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SUMMARY

In this paper, we address the problem of designing a control law based on sensor measurements that
provides global asymptotic stabilization to a reference trajectory defined on the SE(3) × R6. The
proposed control law is a function of the angular velocity, of vector measurements characterizing
the position of some given landmarks and of their rate of change. We provide sufficient conditions
for the existence of synergistic potential functions on SO(3) which are pivotal in the generation
of a suitable hybrid control law. We also provide sufficient conditions on the geometry of the
landmarks to solve the given problem. Finally, the proposed solution is simulated and compared
with a continuous feedback control law. Copyright c© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The attitude control problem has been a long-standing challenge within the control
engineering community and it has generated a large number of contributions [1, 2, 3]. This
problem consists of stabilizing the attitude of a rigid body to a desired point regardless
of the initial condition. There are several reasons for the general interest in solving this
problem: (1) the attitude is described by an element of the special orthogonal group of order
three, denoted by SO(3), which is a compact manifold without boundary, thus topological
obstructions preclude global stabilization of a set-point by means of continuous feedback [4].
In particular, given a Morse function f : M → R defined on a compact manifold M , every
flow determined by the gradient vector field converges to the critical points of f (cf. [5,
Lemma 2.23]). Since every Morse function in SO(3) has at least 4 critical points (cf. [2,
p.148]), global stabilization of a single set-point is not possible; (2) there exist several
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parametrizations of SO(3), each of which has its own advantages/disadvantages, depending
on the application [6]; (3) there exists a myriad of applications where attitude control is
key, including the control of spacecraft [7, 8, 9, 10], aerial vehicles [11] and underwater
vehicles [12].

Possible parametrizations of SO(3) include Euler angles, Euler parameters, quaternions,
among many others (see [13]), all of which exhibit either singularities or ambiguities at some
point (cf. [14], [15]). Nevertheless, the quaternion parametrization of SO(3) has been used
in several applications during the last decades [16, 12, 17]. In particular, the work reported
in [12], provides an extensive list of different quaternion-based feedback laws as well as
the advantages and drawbacks of each individual choice. Despite their wide acceptance and
although the quaternions provide a global parametrization of SO(3), they consist of a many-
to-one map which is bound to cause some problems namely: inconsistent path-lifting [18]
and/or it may lead to the so called “unwinding phenomenon” [4]. On the other hand, the
rotation matrix description of attitude is global and unique [15], thus it can be computed
out of vector measurements without ambiguity [19, 20]. The relationship between vector
measurements and the rotation matrix is of particular significance for the work developed
in this paper.

A solution to global stabilization on SO(3) was firstly proposed in [12] by means
of discontinuous quaternion feedback and then adopted for other applications (see, for
example, [21, 22]). However, it was shown in [23] that whenever a compact set cannot be
globally asymptotically stabilized by means of continuous feedback it cannot be robustly

stabilized by means of discontinuous feedback either – in the sense that there exists
arbitrarily small noise that prevents the state of the system from ever leaving unwanted
regions of the state space (see also [24]). This led to the development of more sophisticated
control strategies that make use of recent results in the domain of hybrid dynamical
systems [25, 26]. It was shown in [25] that hybrid systems verifying the so-called Basic

Assumptions are inherently robust to small measurement noise, making them a suitable
approach to address the attitude control problem. Namely, a hybrid control strategy for the
global stabilization on SO(3) that makes use of the quaternion representation of rotation
was proposed in [27]. More recently, the introduction of synergistic potential functions on
SO(3) enabled the development of globally stabilizing hybrid feedback laws in terms of the
rotation matrix [28].

A natural extension of the attitude control problem is the control of both position
and attitude, allowing for the tracking of reference trajectories that evolve on the special

Euclidean group of order 3, denoted by SE(3) = R3 × SO(3). The literature on this
subject is vast and includes tracking control of both fully actuated vehicles [29, 30] and
underactuated vehicles [31, 32]. Most notably, the control law proposed in [33] provides a
solution to the problem of globally stabilizing the attitude and position of a rigid body
that is robust to measurement noise. Nevertheless, most of these works do not delve into
the details of reconstructing the state of the system out of sensor measurements. In order
to bypass this problem, there was considerable effort put into the development of feedback
laws that directly utilize vector measurements to achieve the desired goal [34, 35, 36].

In this paper, we combine the recent developments on the use of synergistic potential
functions defined on SO(3) [28] with the landmark-based control solution presented in [34]
and [35], to design a hybrid control algorithm that uses the angular velocity, the position of
known landmarks and their rate of change to globally asymptotically stabilize the attitude
and the position of a rigid-body to a desired reference trajectory. Similarly to [34] and [35],
the proposed algorithm does not insist on reconstructing the state, thus the control input
can be computed directly from the sensor measurements. On the other hand, we improve
the controllers presented in the aforementioned papers, because we consider the problem of
trajectory tracking instead of set-point stabilization, we design a controller that provides
global asymptotic stability instead of almost global asymptotic stability and, by using a
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hybrid controller that meets the hybrid basic conditions, we also guarantee that the closed-
loop system is robust to small measurement noise.

Sufficient conditions on the geometry of the landmarks enabling the desired goal to be met
are provided. In addition, we also provide sufficient conditions for the existence of synergistic
potential functions on SO(3), thus complementing the work by [28]. The results presented
in this work have direct application to vehicles that can be modelled as fully actuated rigid
bodies and use cameras, laser sensors, and other devices that allow the position of given
landmarks to be measured. A preliminary version of this work was presented at the 51st

Conference on Decision and Control [37].
The remainder of this paper is organized as follows. In Section 1, we present some of the

notational conventions that are used throughout the paper. Section 3 describes the problem
setup which is addressed in Section 4. Simulation results are provided in Section 5 so as to
demonstrate the capabilities and the performance of the controller. Finally, some concluding
remarks are given in Section 6.

2. PRELIMINARIES

2.1. Notation

In this section, we present some of the notation used in the sequel. Column vectors
are represented by boldface characters and scalars are represented by regular lowercase

characters, for example v =
[
v1 v2 . . . vp

]⊤
represents a vector in Rp. Matrices are

represented by regular uppercase characters.
We define the vector of ones 1p := [1 1 . . . 1]⊤ ∈ Rp, the vector of zeros 0p :=

[0 0 . . . 0]⊤ ∈ Rp, and the canonical basis vector ei ∈ Rp whose components are equal
to 0 except for the i-th component which is equal to 1. Moreover, given v ∈ Rp, we define
the function diag : Rp → Rp×p as

diag(v) :=




v1 0 . . . 0

0 v2
. . .

...
...

. . .
. . . 0

0 . . . 0 vp




.

Moreover, we make used of the following notation in this paper:

• The set R≥0 ⊂ R is the set of all non-negative real numbers;

• N0 is the set of natural numbers and 0;

• The norm |.|A : Rp → R≥0 provides the shortest distance from a point x ∈ Rp to the set
A ⊂ Rp, i.e., |x|A = inf

y∈A
|x − y|, where |.| : Rp → R≥0 denotes the standard Euclidean

distance. We make an exception for the Frobenius norm, which we will denote by
|.|F : Rm×n → R and is given by |A|F =

√
〈A, A〉;

• The symbol B(x, r) denotes the open ball of radius r > 0 around x ∈ Rp, i.e.,
B(x, r) := {y ∈ Rp : |y − x| < r};

• A function α : R≥0 7→ R≥0 is a class-K∞ function, also written α ∈ K∞, if α is zero at
zero, continuous, strictly increasing, and unbounded.

Finally, we introduce some geometry concepts which are mostly used during the
description of the problem setup in Section 3.

Definition ([38])
The set of all affine combinations of points in some set H ⊆ Rp is called the affine hull of
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H, and is given by

aff(H) := {y ∈ Rp : y =
k∑

i=0

αixi for some k ∈ N0, {xi}i∈{0,1,...,k} ⊂ H,

{αi}i∈{0,1,...,k} ⊂ R such that
k∑

i=0

αi = 1}.

