian Spaces & Linear

Maps

The symbol R denotes the set of real numbers and R≥0 :=
{t ∈ R : t ≥ 0}. Cn(M) denotes the set of functions

f : M → R that are continuously differentiable up to order n
and, more generally, Cn(M,N) denotes the set of functions

f : M → N that are continuously differentiable up to order

n. The symbols N and Z denote the set of natural numbers

and integers, respectively. Additionaly, we define the set

N0 := N ∪ {0}. The symbol Rn denotes the n-dimensional

Euclidean space with inner product 〈x, y〉 := x⊤y for each



x, y ∈ R
n. This inner product induces a norm on R

n, given

by |x| :=
√

〈x, x〉. ei ∈ R
n is a vector whose entries are all

zeros except for the i-th entry, which is 1. Given a closed

set A ⊂ R
n, we define the distance from a point x ∈ R

n to

A as follows: |x|A = inf
y∈A

|x− y|.

If a matrix P is positive definite (semidefinite) we use the

notation P ≻ 0 (P � 0). Similarly, if a matrix P is negative

definite (semidefinite) we use the notation P ≺ 0 (P � 0).

Given a matrix A ∈ R
n×m, we define

Im (A) := {y ∈ R
n : y = Ax for some x ∈ R

m}, (2a)

Ker (A) := {x ∈ R
m : Ax = 0}. (2b)

Two vectors v, w ∈ R
n are orthogonal if 〈v, w〉 = 0 and we

use the notation v⊥ w to represent this property. Similarly,

two sets X,Y ⊂ R
n are orthogonal if x⊥ y for each x ∈ X

and for each y ∈ Y . Given a set Z ⊂ R
n, its orthogonal

complement is the set Z⊥ := {x ∈ R
n : x⊥ z for each z ∈

Z}. Given a matrix A ∈ R
n×m with rank r, its singular

value decomposition is given by

A = U

[
B 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]

W⊤,

where U ∈ R
n×n and W ∈ R

m×m are orthogonal matrices,

B = diag(σ1(A), σ2(A), . . . , σr(A)), σi(A) denotes the i-
th singular value such that σj(A) ≥ σi(A) for each j, i ∈
{1, 2, . . . , r} satisfying j ≥ i. The generalized inverse of A
is given by

A− = W

[
B−1 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]

U⊤.

B. Set-Valued Maps

Set-valued maps are at the core of hybrid system models.

In this section we present the very important definition of

outer semicontinuity.

Definition 1 (Outer semicontinuity). A set-valued mapping

M : Rm ⇒ R
n is outer semicontinuous (osc) at x ∈ R

m

if for every sequence of points xi convergent to x and

any convergent sequence of points yi ∈ M(xi), one has

y ∈ M(x), where lim
i→∞

yi = y. The mapping M is outer

semicontinuous if it is outer semicontinuous at each x ∈ R
m.

Given a set S ⊂ R
m, M : Rm ⇒ R

n is outer semicontinuous

relative to S if the set-valued mapping from R
m to R

n

defined by M(x) for x ∈ S and ∅ for x 6∈ S is outer

semicontinuous at each x ∈ S. �

Definition 2 (Local Boundedness). A set-valued mapping

M : Rm ⇒ R
n is locally bounded at x ∈ R

m if there exists

a neighborhood Ux of x such that M(Ux) ⊂ R
n is bounded.

The mapping M is locally bounded if it is locally bounded

at each x ∈ R
m. Given a set S ⊂ R

m, the mapping M is

locally bounded relative to S if the set-valued mapping from

R
m to R

n defined by M(x) for x ∈ S and ∅ for x 6∈ S is

locally bounded at each x ∈ S. �

C. Hybrid Systems

A hybrid system H in R
n is defined as follows:

H :

{

ξ ∈ C ξ̇ ∈ F (ξ)

ξ ∈ D ξ+ ∈ G(ξ)
, (3)

where C ⊂ R
n is the flow set, F : Rn ⇒ R

n is the flow map,

D ⊂ R
n denotes the jump set and G : Rn ⇒ R

n denotes

the jump map. A solution x to H is parametrized by (t, j),
where t denotes ordinary time and j denotes the jump time,

and its domain dom x ⊂ R≥0 ×N is a hybrid time domain:

for each (T, J) ∈ dom x, dom x ∩ ([0, T ] × {0, 1, . . . J})
can be written in the form ∪J−1

j=0 ([tj , tj+1], j) for some finite

sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ , where

Ij := [tj , tj+1] and the tj’s define the jump times. A solution

ξ to a hybrid system, is said to be: maximal if it cannot be

extended by flowing nor jumping and complete if its domain

is unbounded.

