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ABSTRACT
The use of nonlinear model-predictive methods for path plan-
ning and following has the advantage of concurrently solving
problems of obstacle avoidance, feasible trajectory selection,
and trajectory following, while obeying constraints on con-
trol inputs and state values. However, such approaches are
computationally intensive, and may not be guaranteed to
return a result in bounded time when performing a non-
convex optimization. This problem is an interesting appli-
cation to cyber-physical systems due to their reliance on
computation to carry out complex control. The computa-
tional burden can be addressed through model reduction, at
a cost of potential (bounded) model error over the prediction
horizon. In this paper we introduce a metric called uncon-
trollable divergence, and discuss how the selection of the
model to use for the predictive controller can be addressed
by evaluating this metric, which reveals the divergence be-
tween predicted and true states caused by return time and
model mismatch. A map of uncontrollable divergence plot-
ted over the state space gives the criterion to judge where
reduced models can be tolerated when high update rate is
preferred (e.g. at high speed and small steering angles), and
where high-fidelity models are required to avoid obstacles or
make tighter curves (e.g. at large steering angles). With
this metric, we design a hybrid controller that switches at
runtime between predictive controllers in which respective
models are deployed.
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1. INTRODUCTION
Model Predictive Control (MPC) produces an optimized

control input sequence for a system based on performance
of a predictive model according to a cost function under
constraints. The optimization solution is a sequence of con-
trol inputs and state predictions over a finite horizon. The
motivation of this work comes from the need to synthesize
obstacle-avoiding trajectories for a path-planning ground ve-
hicle which may be carring passengers. The vehicle (system)
will need to synthesize and then follow trajectories to arrive
at a final or intermediate destination while meeting a veloc-
ity and heading constraint at that location and satisfying
other state constraints all along the trajectory.

MPC has some attractive features for systems such as
these, where desired trajectories may be infeasible and safety
constraints can be specified in terms of state and control

variables: (a) it handles constraints systematically as part
of the cost function; and (b) it guarantees feasibility of the
trajectory through the use of a predictive model that ap-
proximates the system plant over the horizon.

There are well-known limitations of the use of MPC at
runtime. The optimization process is computationally in-
tensive for nonlinear plants (such as car-like robots) whose
optimal solution cannot be expressed in closed form [3]. Fur-
ther, the online optimization is not guaranteed to complete
in real time [9] or may return a local optimum [16].

Approaches to mitigate these risks fall into three major
categories: (i) enforce timing constraints if a solution has
not yet been found; (ii) operate the system in degraded
mode until a solution is found; or (iii) select a predictive
model that only approximates the plant model, but which
guarantees (or significantly improves the guarantee) that a
solution will be obtained in time.

Approach (i), enforcing the timing constraints, can be per-
formed in several ways. Multiple optimization engines could
be executed at runtime, and the first one to return a feasible
solution is selected. The most draconian approach is to can-
cel the optimization routine after a certain time and proceed
with the best solution found so far. This approach faces the
risk that no feasible solution may have been obtained when
the routine is halted.

Approach (ii), operating in degraded mode, has a few
alternative solutions. One is to continue to execute the
control inputs from the previous solution until a new, op-
timal, solution is returned. The major limitation of this
approach is that the solution will be for a timestep that has
already passed, and any new constraint issues (e.g., to avoid
undesired regions of the system state) will not have been
accounted for since the last solution. This is particularly
problematic if the solution to the optimization takes several
timesteps to calculate. In situations such as these, the sys-
tem behavior at runtime might be modified until a viable
solution is returned. As an example, a vehicle might reduce
its velocity until it gets a feasible solution. A limitation
of this approach is that operation in degraded mode might
affect nonfunctional metrics such as passenger comfort.