The affine dimension of a set H is the minimum number k ∈ N0 of vectors {xi}i∈{0,1,...,k}

belonging to H such that aff({xi}i∈{0,1,...,k}) = aff(H). �

Definition ([38])
The relative interior of a set H ⊆ Rp, denoted by relint(H), is its interior relative to aff(H),
and is given by

relint(H) := {x ∈ Rp : B(x, r) ∩ aff(H) ⊆ H for some r > 0}. �

Definition ([38])
The convex hull of a set H ⊆ Rp, denoted by conv(H), is given by

conv(H) := {y ∈ Rp : y = θx1 + (1 − θ)x2 for some x1, x2 ∈ H, θ ∈ [0, 1]}. �

2.2. Lie Groups

The dynamical systems considered in this paper evolve on SE(3), which motivates the
following definitions.

Definition (SE(3))
The Special Euclidean Group of order 3, denoted by SE(3), is the set R3 × SO(3) endowed
with product operation (p1, R1). (p2, R2) = (p1 + R1p2, R1R2), where SO(3) denotes the
Special Orthogonal Group of order 3, given by the set

SO(3) := {R ∈ R3×3 : R⊤R = I3, det(R) = 1}.

and the standard matrix multiplication. �

Recalling that a Lie group is a smooth manifold that is also a group, with smooth group
multiplication and inverse operations, then it is easy to check that the set of p × p invertible
matrices, denoted by GL(p), is a Lie group under the standard matrix multiplication [39,
Example 7.3]. Given A ∈ GL(3), let F (A) = A⊤A. The map F is a smooth submersion onto
the space of 3 × 3 symmetric matrices, therefore its level sets are embedded submanifolds
of GL(3) [39, Corollary 5.13]. In particular, the component of level set of I3 containing the
identity is precisely SO(3). Since SO(3) is a subgroup and an embedded submanifold of
GL(3), we conclude by [39, Proposition 7.11] that it is a Lie subgroup of GL(3). On the
other hand, the map G : SE(3) → GL(4), given by

G(p, R) :=

[
R p

0⊤
3 1

]
,

is an injective Lie group homomorphism. Therefore, by [39, Proposition 7.17], we conclude
that SE(3) is a Lie subgroup of GL(4). The Lie algebra of a Lie group is defined
as the tangent space at the identity together with the Lie bracket operation, given by
adX(Y ) = XY − Y X , for any X, Y ∈ Rp×p in the algebra (for more details on this topic
see [40]).

Definition (Lie Algebra of SO(3))
The Lie Algebra of the SO(3) is denoted by so(3) and is given by the set

so(3) = {M ∈ R3×3 : M = −M⊤},

together with the Lie bracket operation. �
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The operator S : R3 → so(3) denotes the isomorphism between the algebras (R3, ×)
and (so(3), ad) (with inverse denoted by S−1 : so(3) → R3). It is possible to show that
the mapping S : R3 → so(3) has the following property: S(x)y = x × y for any x, y ∈ R3,
therefore it is given by

S(x) :=




0 −x3 x2

x3 0 −x1

−x2 x1 0


 , S−1






0 −x3 x2

x3 0 −x1

−x2 x1 0




 := x.

We introduce the following operator, which is used extensively in the sequel,

ϕ : R3×3 → R3

A 7→ S−1
(

A − A⊤
)

,

with the property that for each A ∈ R3×3 and for each z ∈ R3:

trace(AS(z)) = z⊤ϕ(A⊤). (1)

Moreover, we define the inner product between two matrices as follows

〈., .〉 : Rm×p × Rm×p → R
(A, B) 7→ trace(A⊤B),

(2)

which, in the particular case x, y ∈ Rp, is given by 〈x, y〉 = x⊤y. As outlined in [5,
Example 1.4], given a continuously differentiable function over the Riemannian manifold
(SO(3), 〈., .〉), V : SO(3) → R, R ∈ SO(3) is a critical point of V if

〈∇ V (R), X〉 = 0, ∀ X ∈ TRSO(3), (3)

where TRSO(3) denotes the tangent space to SO(3) at R, and we use the notation

[
∇ V (R)

]
ij

:=
∂V (R)

∂Rij

.

By noticing that TRSO(3) � {X ∈ R3×3 : X = RS(ω) for some ω ∈ R3}, using (1) and (2),
it follows from (3) that the set of critical points is given by

Crit V := {R ∈ SO(3) : ϕ(R⊤ ∇ V (R)) = 0}.

Let Sp ⊂ Rp+1 denote the p-dimensional sphere, defined by Sp := {x ∈ Rp+1 : x⊤x = 1}.
With a slight abuse of notation, we define

R : S2 × [0, π] → SO(3)

(θ, u) 7→ eθS(u) = I3 + sin(θ)S(u) + (1 − cos(θ))S(u)2,
(4)

where u ∈ S2 denotes the axis of rotation and θ ∈ [0, π] denotes the rotation angle [19]. It
is easy to see that R(π, u) = R(π, −u), therefore the covering map (4) is many-to-one. For
more information on the topological issues related to the SO(3) manifold, see [4].

In this paper, we are interested in trajectories evolving on the tangent bundle of SE(3),
denoted by T SE(3). The tangent bundle of SE(3) is, by definition, the disjoint union
of T(p,R)SE(3) for each (p, R) ∈ SE(3), where T(p,R)SE(3) denotes the tangent space to
SE(3) at (p, R) ∈ SE(3), given by

T(p,R)SE(3) = R3 × TRSO(3)

= {(u, X) ∈ R3 × R3×3 : X⊤R = −R⊤X}.
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It is possible to show that the map

̺ : T SE(3) → SE(3) × R6

(p, R, u, X) 7→
(

p, R, u, S−1
(

R⊤X
))

,

is a diffeomorphism from T SE(3) onto SE(3) × R6. Therefore, trajectories evolving on
T SE(3) can be identified with trajectories on SE(3) × R6.

2.3. Hybrid Systems

In this paper, we make use of recent developments on hybrid systems theory that are
described in [25]. Under this framework, a hybrid system H is defined as

H =

{
ξ̇ ∈ F (ξ) ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D
,

where the data (F, C, G, D) is given as follows: the set-valued map F : Rp ⇒ Rp is the flow

map and governs the continuous dynamics (also known as flows) of the hybrid system; the
set C ⊂ Rp is the flow set and defines the set of points where the system is allowed to flow;
the set-valued map G : Rp ⇒ Rp is the jump map and defines the behaviour of the system
during jumps; the set D ⊂ Rp is the jump set and defines the set of points where the system
is allowed to jump.

In order to define the concept of solutions to hybrid systems, we need to introduce the
concepts of hybrid time domain and hybrid arcs given next.

Definition ([26, Definition 2.3])
A subset E of R≥0 × N0 is a compact hybrid time domain if

E =
J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 ≤ t0 ≤ t1 ≤ t2 ≤ . . . ≤ t. It is a hybrid time domain if
for all (T, J) ∈ E, E ∩ ([0, T ] × {0, 1, . . . , J}) is a compact hybrid time domain.

Definition ([26, Definition 2.4])
A function ξ : E → Rn is a hybrid arc if E is a hybrid time domain and if for each j ∈ N0,
the function t 7→ ξ(t, j) is locally absolutely continuous on the interval Ij = {t : (t, j) ∈ E}.

Equipped with these definitions, we are able to define precisely the solutions to hybrid
systems as follows.