If a hybrid system satisfies the so-called hybrid basic

conditions, then its set of solutions has good structural

properties, which, in particular, enabled the development

of a robust stability theory for hybrid systems [4]. These

conditions are as follows:

Definition 3. The hybrid basic conditions are:

(A1) C and D are closed subsets of Rn;

(A2) F : R
n ⇒ R

n is outer semicontinuous and locally

bounded relative to C, C ⊂ dom F , and F (x) is convex

for every x ∈ C;

(A3) G : R
n ⇒ R

n is outer semicontinuous and locally

bounded relative to D, and D ⊂ dom G.

The reader is referred to [4] for more details on hybrid

systems.

III. PROBLEM SETUP

A formal definition of the problem that we tackle in this

paper is given next.

Problem 1. Given A ∈ R
n×n, B ∈ R

n×m and g ∈ R
m\{0},

design a hybrid controller of the form

q̇ = 0
︸ ︷︷ ︸

(x,q)∈C

q+ ∈ GQ(x, q)
︸ ︷︷ ︸

(x,q)∈D

(4)

with controller state q ∈ R
r, for some r ∈ N, jump set

D ⊂ R
n × R

r, flow set C ⊂ R
n × R

r, jump map GQ :
R

n × R
r ⇒ R

r, and output w : Rn × R
r → R

m such that:

• the maximal solutions to the closed-loop hybrid system

resulting from the interconnection of (1) and (4), given

by

ẋ = Ax+Bw(x, q)
q̇ = 0

}

(x, q) ∈ C (5a)

x+ = x
q+ ∈ GQ(x, q)

}

(x, q) ∈ D (5b)

are complete and satisfy

|(x, q)(t, j)|A ≤ k exp(−γt)|(x, q)(0, 0)|A (6)



for each initial condition (x, q)(0, 0) and for some

k, γ > 0, with

A := {(x, q) ∈ R
n × R

r : x = 0, q ∈ Q}, (7)

for some closed set Q ⊂ R
r;

• (x,GQ(x, q)) ∩D = ∅ for each (x, q) ∈ D;

• the control law w satisfies w(x, q) 6= g for every

(x, q) ∈ C. �

Notice that the hybrid system (5) is, in particular, a

switched system and, in this case, we say that if the con-

dition (6) is satisfied then the set (7) is globally uniformly

exponentially stable for (5), in the sense that the norm of

the plant state has an exponential upper bound, uniformly

over any piecewise constant switching sequence (see [10,

Equation 5]).

In the sequel, we study the particular controller structure

for (5) defined by:

C := {(x, q) ∈ R
n ×Q : max

h∈Q
V (x, q) − V (x, h) ≤ δ},

(8a)

D := {(x, q) ∈ R
n ×Q : max

h∈Q
V (x, q) − V (x, h) ≥ δ},

(8b)

for some compact subset Q of Z and for some V ∈ C1(Rn×
Q), and

GQ(x, q) := argmax
h∈Q

V (x, q)− V (x, h), (9)

such that the closed-loop system is given by
(
ẋ
q̇

)

= F (x, q) :=

(
Ax+ Bw(x, q)

0

)

∀(x, q) ∈ C,

(
x+

q+

)

∈ G(x, q) :=

(
x

GQ(x, q)

)

∀(x, q) ∈ D.

(10)

With respect to the original linear system (1), the hybrid

system (10), has an additional controller state, in the form

of the logic variable q, which indexes a bank of continuous

state-feedback controllers w(x, q). This particular controller

structure requires a decrease of the function V during jumps

by, at least, an amount δ > 0.

Before proceeding into the controller design we assert

some important properties of the hybrid system (10) and

its solutions. Firstly, we show that the hybrid system (10)

satisfies the hybrid basic conditions given in Definition 3.

These conditions are of significant importance for hybrid

systems, because they ensure that the hybrid system is

nominally well-posed and, in particular, it is robust to small

measurement noise (see [4] for more details on the properties

of nominally well-posed hybrid systems).