Approach (iii), selecting a reduced-complexity predictive
model, helps to provide a significant margin for robustness
to potential disturbances. When executed in some areas of
the state space, this approach will execute reliably—e.g, a
linearization around an operating point. When the system
must be operated in a region of the state space where lin-
earization cannot be effective, an alternative approach is to
select reduced order predictive models that are known to



be simple to use when computing an optimal solution. An
example of this approach is to select the kinematic (rather
than the dynamic) model for problems such as path plan-
ning and following. However, as described in [5], for a car-
like robot the kinematic model diverges more quickly than
the dynamic model when they are used in prediction.

Contribution of this work
The contribution of this paper is a unique combination of
approaches (iii) and (ii) which in turn improve guarantees
such that approach (i) need not be considered. We describe
the use of a hybrid controller that switches between predic-
tive models when computing the optimal solution to the cost
function. By selecting the appropriate model when perform-
ing the search for the optimal control input vector, we can
reduce the time needed to compute the optimization solu-
tion (if we need to go fast), or we can reduce the error of
the predictive model (if we need to be accurate).

As the astute reader realizes, a naive approach to this
design is that the system may need to compute in time while
being accurate, or may need to be accurate while going fast.
In order to meet these two goals, the paper describes how we
define the switching criteria for the hybrid model through
a metric we introduce called the uncontrollable divergence
(UD) of the system. It is calculated using the error of the
predictive models to the plant model, and the state change
that occurs while awaiting the optimizer’s result.

In this work we take both the kinematic and dynamic
models of our ground vehicle and quantify the UD (within
the same MPC implementation) over the entire state space.
We will show that within some state space area (e.g., high
speed with low steering angle), the reduced model can have
similar UD as that of high fidelity model but provides quicker
return of solutions. In this region of the state space, we say
the reduced model outperforms the high fidelity model.

The reason this is valid is that no model would never be
used at high speed with a high steering angle, since this
region of the state space is deemed unsafe by the system
constraints. At low speed, the dynamical model will out-
perform the kinematic model for high steering angles: but
at low speed, the system can afford to wait longer for the
optimization routine to return, since the vehicle is traveling
slower!

Organization
The rest of the paper is organized out as follows. We for-
mulate the model-predictive control problem that we aim
to solve, and explicitly lay out the mathematical forms of
our predictive models and cost functions. We then formally
state the problem and our approach to its solution. Next,
we demonstrate how to calculate the uncontrollable diver-
gence of this sytem, and how to use that metric to define
the hybrid predictive controller. We then provide evidence
that the designed system improves on the timing and ac-
curacy metrics for improved behavior as described in items
(i), (ii), and (iii) above. Finally, we also demonstrate that
the switching conditions of our controller agree with previ-
ous research results for the application we selected, in which
the velocity of the ground vehicle will be already be limited
for reasons of safety, not for reasons of ensuring that the
optimization routine returns in time.

2. BACKGROUND

In this section we examine related work that follows the
approaches laid out in the introduction. We then formulate
the MPC problem and describe the cost functions used, the
vehicle models we use as the predictive models for the MPC
solution, and then describe the vehicle-specific constraints
and how we define the true plant model for executing simu-
lations.

2.1 Related Work
Predictive control for trajectory synthesis and path fol-

lowing of a car-like robot utilizes a nonlinear vehicle model
with time-varying constraints. Linearized MPC (LMPC)
has the advantages over nonlinear approaches with its low
computational cost [14] and avoidance of the occurrence of
non-convex programming which is common in NMPC [11].
As shown in [18], [9] and [13], linearization is normally per-
formed along the previous horizon of prediction. The key
limitation of LMPC for nonlinear plants is that the solution
either diverges significantly from the plant (due to propa-
gation error in the linear models away from their operating
region) or that the computation of the solution comes at
a high computational cost (if linearizations are performed
at runtime), or that the execution of the system is overly
conservative (if control inputs are selected to minimize the
model error during execution).

Works such as [19, 1] consider the uncertainty error origi-
nating from linearization or bounded disturbance when de-
signing robust MPCs. Such approaches specify as part of
the cost function the uncertainty of the maximum possi-
ble model error and then minimize this cost function. This
min-max scheme carries a high computational burden, but
results in the minimum error among available linearizations.