Definition ([26, Definition 2.6])
A hybrid arc ξ is a solution to the hybrid system (C, F, D, G) if ξ(0, 0) ∈ C ∪ D, and

(S1) for all j ∈ N0 such that Ij := {t : (t, j) ∈ dom ξ} has nonempty interior

ξ(t, j) ∈ C for all t ∈ intIj ,
dξ
dt

(t, j) ∈ F (ξ) for almost all t ∈ Ij ;

(S2) for all (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ,

ξ(t, j) ∈ D,

ξ(t, j + 1) ∈ G(ξ(t, j))

A solution ξ is maximal if it cannot be extended, that is, the hybrid system has no solution
ξ′ such that dom ξ′ is a proper subset of dom ξ and ξ′ agrees with ξ for all (t, j) ∈ dom ξ,
and it is complete if its domain is unbounded [25, p. 41].
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Definition ([26, Definition 3.6])
Consider a hybrid system H = (F, C, G, D) defined in Rp. Let A ⊂ Rp be closed. The set A
is said to be:

• Globally Stable for H if there exists a function α ∈ K∞ such that for any solution ξ

to H, |ξ(t, j)|A ≤ α(|ξ(0, 0)|A) for all (t, j) ∈ dom ξ;

• Globally Attractive for H if any complete solution ξ to H satisfies lim
t+j→∞

|ξ(t, j)|A = 0;

• Globally Asymptotically Stable (GAS) for H if it is both globally stable and globally
attractive for H.

This paper builds on the results in [41], where synergistic potential functions. For
completeness, we include the definition of such functions.

Definition ([41, Definition 1])
A continuously differentiable function V : SO(3) → R≥0 is a potential function on SO(3)
(with respect to I3) if V (R) > 0 for all R ∈ SO(3)\{I3} and V (I3) = 0. The class of potential
functions on SO(3) is denoted by P. �

Definition ([41, Definition 2])
Let Q ⊂ Z be a finite index set with cardinality N and define µ : P

N → R≥0, such that,
for each family of potential functions V = {Vq}q∈Q ∈ P

N ,

µ(V ) := inf
q∈Q

R∈Crit Vq\{I3}

max
p∈Q

(Vq(R) − Vp(R)) . (5)

The family V ∈ P
N is synergistic if there exists δ > 0 such that

µ(V ) > δ,

where we say that V is synergistic with gap exceeding δ. �

3. PROBLEM SETUP

Given an orthonormal inertial reference frame {I} and an orthonormal frame {B}, which is
fixed with respect to a fully actuated rigid body vehicle, the dynamic equations of motion
are given by

ṗ = v − S(ω)p, (6a)

Ṙ = RS(ω), (6b)

v̇ =
f

m
− S(ω)v, (6c)

ω̇ = J−1(S(Jω)ω + τ ), (6d)

where p ∈ R3 denotes the position of {B} with respect to {I}, expressed in {B}, R ∈ SO(3)
is the rotation matrix which maps vectors in {B} to {I}, such that Rp denotes the position
of {B} with respect to {I} expressed in {I}, v ∈ R3 denotes the linear velocity of {B} with
respect to {I}, expressed in {B}, ω ∈ R3 denotes the angular velocity of {B} with respect
to {I} expressed in {B}, f ∈ R3 and τ ∈ R3 represent the force and the torque exerted on
the rigid body, respectively, m ∈ R denotes the mass of the vehicle and J ∈ R3×3 is its tensor
of inertia (a very detailed description on this subject may be found in [42]). A wide range
of vehicles can be modelled by the rigid body kinematics presented in (6a), (6b), such as
aeroplanes, helicopters, underwater vehicles, and others. Even though these vehicles might
not be completely rigid, this approximation is very common and it yields good practical
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results. The dynamics (6c), (6d) are valid under the assumption that the vehicle is fully-
actuated. Moreover, for the purposes of the application discussed in this paper, we assume
that the vehicle is equipped with on-board sensors that retrieve its angular velocity ω such
as gyroscopes, as well as the position and the rate of change, with respect to {B}, of any
number of landmarks whose locations are fixed with respect to {I}, such as laser sensors.

The position of the i-th landmark with respect to {I} (out of a set of n ∈ N landmarks)
is denoted by xi ∈ R3 and

X :=
[
x1 x2 . . . xn

]
∈ R3×n

is a matrix whose columns are the positions of all the n landmarks. The i-th measurement
of the on-board sensors is obtained by means of an affine transformation on xi, and it is
given by

ℓi(R, p) := R⊤xi − p.

The landmark measurements can also be collected in a matrix, L ∈ R3×n, as follows:

L(R, p) := R⊤X − p1⊤. (7)

In order to reduce the notational burden we refer to L(R, p) as L in the sequel.
Let xd = (pd, Rd, vd, ωd)(t) denote a smooth reference trajectory evolving on SE(3) × R6

for all t ≥ 0 which satisfies the following assumption.

Assumption 1

Let π : T SE(3) → SE(3) denote the canonical projection of T SE(3) onto SE(3). The
reference trajectory t 7→ xd(t) := (pd(t), Rd(t), vd(t), ωd(t)) is a complete and bounded
solution to ẋd = fd(xd) satisfying

d

dt
π(pd(t), Rd(t), vd(t), ωd(t)) = (vd(t) − S(ωd(t))pd(t), Rd(t)S(ωd(t))),

for each t ≥ 0 and for some continuously differentiable vector field fd on T SE(3). �

For each t ≥ 0 one may associate a “desired” reference frame {D} whose origin is located
at pd(t) and whose orthonormal basis consists of the columns of Rd(t). Moreover, this
reference trajectory is associated with reference landmark positions Ld ∈ R3×n, which are
given by

Ld = R⊤
d X − pd1⊤.

The main goal of this paper is to design a control law (f , τ ) = κ(L, L̇, ω, xd) as a function
of the sensor outputs and the reference trajectory, such that

lim
t→∞

(p̃, R̃, ṽ, ω̃)(t) = (0, I3, 0, 0), (8)

with

p̃ := p − pd, (9a)

R̃ := RdR⊤, (9b)

ṽ := v − vd, (9c)

ω̃ := ω − ωd, (9d)

holds regardless of the initial condition. Using (6), one verifies that the dynamics of the
error variables are given by

˙̃p = ṽ − S(ω)p + S(ωd)pd, (10a)

˙̃R = −S(Rdω̃)R̃, (10b)

˙̃v =
f

m
− S(ω)v − v̇d, (10c)

˙̃ω = J−1(S(Jω)ω + τ ) − ω̇d, (10d)
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which are equivalent to

˙̃p = ṽ − S(ω̃ + ωd)p̃ + S(pd)ω̃, (11a)

˙̃R = −S(Rdω̃)R̃, (11b)

˙̃v = uv, (11c)

˙̃ω = uω, (11d)

using the input transformation

f := m(v̇d + S(ω)v + uv), (12a)

τ := −S(Jω)ω + J(ω̇d + uω). (12b)

Therefore, the objective specified in (8) is equivalent to the global asymptotic stabilization
of the set

A := {0} × {I3} × {0} × {0} ⊂ SE(3) × R6

for the error system (11) using the virtual inputs (uv, uω). The following problem statement
summarizes the previous discussions.

Problem 1

Let X := {x1, x2, . . . , xn} ⊂ R3 denote the (fixed) positions of n ∈ N landmarks with respect
to {I} and let xd(t) denote a reference trajectory satisfying Assumption 1. Given X, design
a landmark-based hybrid controller Hc, with state q and output (f , τ ) = κ(L, L̇, ω, xd, q),
where L is given by (7), such that A := {0} × {I3} × {0} × {0} is globally asymptotically

stable for the system (11). �

Remark 1

The rate of change of the position of the landmarks, L̇, can be measured by optical flow
sensors. However, it might be the case that these measurements are not available. In
that situation, these measurements might be estimated by differentiating L or replaced
by velocity measurements, since L̇ is only used to obtain the velocity of the vehicle in the
first place, as shown in Section 4.

In order to achieve this goal, we impose the following conditions on X ∈ R3×n.