Lemma 4. Given a compact set Q ⊂ Z, if w ∈ C0(Rn ×
Q,Rm) and V ∈ C1(Rn ×Q), then:

1) the map

µ(x, q) := max
h∈Q

V (x, q) − V (x, h)

is continuous;

2) the hybrid system (10) satisfies the hybrid basic condi-

tions (A1)–(A3).

Proof. Since w is continuous and dom F = R
n×Q, then F

is continuous and, consequently, it satisfies (A2). Since x+ =
x and q+ ∈ Q with Q compact, then G is locally bounded

relative to D and D ⊂ dom G. If µ is continuous then the

hybrid basic conditions are satisfied for (10), because, in that

case, G is outer semicontinuous and C, D are the pre-images

of closed sets under a continuous map, which are closed.

To show the continuity of µ(x, q) = V (x, q) −
minh∈Q V (x, h) it suffices to show the continuity of

minh∈Q V (x, h). Suppose that there exists a sequence

{xi}i∈N which converges to x ∈ R
n. Then, for each i ∈ N,

we define
hi ∈ argmin

h∈Q
V (xi, h). (11)

It follows from the compactness of Q that there exists

a convergent subsequence {hk(i)}i∈N of {hi}i∈N, which

converges to some h ∈ Q. From the continuity of V , it

follows that V (xk(i), hk(i)) converges to V (x, h). Suppose

that there exists h⋆ such that V (x, h⋆) < V (x, h), then,

by the continuity of V , for i large enough we should have

V (xi, h
⋆) < V (xi, hk(i)). However, this is a contradic-

tion since hk(i) ∈ argminh∈Q V (xi, h). It follows that

limi→∞ minh∈Q V (xi, h) = minh∈Q V (x, h), thus prov-

ing continuity. On the other hand, argminh∈Q V (x, h) is

outer semicontinuous because for every sequence {xi}i∈N

convergent to x ∈ R
n and for each subsequence hk(i) ∈

argminh∈Q V (xi, h) convergent to h ∈ Q, it follows that

h ∈ argminh∈Q V (x, h).

In the next lemma, we show that maximal solutions to (10)

are complete. 1

Lemma 5. Given a compact set Q ⊂ Z, if w ∈ C0(Rn ×
Q,Rm), then every maximal solution to the hybrid sys-

tem (10) is complete.

Proof. Since w is continuous, it follows from standard

existence of solutions (see e.g. [9, Theorem 3.1]) that the

viability condition (VC) in [4, Proposition 2.10] is satisfied

for every (x, q) ∈ C\D. Since G(D) ⊂ C then solutions

do not satisfy condition (c) in [4, Proposition 2.10]. Suppose

that dom (x, q) is bounded for each solution (x, q)(t, j) to

the hybrid system, then there exists J = supjdom (x, q) <
∞, where supj E = sup{j ∈ N0 : ∃ t ∈ R ≥
0 such that (t, j) ∈ E}, for a hybrid time domain E.

In particular, this implies that the solution is allowed to

flow for every t ≥ tJ . However, solutions to continuous-

time linear systems do not blow up in finite time, hence

t → ∞ which contradicts the assumption that dom (x, q)
is bounded. Therefore we conclude that condition (b) in [4,

Proposition 2.10] does not occur and, consequently, solutions

to (10) are complete.

The previous results establish important properties of the

hybrid system (10), but they do not provide much insight

on the design of V and w, other than that the former is

continuously differentiable and the latter is continuous.

1If solutions to (10) were not complete, then it would not be possible
to achieve global exponential stability of (7). At best, we would be able to
prove global pre-exponentially stability.We refer the reader to [4] for more
information on the concepts of pre-stability.



Theorem 6. Let Q denote a compact subset of Z such that

0 ∈ Q and consider the set

A := {(x, q) ∈ R
n ×Q : x = q = 0} (12)

If there exist α, α, γ > 0, V ∈ C1(Rn × Q) and w ∈
C0(Rn ×Q,Rm) such that

α|(x, q)|2A ≤ V (x, q) ≤ α|(x, q)|2A ∀(x, q) ∈ C ∪D,
(13a)

〈∇V (x, q), F (x, q)〉 ≤ −γV (x, q) ∀(x, q) ∈ C, (13b)

V (x′, q′) ≤ V (x, q) ∀(x, q) ∈ D, (x′, q′) ∈ G(x, q) (13c)

then the condition (6) holds for each solution (x, q)(t, j)
to (10).