In [17] various MPC computational schemes are surveyed
and commercially available vendors are described. In this
paper we applied AMPL [20] and minos [10] as our opti-
mization tools and we use MATLAB to integrate the opti-
mization results into a cohesive simulation.

Several works address unbounded return time of the op-
timizer through an approach called layering. In [6, 8, 2],
slower dynamics are assigned to an outer loop predictive
controller, which sends supervisory inputs to low-level pre-
dictive controllers that have faster dynamics. The drawback
of this approach is that layering introduces complexities in
design and implementation, and decouples the system design
into different loops of execution, making the design harder
to understand.

2.2 MPC Formulation
Consider the nonlinear continuous time plant:

ξ̇ = f(ξ, u) (1)

where ξ ∈ Rn is the state vector, u ∈ Rm is the control
input vector, and f : Rn × Rm → Rn. Let superscript ˆ
denote discretization by a sample time of ∆T seconds , and
f̂ denote the discrete time plant:

ξk+1 = f̂(ξk, uk) (2)

where f̂ : Rn×Rm → Rn, and k ∈ {0, 1, · · · } denotes discrete
time.

To differentiate the plant’s states and MPC’s predicted
states (as shown in Figure 1), let subindex t represent the
discrete time over the prediction horizon N ∈ {1, 2, · · · },
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Figure 1: The solid squares represent the plant, and
the dashed squares represent the prediction. Note
that, only two predicted states, ξ∗k,k+1 and ξ∗k,k+2, are
shown in the figure. The divergence between solid
and dashed lines indicates model mismatch.

therefore, ξk,t denotes the predicted state at time t when
the initial state ξk and all planned inputs uk,k, · · · , uk,t−1

up until t− 1 are given.
For convenience, let ξk,k be equivalent to ξk; then the

nonlinear model used by MPC for prediction is

ξk,t+1 = f̂q(ξk,t, uk,t) (3)

t ∈ {k, k + 1, · · · , k +N − 1}

where f̂q : Rn × Rm → Rn, and ξk is fed into the prediction
as the initial state. The integer q ∈ Q := {0, 1, · · · } is the
index of the predictive model currently in use, and the size
of Q indicates the number of available models. We define
model mismatch Γ̂q : Rn → Rn as:

Γ̂q(ξ) := f̂(ξ, u)− f̂q(ξ, u)

which captures the model error between the discrete time
plant f̂ and the q-th predictive model f̂q.

MPC solves the optimization problem Pq(ξk) at time k by

using the model f̂q. We denote the input sequence {uqk,k, u
q
k,k+1,

· · · , uqk,k+N−1} by Uqk , and formulate the following problem:

Pq(ξk) : argmin
U

q
k

{JN (ξk, U
q
k ) : Uqk ⊂ Rm} (4)

JN (ξk, U
q
k ) =

k+N−1X
t=k

`(ξqk,t, u
q
k,t) + F (ξqk,k+N ) (5)

where ` : Rn × Rm → R+ is the stage cost function, and
F : Rn → R+ is the terminal cost function.

Denote the optimal solution to Pq(ξk) by:

Uq∗k = {uq∗k,k, u
q∗
k,k+1, · · · , u

q∗
k,k+N−1}

By feeding Uq∗k into the model f̂q, we obtain the optimal
prediction sequence Ξq∗k = {ξq∗k,k+1, · · · , ξ

q∗
k,k+N−1, ξ

q∗
k,k+N}.