Assumption 2

The origin of {I} belongs to the relative interior of the landmarks’ convex hull, i.e.,
{0} ∈ relint conv{x1, x2, . . . , xn}. �

The assertion in the following lemma provides an equivalence between Assumption 2 and
the matrix X ∈ R3×n, which is very important in the derivation of the main result in this
paper.

Lemma 1 ([34, Proposition 3])

Assumption 2 is satisfied if and only if there exists a vector a =
[
a1 a2 . . . an

]⊤
such

that Xa = 0, 1⊤a = 1, and aj > 0 for all j ∈ {1, 2, . . . , n}. �

For reasons that will become clearer in Section 4 when we discuss the control strategy,
another important assumption on the landmarks geometry relates to their relative
positioning.

Assumption 3

Given a ∈ Rn satisfying the conditions of Lemma 1, XDaX⊤ is positive definite with distinct
eigenvalues, where Da := diag(a). �

Remark 2

Under Assumptions 2 and 3 it is possible to invert the relation (7) in order to find R and
p out of the sensor measurements. In particular, this would require the computation of the
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pseudo-inverse of X . The controller proposed in this paper does not require such operations
since it uses directly the landmark measurements L, thus saving computational resources
and preventing pernicious error scaling from vector noise onto the resolved attitude (cf. [43,
p. 1]).

In order to draw some intuition out of Assumptions 2 and 3 one may compare the
properties of the landmark setup to the properties of a system of point mass particles.
Consider that the particle located at xj ∈ R3 has mass aj , then it is easy to check that
Assumption 2 requires the inertial reference frame to be located at the center of mass.
It is also possible to verify that the tensor of inertia of this system of particles is given
by P := trace(XDaX⊤)I3 − XDaX⊤. Assumption 3 implies that the eigenvalues of P are
distinct and therefore the system of particles is anisotropic [44].

To conclude our analysis on the implications of Assumptions 2 and 3 over the geometry
of the landmark constellation, we prove in Lemma 2 that, whenever the landmarks are
coplanar, Assumption 3 cannot be satisfied. This straightforward lemma shows that, under
the given assumptions, coplanar landmark configurations are not allowed. In particular,
any configuration with less than 4 landmarks is not allowed, so we are imposing additional
constraints with respect to the results in [34].

Lemma 2

Let X = {x1, x2, . . . , xn} ⊂ R3 be a set of n ∈ N landmarks, fixed with respect to {I},
satisfying Assumption 2. If the dimension of aff(X) is 2, then Assumption 3 is not satisfied.

Proof

Assume that the dimension of aff(X) is n ∈ N0. Since the set of landmarks X satisfies
Assumption 2, there exist n linearly independent vectors in X or, equivalently, X =[
x1 x1 . . . xn

]
has rank n. If the landmarks are coplanar, then the dimension of aff(X)

is 2 and, consequently, rank(X) = 2. Then there exists b ∈ R3 such that X⊤b = 0n (this
can be checked using the singular value decomposition of X), which implies that XDaX⊤

has one zero eigenvalue. This fact implies that Assumption 3 is not satisfied. �

Other landmark geometries must be tested against the assumptions provided in
this section in a case-by-case basis. Figure 1 illustrates the physical setup, where the
configuration of the body frame {B} is shown as well as the inertial reference frame {I},
the desired configuration of the body frame {D} and four landmarks whose positions are
the columns of the matrix

X =
[
x1 x2 x3 x4

]
:=




1 −1 0 0
0 0 −0.5 0.5

−1 −1 1 1


 . (13)

For this particular geometry, we have that Xa = 0 for a = 0.25 1, thus satisfying
Assumption 2 and, the eigenvalues of XDaX⊤ ∈ R3×3 are λ1 = 1, λ2 = 0.5 and λ3 = 0.125,
thus meeting Assumption 3. This landmark configuration will be used in Section 5 for
simulation purposes.

In the next section, we develop a hybrid control strategy that solves Problem 1.

4. GLOBAL STABILIZATION ON SE(3) × R6 BY HYBRID OUTPUT FEEDBACK

In this section, we apply the ideas of using synergistic potential functions for attitude control
of a fully actuated rigid body described in [41] to solve Problem 1. Synergistic potential
functions on SO(3) (see Definition 2.3) allow for derivation of a class of hybrid controllers
that is suitable for the landmark-based control of a fully actuated rigid body. Although we
follow very closely the solution for global asymptotic stabilization in SO(3) × R3 presented
in [41], there are some key differences: i) we provide sufficient conditions for the existence
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Figure 1. An arbitrary configuration of the body fixed frame {B} relative to the inertial reference
frame {I} and the geometry of the four landmarks used in the simulations presented in Section 5.

The symbol {D} represents the desired configuration of the body frame.

of a family of synergistic potential functions on SO(3); ii) we extend the problem of global
stabilization on SO(3) × R3 to that of global stabilization on SE(3) × R6; iii) the control
law we present does not require attitude estimation because landmark-based information is
used directly.

In Section 4.1 we design a feedback law as a function of the state that globally
asymptotically stabilizes A, under the assumption that there exists a family of synergistic
potential functions on SO(3) with gap exceeding δ. In Section 4.2, we provide sufficient
conditions for the existence of such a family of functions and in Section 4.3 we show that
the controller can be re-written in terms of the sensor measurements.
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4.1. Global Stabilization on SE(3) × R6 by State Feedback

Consider the hybrid control law

uω := kRR⊤
d R̃ϕ(R̃⊤ ∇ Vq(R̃)) − kωω̃ + kpS(pd)p̃, (14a)

uv := −kpp̃ − kvṽ, (14b)

where kR, kω, kp, kv ∈ R, q ∈ Q ⊂ Z is a logic variable, which has continuous dynamics given
by q̇ = 0, and Vq is an element of a family of synergistic potential functions on SO(3) with
gap exceeding δ > 0, which is given by V := {Vq}q∈Q. This logic variable enables changing
the function Vq used in (14), according to the definition of the hybrid system given below

State: x = (p̃, R̃, ṽ, ω̃, q, pd, Rd, vd, ωd) (15a)

Flow Map: F (x) =




ṽ − S(ω̃ + ωd)p̃ + S(pd)ω̃

−S(Rdω̃)R̃
uv

uω

0
fd(pd, Rd, vd, ωd)




, ∀x ∈ C (15b)

Flow Set: C = {x ∈ SE(3) × R6 × Q × SE(3) × R6 : Vq(R̃) − ρ(R̃) ≤ δ} (15c)

Jump Map:

G(x) = {(p̃, R̃, ṽ, ω̃)} × {q′ ∈ Q : Vq′ (R̃) = ρ(R̃)} × {(pd, Rd, vd, ωd)}, ∀x ∈ D (15d)

Jump Set: D = {x ∈ SE(3) × R6 × Q × SE(3) × R6 : Vq(R̃) − ρ(R̃) ≥ δ}. (15e)

where ρ : SO(3) → R≥0 is the function defined as

ρ(R) = min
q∈Q

Vq(R).

In the next theorem we prove that the set

AH := A × Q × SE(3) × R6, (16)

is globally asymptotically stable for (15).

Theorem 3

Let Assumption 1 be satisfied. Given a family of synergistic potential functions on SO(3),
V = {Vq}q∈Q ∈ P

N , with gap exceeding δ, for any kR, kω, kp, kv > 0, the set (16) is GAS
for the hybrid system (15).

Before presenting the proof, let us recall given a function f : Rp → Rm and a set Y ⊂ Rm,
the pre-image of Y by f is given by f−1(Y ) := {x ∈ Rp : f(x) ∈ Y }.

Proof of Theorem 3:

The desired result follows from invariance principles for hybrid systems, namely [26,
Theorem 8.2]. In order to use this result, we prove that the system is nominally well-
posed by showing that it meets the hybrid basic conditions [26, Assumption 6.5], we prove
that solutions to the system are precompact (complete and bounded) and we construct a
continuously differentiable function V , whose growth is bounded on compact sets.