Proof. It follows from (13b) and from the comparison

lemma [3, Lemma C.1] that for each solution (t, j) 7→
(x, q)(t, j) to (10)

V ((x, q)(t, j)) ≤ exp(−γt))V ((x, q)(0, 0)), (14)

for every (t, j) ∈ dom (x, q). From Lemma 4 and Lemma 5,

it follows that (10) satisfies the hybrid basic conditions and

each solution (x, q)(t, j) is complete and, from (14), it is

bounded. Since G(D)∩D = ∅, then [13, Lemma 2.7] implies

that the time between jumps is uniformly lower bounded.

Consequently, if for each solution (t, j) 7→ (x, q)(t, j) we

have that t+ j → ∞, then t → ∞.

From (13a), it follows that for each (t, j) ∈ dom (x, q)

|(x, q)(t, j)|A ≤

√
α

α
exp

(

−
γt

2

)

|(x, q)(0, 0)|A. (15)

We conclude that (6) holds for each solution to (10).

In the next section, we address the details of the controller

design.

IV. CONSTRUCTING w(x, q) AND V (x, q)

To solve Problem 1, we propose the continuously differ-

entiable function

V (x, q) := αq2 + x⊤Pqx, (16)

where α ∈ R, q ∈ Q, and Pq ∈ R
n×n is a symmetric matrix

for each q ∈ Q, and the control law

w(x, q) = Kqx, (17)

where Kq ∈ R
m×n for each q ∈ Q. Next, we show that a

solution to Problem 1 is achieved for Q := {0, 1}, that is,

using solely two controllers.

It is straightforward to check that w(x, q) 6= g for each

(x, q) ∈ C is equivalent to w−1(g) ⊂ intD (where w−1

denotes the preimage of w), which motivates the following

result.

Lemma 7. Let V and w be given by (16) and (17),

respectively, with Q := {0, 1} and let2

V⋆(Kq, g) := g⊤(K−
q )⊤(P0 − P1)K

−
q g. (18)

2Recall that A− denotes the generalized inverse of a matrix A.

Given g ∈ R
m\{0} for each q ∈ Q, there exist α ∈ R and

δ > 0 such that

V (x, q)− V (x, h) > δ, (19)

for every (x, q) ∈ w−1(g) and for some h ∈ Q if

Im (P0 − P1) = Im
(
K⊤

q

)
∀q ∈ Q (20a)

V⋆(K1, g) < V⋆(K0, g). (20b)

Proof. Since w is a continuous function, the pre-image of

a closed set is closed, thus w−1(g) is closed. Then, there

exists δ > 0 such that (19) holds if and only if for every

(x, q) ∈ w−1(g)

V (x, q)− V (x, 1 − q) > 0. (21)

Using the definitions (16) and (17), we see that (21) is

equivalent to

∆0(g) := min{x⊤(P0 − P1)x : K0x = g} > α, (22a)

∆1(g) := max{x⊤(P0 − P1)x : K1x = g} < α. (22b)

Let us apply the bijective transformation of variables

x := K−
q g + v (23)

with vq ∈ R
n to the optimization problem ∆q(g) for

each q ∈ Q, where K−
q denotes the generalized inverse

of Kq. If g ∈ Im (Kq) for each q ∈ Q, then it follows

from [1, Proposition 6.1.7] that, for each q ∈ Q, any

x satisfying (23) for some vq ∈ Ker (Kq) also satisfies

Kqx = g. Hence, substituting (23) into (22), it follows that

∆q(g) = V⋆(Kq, g) + ∆q(0) for each q ∈ Q. Therefore, we

conclude that

∆0(g) =

{
+∞ if g 6∈ Im (K0)

V⋆(K0, g) + ∆0(0) if g ∈ Im (K0)
(24a)

∆1(g) =

{
−∞ if g 6∈ Im (K1)

V⋆(K1, g) + ∆1(0) if g ∈ Im (K1)
(24b)

If g 6∈ Im (Kq) for each q ∈ Q, then w−1(g) = ∅
and, consequently, (19) holds. If g ∈ Im (Kq) for each

q ∈ Q, it follows from (20a) and [1, Theorem 2.4.3] that

Ker (P0 − P1) = Ker (Kq) for each q ∈ Q, hence ∆0(0) = 0
and ∆1(0) = 0. Thus, if g ∈ Im (K1) and g ∈ Im (K0), the

inequalities (22) hold for some α ∈ R if (20b) holds. In

particular, we may select any α satisfying

α ∈ (V⋆(K1, g), V⋆(K0, g)). (25)

From the set of conditions (20), one notices that the

eigenvectors of Pq are partially determined by the controller

gains Kq for each q ∈ Q, and vice versa.