The first input uq∗k,k is applied to the plant in (2), therefore,

the implicit control law is κq(ξk) := uq∗k,k. Then, at k we
obtain

ξk+1 = f̂ (ξk, κq(ξk))

Then the hybrid controller may select a q′ ∈ Q (either q′ = q

or q′ 6= q) and solves problem Pq′(ξk+1), and continues this
process indefinitely. Note that, if we count the MPC return
time in, the plant would have a displacement ∆ξk ∈ Rn
from the observed ξk during the optimization process, and
the plant state at k + 1 would actually be:

ξk+1 = f̂ (ξk + ∆ξk, κq(ξk))

To construct a LMPC at time k, as described in [7], one

can linearize the model f̂q over the previous optimal solution
u∗k−1,t ∈ U∗k−1 and prediction ξ∗k−1,t ∈ Ξ∗k−1:

ξqk,t+1 = Ak−1,t(ξ
q
k,t − ξ

∗
k−1,t) +Bk−1,t(u

q
k,t − u

∗
k−1,t)

+f̂q(ξ
∗
k−1,t, u

∗
k−1,t) (6)

where Ak−1,t =
∂f̂q

∂ξ

˛̨̨
ξ∗

k−1,t
,u∗

k−1,t

, Bk−1,t = ∂f̂
∂u

˛̨̨
ξ∗

k−1,t
,u∗

k−1,t

.

Note that, Ak−1,t, Bk−1,t and the last term in (6) can be
obtained in advance of the current optimization computa-
tion.

Hence, the MPC solves optimization problem Pq(ξk) in
(4) subject to constraint in (6). Other constraints are intro-
duced in the following subsections.

2.3 Vehicle Models
In this work, two vehicle models are selected (Q = {0, 1})

as available predictive models for an MPC controller. The
continuous-time models in (7) and (8) are discretized into

f̂0 and f̂1, respectively. The kinematic model (q = 0) is sim-
plified significantly from the plant, with the dynamic model
(q = 1) being relatively more accurate when compared to
the plant model.

2.3.1 Kinematic Model
The kinematic model we use is from [22]. Let ξ = [x, y, θ]T ,

as shown in Figure 2a, where θ is the azimuth. The model
is described in (7).

ξ̇ =

24v sin θ
v cos θ
v tan δ
L

35 (7)

where L is a system parameter for the length of vehicle base,
and the control inputs u = [v, δ]T represent velocity and
steering angle.

2.3.2 Dynamic Model
For the dynamical predictive model we utilize the form

developed in [15]. Specific customizations for this work
utilize the following assumptions: (i) each tire shares the
same parameters (vertical load, stiffness, etc.), and the lat-
eral forces on left side and right side tires are symmetric;
(ii) air resistance is negligible; and (iii) the vehicle is front-
wheel drive (and front-wheel steered), and that the slip an-
gle equals the steering angle. Using vehicle mass as m, and
orientational speed by ϕ, the simplified dynamical model,
with acceleration a and steering angular speed ω as control
inputs u = [a, ω]T , is shown in Figure 2a and (8), where
ξ = [x, y, v, θ, ϕ, δ]T , and steering angle is δ.

ξ̇ =

2666664
v sin(θ)
v cos(θ)

cos(δ)a− 2
m
Fy,f sin(δ)

ϕ
1
J

(La (ma sin(δ) + 2Fy,f cos(δ))− 2LbFy,r)
ω

3777775 (8)

where La is the distance between the centers of the front
wheels and the vehicle’s center of mass, Lb is the distance
between the centers of the rear wheels and the vehicle’s cen-
ter of mass, and J is the rotational momentum. Fy,f is



the front tire lateral force, Fy,r is the rear tire lateral force.
These forces can be computed from:

Fy,f = Cy

„
δ − Laϕ

v

«
Fy,r = Cy

„
Lbϕ

v

«
where Cy is the lateral tire stiffness.

Clearly this model is more complex than that of (7). In
order to determine whether it accurately maps to our plant,
however, we must define the nonlinear plant model we will
use for executing the selected control inputs.

2.4 Nonlinear Plant
Regardless of which predicted model we choose, we send

the same inputs through our plant model. In this paper, we
use a car-like robot model developed in CarSim [4].