Let φ(R̃, q) := Vq(R̃) − ρ(R̃) and let ∆ := {y ∈ R : y ≤ δ}. We may rewrite the flow set
as follows:

C = {x ∈ SE(3) × R6 × Q × SE(3) × R6 : φ(R̃, q) ≤ δ}.

Notice that C = φ−1(∆) and that φ is a continuous function. Since the pre-image of a
closed set by a continuous function is closed ([45, Lemma 2.7]), we have that C is closed.
From similar arguments it follows that D is closed. By Assumption 1, it follows that (15b)
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is a single-valued smooth function, therefore it is outer-semicontinuous, locally bounded
and convex. The jump map is outer-semicontinuous if and only if D × G(D) is closed ([26,
Lemma 5.10]). Notice that the jump map changes the logic variable but not the states,
therefore G(D) is closed and G(x) is locally bounded for each x ∈ D. Since D is closed, we
conclude that the jump map is outer-semicontinuous.

Consider the following continuous function

V (x) := kRVq(R̃) +
1

2
ω̃

⊤
ω̃ +

kp

2
p̃⊤p̃ +

1

2
ṽ⊤ṽ.

It is possible to verify that V is positive-definite relative to AH and that its time derivative
is given by

〈∇ V (x), F (x)〉 = kR〈∇ Vq(R̃), −S(Rdω̃)R̃〉 + ω̃
⊤

uω + kpp̃⊤(ṽ

− S(ω̃ + ωd)p̃ + S(pd)ω̃) + ṽ⊤uv.
(17)

Using (2) and trace(A⊤B) = trace(BA⊤) we obtain from (17) the following expression

〈∇ V (x), F (x)〉 = −kR trace(R̃ ∇ Vq(R̃)
⊤

S(Rdω̃)) + ω̃
⊤

uω + kpp̃⊤(ṽ

− S(ω̃ + ωd)p̃ + S(pd)ω̃) + ṽ⊤uv.

Using the relations (1), R⊤ = R−1 and Rϕ(A) = ϕ(RAR⊤), valid for any R ∈ SO(3), we
obtain

〈∇ V (x), F (x)〉 = −kRω̃
⊤R⊤

d R̃ϕ(R̃⊤ ∇ Vq(R̃)) + ω̃
⊤

uω + kpp̃⊤(ṽ

− S(ω̃ + ωd)p̃ + S(pd)ω̃) + ṽ⊤uv.

Replacing (14) and p̃⊤S(ω̃ + ωd)p̃ = 0 into (17) yields

〈∇ V (x), F (x)〉 = −kω|ω̃|2 − kv|ṽ|2 + kp(ω̃⊤S(pd)p̃ + p̃⊤S(p)ω̃). (18)

Replacing ω̃
⊤S(pd)p̃ = −p̃⊤S(pd)ω̃ into (18) yields

〈∇ V (x), F (x)〉 = −kω|ω̃|2 − kv|ṽ|2. (19)

Moreover, we have that
V (x) − V (G(x)) ≥ δ, ∀x ∈ D, (20)

by the definition of D and G(x). Let

uc(x) :=

{
−kω|ω̃|2 − kv|ṽ|2, ∀x ∈ C

−∞, otherwise
,

and

ud(x) :=

{
−δ, ∀x ∈ D

−∞, otherwise
.

In (20) and (19), we have shown that the growth of V along solutions to (15) is bounded
by uc,ud on SE(3) × R6 × Q × SE(3) × R6. This result and Assumption 1 imply that
solutions to (15) are complete and bounded. It follows from [26, Theorem 8.2] that solutions

to (15) converge to the largest weakly invariant subset of u−1
c (0) = {x ∈ SE(3) × R6 × Q ×

SE(3) × R6 : ṽ = ω̃ = 0} ∩ C. From the definition of the flow map, and from the relations

˙̃v ≡ ṽ ≡ 0,

˙̃ω ≡ ω̃ ≡ 0,
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we have that
R⊤

d R̃ϕ(R̃ ∇ Vq(R̃)) = 0

p̃ = 0.

From the relations R⊤
d R̃ϕ(R̃⊤ ∇ Vq(R̃)) = 0 ⇐⇒ ϕ(R̃⊤ ∇ Vq(R̃)) = 0 ⇐⇒ R̃ ∈

Crit Vq we conclude that the largest invariant set of u−1
c (0) is a subset of

{0} × Crit Vq × {0} × {0} × Q × SE(3) × R6 ∩ C. Since V is synergistic with gap exceeding

δ, using [28, Lemma 6], we have that Crit Vq ∩ {R̃ ∈ SO(3) : Vq(R̃) − ρ(R̃) ≤ δ} = {I3},
therefore {0} × Crit Vq × {0} × {0} × Q × SE(3) × R6 ∩ C = {0} × {I3} × {0} × {0} ×
Q × SE(3) × R6 = AH and we conclude that AH is globally attractive. Since V is positive-
definite relative to AH and non-increasing along solutions to (15), then AH is globally
stable for (15). It follows that AH is globally asymptotically stable for (15). �

Remark 4

Notice that uv, defined in (14), depends on the position error, thus coupling the position
error and the attitude error subsystems. If, instead of the trajectory tracking problem that
is addressed in this paper, we were to consider the point stabilization problem, then it would
be possible to decouple the attitude and the position subsystems using a strategy similar
to [35].

Notice that the results presented in Theorem 3 partially solve Problem 1 because global
asymptotic stabilization of AH for the error system is guaranteed using the state feedback
laws (14) (assuming that there exists a family of synergistic potential functions on SO(3)
with gap exceeding δ > 0). However, these feedback laws define the virtual control inputs
(uv, uω) instead of (f , τ ) and it is not clear at this point whether they can be rewritten
as a function of the sensor measurements. Nevertheless, the control law for the real inputs
(f , τ ) can be computed from (14), using (12), as follows

f = m(v̇d + S(ω)v − kvṽ − kpp̃), (21a)

τ = −S(Jω)ω + J(ω̇d + kRR⊤ϕ(R̃⊤ ∇ Vq(R̃)) − kωω̃ + kpS(pd)p̃). (21b)

In the sequel we show that (21) can be written as a function of the sensor measurements
using a particular family of synergistic potential functions on SO(3) described in the next
section.

4.2. A Family of Synergistic Potential Function on SO(3)

Let us define the modified trace function, given by

PM(R) := trace ((I3 − R)M) , (22)

where M ∈ R3×3 is positive definite. This function corresponds to the Frobenius norm of
(I3 − R)M

1

2 squared, therefore it is a standard potential function on SO(3). If, in addition,
the matrix M ∈ R3×3 possesses distinct eigenvalues, then the number of critical points is
four, with one of them being {I3} (cf. [2]). However, it was proved in [41, Theorem 4] that
any family of modified trace functions is not synergistic. On the other hand, it was shown
by example that two modified trace functions can become synergistic by angular warping,
that is, there exists δ > 0 such that µ(V ) ≥ δ for V = {Vq}q∈{1,2} with

Vq(R) := PMq
(T q(R)) (23)

T q(R) := ekqPMq (R)S(uq)R (24)

where T q : SO(3) → SO(3) is a diffeomorphism in SO(3) as long as

√
2kq max

R̃∈SO(3)

‖ ∇ PM(R̃)‖F < 1.
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The function T (.) corresponds to a rotation of R ∈ SO(3) by an amount kqPM(R) ∈ R
around the axis uq ∈ S2. Below, in Theorem 5, we establish that, given a symmetric,
positive-definite matrix M ∈ R3×3 with distinct eigenvalues, there always exists a family
of two potential functions on SO(3) that is synergistic with gap exceeding δ. This theorem
proves that the results in [41] are not a product of chance and, additionally, it provides a
constructive method to devise synergistic potential functions on SO(3).