Theorem 8. Consider the system (10) with V and w given

by (16) and (17), respectively. Given g ∈ R
m\{0}, each

solution to (10) satisfies (6) for (12) and w(x, q) 6= g for all

(x, q) ∈ C if conditions (20), (25) and

(A+BKq)
⊤Pq + Pq(A+BKq) ≺ 0 ∀q ∈ Q, (26a)

Pq ≻ 0 ∀q ∈ Q, (26b)

α > δ > 0, (26c)



are satisfied.

Proof. By construction of (10), the constraint w(x, q) 6= g
for all (x, q) ∈ C and V (x+, q+) < V (x, q) for each (x, q) ∈
D and (x+, q+) ∈ G(x, q) are satisfied if the conditions (20)

are satisfied, as proved in Lemma 7. Therefore, (13c) is

satisfied.

The function (16) satisfies

αq2 + λmin(Pq)|x|
2 ≤ V (x, q) ≤ αq2 + λmax(Pq)|x|

2,
(27)

where λmin(Pq) and λmax(Pq) denote the minimum

and the maximum eigenvalues of Pq , respectively.

Therefore (13a) in Theorem 6 is satisfied with

α = max (α, λmax(P0), λmax(P1)) and α =
min (α, λmin(P0), λmin(P1)). Then, conditions (26b)

and (26c) imply that α, α > 0, which, in turn, implies (13a).

Condition (13b) follows from (26a) and (26c), as shown

next.

The derivative of (16) subject to the flow map F in (3),

using (17), is given by

〈∇V (x, q), F (x, q)〉 = x⊤

(

(A+BKq)
⊤Pq + Pq(A+BKq)

)

x.

(28)

If (26a) holds, there exists β > 0 such that

(A+BKq)
⊤Pq + Pq(A+BKq) � −βIn, (29)

therefore it follows from (28) that

〈∇V (x, q), F (x, q)〉 ≤ −
β

λM

(
αq2 + λM |x|2

)
+

β

λM

αq2,

(30)

where λM := max
q∈Q

(λmax(Pq)). Let V := min
(x,1)∈C

V (x, 1)

and notice that V exists and is a finite number greater

or equal to α > 0 because C is closed and V (x, 1) is

a convex function greater or equal than α. We have that

λM |x|2 ≥ x⊤Pqx for each q ∈ Q, αq2 ≤ αV (x, q)/V and,

consequently,

〈∇V (x, q), F (x, q)〉 ≤ −
β

λM

(

1−
α

V

)

V (x, q). (31)

Since V (x, 1) = α if and only if x = 0 and since δ < α
by (26c), we have that V (0, 1) − V (0, 0) = α > δ, thus

(0, 1) ∈ D. Consequently, we have that V > α and (13b)

holds with

γ =
β

λM

(

1−
α

V

)

. (32)

The desired result follows from Theorem 6.

In the following corollary, we show that for the single

input system we obtain a stronger result than for general

multi-input systems.

Corollary 9. Consider the hybrid system (10) with B ∈ R
n

and the definitions of V and w given in (16) and (17), respec-

tively, satisfying conditions (20) and (26), then |w(x, q)| 6= g
for each (x, q) ∈ C and (6) holds for the set (12).

Proof. In Theorem 8, we prove that w(x, q) 6= g for each

(x, q) ∈ C. In order to verify that |w(x, q)| 6= g for each

(x, q) ∈ C we check that every (x, q) ∈ w−1(−g) belongs

to D. This follows directly from the fact that V⋆(K, g) =
V⋆(K,−g) for any K ∈ R

1×n, thus condition (20b) holds

also for −g.

In the next section, we study the application of these

results to the double integrator system.