CarSim is a rich vehicle simulation environment which
is used in many industrial applications to establish a 50+
degree of freedom simulation of a vehicle. In this case, we
configured our plant to have the same wheelbase L and mass
m as a physical testbed. Since that testbed is not used in this
work, we consider the CarSim model to be the actual system
plant, and we will compare the behavior of our dynamical
and kinematic predictor models when the control inputs we
generated from those models are propagated through the
CarSim plant.

We gathered tire stiffness data from CarSim to use in (9).
The tire stiffness data, represented as the relationship among
lateral force, tire load and steering angle, is summarized in
Figure 2b, which was generated from the CarSim tool.

2.5 Vehicle-specific Constraints
Our work is motivated by the application of trajectory

synthesis and path following for an obstacle-avoiding car-like
robot. In this subsection we discuss the constraints which
a solution must satisfy for such a vehicle, namely: speed,
acceleration, and deceleration (braking), in (9):

vmin < v < vmax

af < afmax (9)˛̨̨
ab
˛̨̨
< abmax

where af and ab are acceleration and deceleration, respec-
tively. (10) constrains the steering angle and its derivative.

|δ| < δmax

|ω| < ωmax (10)

To prevent unsafe behavior (such as flipping the vehicle)
we consider that the steering angle is constrained by speed
as in [23, 12]. We denote the upper bound of δ by δ = g(v),
where g : R→ R. Thus, a linearized constraint at time k on
δk,t and vk,t should hold ∀t ∈ {k + 1, · · · , k +N}:

δk,t 6 g(v∗k−1,t−1) +
dg(v)

dv

˛̨̨̨
v∗

k−1,t−1

(vk,t − v∗k−1,t−1) (11)

Finally, constraints on position are enforced for obstacles.
Some works [2] create convex polyhedrons to depict the fea-
sible regions. In this paper we impose a linearized distance
inequality (from vehicle to obstacle) to constrain system be-
havior. We assume that the obstacles are detected at run

time by a range-limited sensor, and not known a priori. If
we assume obstacles are circular zones, then (xobs, yobs) is
the obstacle’s position and robs is the radius. xk,t and yk,t
are predicted positions in ξk,t. We denote the distance from
the point (xk,t, yk,t) to the obstacle center by:

D(xk,t, yk,t) :=
p

(xk,t − xobs)2 + (yk,t − yobs)2 > robs

and we can obtain (12) by linearizing the above inequality.

DAxk,t +DByk,t +DC > robs

∀t ∈ {k + 1, · · · , k +N} (12)

where

DA =
∂D

∂x

˛̨̨̨
ξ∗

k−1,t−1

DB =
∂D

∂y

˛̨̨̨
ξ∗

k−1,t−1

DC = D(x∗k−1,t−1, y
∗
k−1,t−1)−

DAx
∗
k−1,t−1 −DBy∗k−1,t−1

With these constraints on the state and control inputs,
plus the various predictive and plant models, we are ready
to state the problem to be solved.

3. PROBLEM STATEMENT & APPROACH
We propose a hybrid controller which implements supervi-

sory logic for a predictive controller, as shown in Figure 4b.
Suppose at time k ∈ {0, 1, · · · }, the vehicle state ξk is ob-
served for an optimization problem indexed by the predictive
model in use (i.e., Pq(sk)), and that two alternative predic-
tive models are available (shown in Figure 3).

Problem: select the predictive model q such that the di-
vergence of the state at ξk from the plant’s state with the
same inputs is minimized.