Theorem 5

Let Q := {1, 2} and u ∈ S2. Given any symmetric, positive-definite matrix M ∈ R3×3 with
distinct eigenvalues and k > 0 satisfying

√
2k max

R∈SO(3)
‖∇ PMq

(R)‖F < 1 (25)

with Mq = M for each q ∈ Q. Then the family V := {Vq(R)}q∈Q, where Vq is given by (23),
defines a family of potential functions on SO(3). Let λi ∈ R and vi ∈ S2 for each i ∈ {1, 2, 3}
denote the eigenvalues and the associated eigenvectors of the matrix M , if u = u1 = u2 and
k = k1 = −k2 then V is synergistic with gap exceeding δ for some δ > 0 if and only if





λ1(1 − (u⊤v1)2) + λ2(1 − (u⊤v2)2) > λ3(1 − (u⊤v3)2)

λ1(1 − (u⊤v1)2) + λ3(1 − (u⊤v3)2) > λ2(1 − (u⊤v2)2)

λ2(1 − (u⊤v2)2) + λ3(1 − (u⊤v3)2) > λ1(1 − (u⊤v1)2).

(26)

Proof

See Appendix A. �

Corollary 1

Given any symmetric, positive-definite matrix M ∈ R3×3 with eigenvectors vi ∈ S2

with associated eigenvalues λi ∈ R for i ∈ {1, 2, 3}, satisfying λ1 > λ2 > λ3 and k > 0
satisfying (25) with Mq = M for each q ∈ Q := {1, 2}, then there exists δ > 0 such that
the family V := {Vq(R)}q∈Q, where Vq is given by (23), is synergistic with gap exceeding δ
for the selection of parameters k = k1 = −k2, u1 = u2 = u where

u := cos θv1 + sin θv2 + sin θv3, (27)

and

θ ∈
(

arcsin

(√
λ2 − λ3

λ1 + λ2

)
, arcsin

(√
λ3 + λ2

λ1 + λ2

))
. (28)

Proof

Replacing (27) into (26) yields the following after some algebraic manipulation





sin2 θ > λ3−λ2

λ1−λ2

sin2 θ > λ2−λ3

λ1+λ2

sin2 θ < λ3+λ2

λ1+λ2

.

.

The first inequality holds trivially because we have assumed λ1 > λ2 > λ3. Since

λ2 − λ3

λ1 + λ2
<

λ3 + λ2

λ1 + λ2
,

we conclude that for any θ satisfying (28), the second and the third inequalities of (26) are
satisfied, thus, by Theorem 5, V is synergistic with gap exceeding δ for some δ > 0. �

In Theorem 3, we prove that the set (16) is globally asymptotically stable for the hybrid
system (15) assuming that there exists a family of synergistic potential functions on SO(3)
with gap exceeding δ. However, in Theorem 5, we provide sufficient conditions for the
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existence of such families of functions, therefore, as long as these conditions are met, we
can build a controller that achieves the desired goal. This is summarized in the following
corollary.

Corollary 2

Let Assumption 1 be satisfied. Given any symmetric, positive-definite matrix M ∈ R3×3 with
distinct eigenvalues and k > 0 satisfying (25), there exists a family of synergistic potential
functions on SO(3) with gap exceeding δ > 0 such that, for any kR, kω, kp, kv > 0, the
set (16) is globally asymptotically stable for the hybrid system (15).

Proof

The existence of a family of synergistic potential functions on SO(3) follows from Theorem 5.
From [41, Theorem 6], we obtain the following expression

ϕ(R̃⊤ ∇ Vq(R̃)) = −Θ(R̃, q)⊤ϕ(T q(R̃)M) (29)

with

Θ(R̃, q) = I3 + kqR̃⊤uqϕ(R̃M)⊤R̃. (30)

Replacing the aforementioned expressions into (14), we obtain a hybrid control law which
achieves global reference tracking using the family of synergistic potential functions on
SO(3) given by (23). Then, the result follows directly from Theorem 3. �

4.3. Global Stabilization on SE(3) × R6 by Hybrid Output Feedback

In order to solve Problem 1, we need to rewrite the controller as a function of the sensor
measurements, which amounts to rewriting the flow set (15c), the jump map (15d), the
jump set (15e) and the control law (21) as functions of L, L̇ and ω. To this end, notice that,
using M := XDaX⊤ it is possible to rewrite the modified trace function as follows

PM (R̃) =
1

2
trace((L − Ld)(In − a1⊤)Da(In − 1a⊤)(L⊤ − L⊤

d )).

Since we can write PM (R̃) as a function of the landmarks, with a slight abuse of notation,
we refer to this function as PM (L) in the sequel. Similarly, it is also possible to show that

Vq(R̃) can be written as a function of the landmarks as follows

Vq(R̃) =
1

2
trace

(
(L − L⋆

q)(In − a1⊤)Da(In − 1a⊤)(L − L⋆
q)⊤
)

, (31)

where L⋆
q is given by

L⋆
q := R⊤

d exp(−kqPM (L)S(uq))X − pd1⊤.

Again, since the function Vq(R̃) can be written as a function of the landmarks, we use

the notation Vq(L) in the sequel. Naturally, it is straightforward to verify that ρ(R̃) :=

minq∈Q Vq(R̃) can be written as a function of the landmarks as well, thus we use the
notation ρ(L) when referring to this function herein.
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Using the previous remarks, we define the closed-loop hybrid system

State: x = (p̃, R̃, ṽ, ω̃, q, pd, Rd, vd, ωd) (32a)

Flow Map: F (x) =




ṽ − S(ω̃ + ωd)p̃ + S(pd)ω̃

−S(Rdω̃)R̃
uv(L, L̇, ω, xd)
uω(L, L̇, ω, xd)

0
fd(pd, Rd, vd, ωd)




, ∀x ∈ C (32b)

Flow Set: C = {x ∈ SE(3) × R6 × Q × SE(3) × R6 : Vq(L) − ρ(L) ≤ δ} (32c)

Jump Map:

G(x) = {(p̃, R̃, ṽ, ω̃)} × {q′ ∈ Q : Vq′ (L) = ρ(L)} × {(pd, Rd, vd, ωd)}, ∀x ∈ D (32d)

Jump Set: D = {x ∈ SE(3) × R6 × Q × SE(3) × R6 : Vq(L) − ρ(L) ≥ δ}, (32e)

where uv(L, L̇, ω, xd) and uω(L, L̇, ω, xd) are given by

uv(L, L̇, ω, xd) = kv

(
(L̇ + S(ω)L)a + vd

)
− kp(Ld − L)a,

uω(L, L̇, ω, xd) = −kω(ω − ωd) + kpS(pd)(ω − ωd)

− kR(I3 + kqϕ(L(In − a1⊤)Da(In − 1a⊤)L⊤
d )u⊤

q Rd)ϕ(L⋆
q(In − a1⊤)Da(In − 1a⊤)L).

The global asymptotic stability of the set AH for the hybrid system (32) follows from the
simple observation that (33) is equivalent to (14), as proved next.

Theorem 6

Let Assumptions 1, 2 and 3 be satisfied. Then, there exists k > 0 satisfying (25) and δ > 0,
such that there exists a family of synergistic potential functions on SO(3) with gap exceeding
δ. Moreover, for any kR, kω, kp, kv > 0, the set (16) is globally asymptotically stable for the
hybrid system (32).

Proof

It follows from Assumptions 2 and 3 that there exists a ∈ Rn such that M := XDaX⊤ is
positive definite with distinct eigenvalues. Consequently, it follows from Theorem 5 that (23)
forms a family of synergistic potential functions on SO(3) with gap exceeding δ, for some
δ > 0 and for any k satisfying (25).