V. NUMERICAL EXAMPLE – DOUBLE INTEGRATOR

The double integrator system is modeled by (1), with

A =

[
0 1
0 0

]

, B =

[
0
1

]

. (33)

The application of the controller designed in Section IV is

very interesting not only because this system appears very

often in dynamic models of mechanical systems, but also

because it allows us to showcase some interesting properties

of the closed loop hybrid system.

The conditions for global exponential stability and avoid-

ance of the input value g given in (20) and (26) are not

convex, in general. However, if we are given a set of

controllers Kq such that A + BKq is asymptotically stable

for each q ∈ Q, then we may run an convex optimization

program so as to find appropriate matrices Pq for each q ∈ Q,

as stated in the next lemma.

Lemma 10. For the system matrices (33), conditions (20)

and (26) hold if there exist λ0 > λ1 > 1 and X = X⊤ ≻ 0
such that

K1 = λ1K0, (34a)

P0 = λ0K
⊤
0 K0 +X, (34b)

P1 = K⊤
1 K1 +X, (34c)

(A+BKq)
⊤Pq + Pq(A+BKq) ≺ 0 ∀q ∈ Q, (34d)

Proof. Condition (34a) implies that Im
(
K⊤

0

)
= Im

(
K⊤

1

)

as required by (20a). Then, if (34b) and (34c) hold, we have

that

P0 − P1 = (λ0 − λ1)K
⊤
0 K0,

thus (20a) holds. Notice that Im (Kq) = R for each q ∈ Q,

otherwise Kq = 0 for each q ∈ Q and, in this case, condi-

tion (34d) would not be verified. Notice that the generalized

inverse of Kq is

K−
q =

K⊤
q

|Kq|2
,

for each q ∈ Q, because [1, (6.1.7)–(6.1.10)] hold. Hence,

from (18) we have that

V⋆(Kq, g) =
g2

|Kq|4
(λ0 − λ1)K0K

⊤
q , (35)

for each q ∈ Q. From the assumption λ0 > λ1 > 1 and some

straightforward computations, it follows that (20b) holds.

Moreover, since V⋆(Kq, g) > 0, it follows from (25)

that (26c) holds for some α > 0 and some δ ∈ (0, α).
Condition (26b) holds because λ0 > λ1 > 1 and X ≻ 0.

Finally, condition (26a) is the same as (34d).

Given Kq satisfying (34a) for some λ1 > 0 and such

that A + BKq is Hurwitz for each q ∈ Q, the set of
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Fig. 1. Hybrid phase plane for the double integrator system in the numerical
example.

conditions (34) becomes a set of convex constraints, thus

amenable to automated feasibility testing by means of a

convex optimization problem. For this numerical study we

chose,

K0 =
[
−1 −1

]
, K1 =

[
−1.5 −1.5

]
. (36)

and found the following feasible solution using CVX, a

package for specifying and solving convex programs [7], [6]:

P0 =

[
15.5910 9.9782
9.9782 15.9121

]

, P1 =

[
15.3410 9.7282
9.7282 15.6621

]

.

(37)

Also, we chose δ ≈ 0.03 and

α =
1

2
(V⋆(K0, g) + V⋆(K1, g)) ≈ 0.1806,

with g = 1. The hybrid phase plane resulting from this design

is represented in Fig. 1, which highlights several important

properties of the closed-loop hybrid system:

• the sets w−1(±g) are straight lines normal to the vectors

Kq , as well as the boundaries of the jump sets and flow

sets projected onto the x-plane;

• near the origin, the nominal controller w(x, 0) is se-

lected;

• since δ > 0, there exists a region of the state space

where both controllers can be selected, depending on

the value of q, preventing controller chattering due to

noise.

The results of 10 simulations with random initial condi-

tions is given in Fig. 2. In this figure, it is possible to verify

that the input jumps over the unwanted values ±g.

VI. CONCLUSION

In this paper, we proposed a hybrid controller that is

able to avoid a given input value while globally uniformly

asymptotically stabilizing a given linear system. We have

shown that if the system has a single input then the controller

is able to perform the desired task while avoiding a stronger

constraint.

w(x, q) = −g
w(x, q) = g

t

ω
(x
,q
)

V
(x
,q
)
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Fig. 2. Simulation results for 10 random initial conditions.
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