Since (23) can be written as a function of the landmarks as shown in (31), we can claim
that the jump set, jump map and flow set of (15) and (32) are the same.

Next, we prove that (33) is equivalent to (14). The position error p̃ can be computed
from L and Ld using the relation

p̃ = (Ld − L)a,

for some a ∈ Rn satisfying Assumption 3. The linear velocity v can be computed from L,
L̇ and ω using the relation

v = −(L̇ + S(ω)L)a. (34)

At this point, the only term of (21) that remains to be rewritten as a function of the

sensor measurements is R⊤
d R̃ϕ(R̃⊤ ∇ Vq(R̃)) = R⊤ϕ(R̃⊤ ∇ Vq(R̃)) and this is achieved by

the following set of computations. Applying (29) to R⊤ϕ(R̃⊤ ∇ Vq(R̃)) we obtain

R⊤ϕ(R̃⊤ ∇ Vq(R̃)) = −R⊤Θ(R̃, q)⊤ϕ(T q(R̃)⊤M), (35)

Replacing (30) and (24) into (35) yields

R⊤ϕ(R̃⊤ ∇ Vq(R̃)) = −R⊤(I3 + kqR̃⊤uqϕ(R̃M)⊤R̃)⊤ϕ(R̃⊤ exp(−kqPM (R̃)S(uq)))M).
(36)
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Replacing Φ := exp(−kqPM (R̃)S(uq))) and M := XDaX⊤ into (36) yields

R⊤
ϕ(R̃⊤ ∇ Vq(R̃)) = −R⊤(I3 + kqRR⊤

d uqϕ(RdR⊤
XDaX

⊤)⊤RdR⊤)⊤
ϕ(RR⊤

d Φ⊤
XDaX

⊤).

Using the distributive property of matrix multiplication and using Rϕ(A) = ϕ(RAR⊤) we
obtain the following expression after some manipulations

R⊤ϕ(R̃⊤ ∇ Vq(R̃)) = −(I3 + kqϕ(R⊤XDaX⊤Rd)u⊤
q Rd)ϕ(R⊤

d Φ⊤XDaX⊤R).

Finally, using the relations ω̃ = ω − ωd, (11a), R⊤X = L(In − a1⊤), R⊤
d X = Ld(In −

a1⊤) and R⊤
d Φ⊤X = L⋆

q(In − a1⊤) (which follow from Assumption 2), we obtain (33)
from (14). �

From Theorem 6 and (34), we conclude that the control law (12) can be written as a
function of the reference trajectory and of the sensor measurements L, L̇ and ω, denoted
by κ(L, L̇, ω, xd),

f = m(v̇d − S(ω)(L̇ + S(ω)L)a + kv

(
(L̇ + S(ω)L)a + vd

)
− kp(Ld − L)a,

τ = −S(Jω)ω + J(ω̇d − kω(ω − ωd) + S(pd)(Ld − L)a

− kR(I3 + kqϕ(L(In − a1⊤)Da(In − 1a⊤)L⊤
d )u⊤

q Rd)ϕ(L⋆
q(In − a1⊤)Da(In − 1a⊤)L)).

(37)
Moreover, since projSE(3)×R6(AH) = {0} × {I3} × {0} × {0} = A, where the operator

projX(X × Y ) = X denotes the canonical projection operator, the stability of the set A
does not depend on the initial condition of the logic variable. In the following section we
illustrate the behaviour of the closed-loop hybrid system in a simulation environment.

5. SIMULATION RESULTS

In this section, we present some simulation results for the hybrid controller proposed in
Section 4. We present two scenarios. In the first scenario, the initial attitude is a critical
point of PM (R̃). In the second scenario, the initial attitude is a critical point of Vq. In both
situations, the starting position is displaced with respect to the desired position, thus the
initial position error p̃(0) is different than 0.

For this set of simulations, we designed a reference trajectory which verifies the dynamics
of a vectored-thrust vehicle (e.g., quadrotor), given by

mp̈I = Re3T − mge3.

where m = 1 kg is the mass of the vehicle, g = 9.81 m/s2 is the acceleration of gravity,
pI ∈ R3 denotes the position of the vehicle in the frame {I}, e3 = [0 0 1]⊤ and T ∈ R
denotes the thrust of the vehicle. In particular, we choose

fd(xd) :=




vd − S(ωd)pd

−pd − S(ωd)vd

RdS(ωd)

S(e3)R⊤
d

d2

dt2

(
−Rdpd+ge3

|−Rdpd+ge3|

)


 , (38)

and xd(0, 0) = (pd, vd, Rd, ωd)(0, 0) with

pd(0, 0) ≈




0.0913
−0.9958

0


 , Rd(0, 0) ≈




0.0913 −0.9958 0
0.9916 0.0908 −0.1014
0.0913 0.0093 0.9948


 ,

vd(0, 0) ≈




0.9916
0.0908

−0.1014


 , ωd(0, 0) ≈




0.1010
0.0093

0


 ,
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which is such that pI(t, j) = [cos(t) sin(t) 0]⊤ for all (t, j) ∈ dom x.∗ The chosen landmarks
for these simulations are given in (13) and depicted in Figure 1. It is possible to verify that,

for these parameters and k1 = 0.1, k2 = −0.1 and u1 = u2 = z/|z| with z =
[
0 1 1

]⊤
, the

functions V1(R̃) = PM (T 1(R̃)) and V2(R̃) = PM(T 2(R̃)) are synergistic with gap exceeding
δ = 0.0017. The controller parameters kp, kR, kp, and kω should be tuned to the specific
application at hand. In general, increasing these parameters leads to faster response times
and increased disturbance rejection, at the cost of higher actuation authority. In the
simulations we chose kp = kR = kp = kω = 1.

In the following simulations, we also compare the performance of the hybrid controller
with the standard continuous feedback law that is obtained by setting kq = 0 in (37), which
is

f = m(v̇d − S(ω)(L̇ + S(ω)L)a + kv

(
(L̇ + S(ω)L)a + vd

)
− kp(Ld − L)a,

τ = −S(Jω)ω + Jω̇d − kω(ω − ωd) + S(pd)(ω − ωd)

− kRϕ(Ld(In − a1⊤)Da(In − 1a⊤)L).

The nature of the hybrid and the continuous control law is very different. The continuous
feedback law renders A almost globally asymptotically stable, i.e., it is unable to steer the
vehicle towards the desired attitude if it starts in an unwanted critical point and, even if it
does not, the influence of arbitrarily small noise may degrade the convergence rate to the
desired set-point or, in a worst-case scenario, completely prevent its stabilization. In order
to illustrate this phenomenon, let us consider a simplified scenario where the attitude of the
rigid body is given by

R(θ, z) =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 , (40)

with θ ∈ R and z =
[
0 0 1

]⊤
. Let M1 = M2 = I3, u1 = u2 = z and k1 = −k2 = k > 0.

Under these conditions, one may check that the critical points of each Lyapunov function
Vq(R̃) = PMq

(T q(R̃)) are at θ = 0 and at the point θ0 , 0 which is solution to the algebraic
equation

sin(2k(1 − cos θ0) + θ0) = 0.

Two synergistic Lyapunov functions have their critical point apart from each other, enabling
hysteretic switching between the controllers, as shown in Figure 2. Notice that while this
choice of parameters provides a family of synergistic potential functions in the simplified
case of SO(2) (40), it does not work if R̃ ∈ SO(3) because the criteria (26) are not met.

For the first simulation, we selected the following initial condition

p(0, 0) =




1
0
0


 , R(0, 0) ≈




−0.0913 0.9958 −0.0000
0.9916 0.0908 −0.1014

−0.0913 −0.0093 −0.9948


 ,

v(0, 0) = 0 ω(0, 0) = 0,

which is such that R̃(0, 0) is in a neighbourhood of Crit PM and the initial position is offset
from the desired one.

Figure 3 depicts the evolution of the distance between R(t) and Rd ∈ SO(3) (measured

in terms of trace(I3 − R̃)) and the norm of the position, linear velocity and angular velocity

∗Notice that the term
d2

dt2

(
−Rdpd + ge3

| − Rdpd + ge3|

)

in (38) is a function of the reference trajectory xd.
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Figure 2. Comparison between the simplified hybrid and continuous closed-loop systems. The
existence of hysteretic switching in the hybrid system increases the robustness to measurement

noise.

errors, denoted by |p̃(t)|, |ṽ(t)| and |ω̃(t)|, respectively. In this simulation, we consider an

additive disturbance signal to the torque, denoted by d(R̃, q), and given by

d(R̃, q) = (1 + ǫ)Θ(R̃, q)⊤ϕ(T q(R̃)M), (41)

where ǫ > 0. Notice that this disturbance is 0 if and only if R̃ ∈ Crit Vq and since it
overcomes the negative attitude feedback, the attitude error of the continuous system
converges to an unwanted critical point on the SO(3) manifold while the disturbance signal
converges to 0, as suggested by Figure 4. Since the unwanted critical points Crit Vq\I3 lie in
the jump set D of the hybrid system, the hybrid controller switches and is able to drive the
rotation error R̃ to the identity matrix. Nevertheless, both controllers are able to track the
position, tangential velocity, and angular velocity components of the reference trajectory
xd. However, it should be clear from the analysis of Figure 4 that the continuous controller
tracks the desired position trajectory with an attitude error of 180◦.
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Figure 3. Simulation results for an initial condition close to a critical point of PM under the influence
of the disturbance (41)
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Figure 4. Disturbance signal (41) used in the first simulation.

For the second simulation, we changed the initial rotation matrix to

R(0, 0) ≈




0.0979 0.9695 −0.2256
0.9909 −0.1159 −0.0777

−0.0920 −0.2160 −0.9711


 ,

so as to place R̃(0, 0) near a critical point of PM (T 1(Re)). Since q(0, 0) = 1, the initial
condition lies in the jump set, immediately changing the mode of the controller to q = 2. It
can be seen in Figure 5 that the performance of the two controllers are similar in this
situation. This is so because the family of synergistic potential functions used in this
application is very close to the original modified trace function (that is, before using the
angular warping technique), as reflected in the small synergy gap δ. The synergy gap may be
increased by appropriate tuning of the parameters k1 and k2, but it is ultimately constrained
by the geometry of the landmarks, since it depends on the eigenvalues of XDaX⊤.
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Figure 5. Simulation results for an initial condition close to a critical point of Vq.
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6. CONCLUSIONS

In this work we have presented a control law which enables the global asymptotic
stabilization of a fully actuated rigid body to a desired trajectory in SE(3) × R6, using
the measurements from the angular velocity, the locations of given landmarks and their
rate of change. We have employed recent developments on synergistic Lyapunov functions
and proved that, under mild assumptions on the geometry of the landmarks, the problem
is solved by the proposed control law. We also presented simulation results which illustrate
the advantages of the proposed control law over standard continuous feedback strategies.
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A. PROOF OF THEOREM 5

From (23), we have that Vq(R) = PMq
(T q(R)). Since (22) is real valued and continuously

differentiable in SO(3) and, by assumption, kq ∈ R and uq ∈ S2, we know from [41,
Theorem 8] that (24) is a diffeomorphism in SO(3), provided that (25) holds. From [41,
Corollary 9], we have that Vq(R) is a potential function on SO(3) and, consequently,
V := {V1(R), V2(R)} is a family of potential functions on SO(3).
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Using (5), (23), M1 = M2 = M , u1 = u2 = u and the definition of V , we are able to
obtain the following expression for the synergy gap µ(V ):

µ(V ) = min
q∈Q

R∈Crit Vq\{I3}

max{0, trace((I3 − ekqPM (R)S(u)R)M)

− trace((I3 − e−kqPM (R)S(u)R)M)}
= min

q∈Q
R∈Crit Vq\{I3}

max{0, trace((e−2kqPM (R)S(u) − I3)ekqPM (R)S(u)RM)}

= max





0, min
q∈Q

R∈Crit Vq\{I3}

trace((e−2kqPM (R)S(u) − I3)ekqPM (R)S(u)RM)





.

(42)

From [41, Theorem 6] and (23), we have that Crit Vq = T −1
q (Crit PM ) or, equivalently,

T q(Crit Vq) = Crit PM . We also know from [2, Lemma 4.1] that

Crit PM = {I3} ∪





⋃

i∈{1,2,3}

{R(π, vi)}



 ,

where vi ∈ S2 is a normalized eigenvector of M ∈ R3×3. Using the previous two facts, we
have that

ekqPM (Rqi
)S(u)Rqi

= R(π, vi) ∀i ∈ {1, 2, 3}, (43)

where Rqi
∈ SO(3) denotes the i-th element of Crit Vq\{I3} ⊂ SO(3). From [46,

Section 9.13.3], we have that the matrix M can be expressed as a function of its eigenvalues
and unitary-norm eigenvectors as follows

M =
3∑

j=1

λjvjv⊤
j ,

and, using (4) and the relation S(u)2 = uu⊤ − u⊤u I3, we have that

ekPM (Rqi
)S(u)Rqi

M = R(π, vi)M

= (I3 + sin(vi)S(vi) + (1 − cos(π))S(vi)
2)

3∑

j=1

λjvjv⊤
j

= (I3 + 2(viv
⊤
i − I3))

3∑

j=1

λjvjv⊤
j

= 2
3∑

j=1

λjviv
⊤
i vjv⊤

j −
3∑

j=1

λjvjv⊤
j .

(44)

Since the matrix M is symmetric, then {vi}i∈{1,2,3} constitutes an orthonormal basis in R3

and, consequently, v⊤
j vi = 0 for all i , j. Replacing this relation and v⊤

i vi = 1 into (44)
yields

ekPM (Rqi
)S(u)Rqi

M = 2λiviv
⊤
i −

3∑

j=1

λjvjv⊤
j . (45)

Using (4) we have that

e−2kPM (R)S(u) = I3 − sin(2kPM(R))S(u) + (1 − cos(2kPM(R))S(u)2,
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and replacing this relation, (43) and (45) into (42) yields

µ(V ) = max
{

0,

min
q∈Q

i∈{1,2,3}

(1 − cos(2kPM(Rqi
))) trace((uu⊤ − I)(2λiviv

⊤
i −

3∑

j=1

λjvjv⊤
j ))

− sin(2kPM(Rqi
)) trace(S(u)(2λiviv

⊤
i −

3∑

j=1

λjvjv⊤
j ))
}

.

(46)

Notice that, using the property trace(AB) = trace(BA), trace(S(u)vv⊤) = v⊤S(u)v = 0
for all v ∈ R3, because the quadratic form of a skew symmetric matrix is always 0, thus we
may drop the last term in (46). With some additional computations we may rewrite (46) as

µ(V ) = max
{

0,

min
q∈Q

i∈{1,2,3}

(1 − cos(2kPM(Rqi
))) trace(

3∑

j=1

λj(1 − (u⊤vj)2) − 2λi(1 − (u⊤vi)))
}

.

From (25) we have that 0 < k < (
√

2‖λ‖2)−1 where λ :=
[
λ1 λ2 λ3

]⊤
and from the

properties of the modified trace function of matrix M we have that PM(Rqi
) < ‖λ‖1. Using

the property ‖λ‖1 ≤
√

3‖λ‖2 we conclude that

0 < 2kPM(Rqi
) <

√
6,

which in turn implies that 1 − cos(2kPM(Rqi
)) > 0 for all Rqi

∈ Crit Vq\{I3}. We may
conclude that the synergy gap µ(V ) is greater than 0 if and only if (26) is verified. �
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