Approach: assume that the return time to solve Pq(ξk)
for each predictive model q can be estimated as ∆tq. After
time ∆tq the system state will be ξ′k ≈ ξk + f(ξk, u

∗
k−1,k)∆t

when the control is received (the vehicle executes the re-
maining control sequences generated from Pq(ξk−1)). Thus,
the vehicle state at k + 1 is:

ξk+1 = f̂
`
ξ′k, κq(ξk)

´
= f̂q

`
ξ′k, κq(ξk)

´
+ Γ̂q(ξ

′
k)

≈ f̂q (ξk, κq(ξk)) + Γ̂q(ξk) +

 
∂f̂q (ξk, κq(ξk))

∂ξ

+
∂Γ̂q (ξk, κq(ξk))

∂ξ

!
f (ξk, κq(ξk)) ∆tq(ξk) (13)

Since ξq∗k,k+1 = f̂q (ξk, κq(ξk)), we obtain the following from
(13):

ξk+1 − ξq∗k,k+1 ≈ Γ̂q(ξk) +
∂f̂ (ξk, κq(ξk))

∂ξ
f (ξk, κq(ξk)) ∆tq(ξk) (14)

The logic of q selection when solving Pq(ξk) should minimize
the prediction and actual state at k + 1:

q = argmin
q

‚‚ξk+1 − ξq∗k,k+1

‚‚ (15)

We name the value of
‚‚‚ξk+1 − ξq∗k,k+1

‚‚‚ as uncontrollable di-

vergence (UD). To simplify the equation (14) further for the
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Figure 2: (a) Schematic view of the vehicle model. Xv ⊥ Yv is the vehicle body-fixed coordinate. (b) Absolute
best (treated as steering angle in this work).
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s
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Figure 3: Closed-loop system. Hybrid MPC and
CarSim plant are in the loop.

specific vehicle system, we take the kinematic model (7) to

estimate the values of
∂f̂(ξk,κq(ξk))

∂ξ
and f (ξk, κq(ξk)), and

use the upper bound of
‚‚‚ξk+1 − ξq∗k,k+1

‚‚‚ to find q:‚‚ξk+1 − ξq∗k,k+1

‚‚ 6
‚‚‚Γ̂q(ξk)

‚‚‚
+

‚‚‚‚I +
∂f (ξk, κq(ξk))

∂ξ
∆T

‚‚‚‚ ‖f (ξk, κq(ξk))‖∆tq(ξk)

≈
‚‚‚Γ̂q(ξk)

‚‚‚+ v∆tq(ξk)

s
1 +

„
tanδ

L
v∆T

«2

(16)

where I is an identity matrix.
We will show that Γ̂q is a function of v ∈ ξ and δ ∈ ξ in

the following section. Thus, prior to running the hybrid con-

troller, the upper bound value of
‚‚‚ξk+1 − ξq∗k,k+1

‚‚‚ , ∀q ∈ Q

over finite samplings of bounded v and δ can be obtained.
Then the hybrid controller can take advantage of the switch-
ing logic in (15).

Assume two models are applied to synthesize two MPCs:
the kinematic model (f̂0(ξ, u)) produces the Kinematic MPC

(KMPC), and the dynamic model (f̂1(ξ, u)) produces the
Dynamic MPC (DMPC). The commercial vehicle modeling
software, CarSim, is used as the true plant in our simula-

tions.
In the next section we go through the demonstration and

calculation of uncontrollable divergence, and describe how
we calculated the estimated return times of the MPC con-
trollers to solve each Pq(ξk). If improved estimates to esti-
mate these numbers can be obtained, then those approaches
can be substituted.

4. DIVERGENCE & RETURN TIME
The principal characteristics of the uncontrollable diver-

gence revolve around the evolving state of the vehicle while
calculating the solution to Pq(sk). In our particular ex-
ample, the vehicle is moving during this time, so the state
evolves for that time duration. However, we discuss how to
consider that in some regions of the state space, the model
divergence between the two predictive models is low: so if
the return time is faster, a model with higher error (but
fast control input results) may actually be preferred to an
accurate model.

4.1 Model Divergence
We follow the divergence calculation concepts from [21].

Predictive models receive the same inputs as the plant model
with a constant tire angle (δ) and velocity (v). Differences
between the models are then compared throughout the range
of possible (v, δ) for the system. As shown in Figure 4a, we
define the model error in the vehicle’s body-fixed coordinates
(XM ⊥ YM ) as the correcting vector [x′ y′ θ′]T (T represents
matrix transpose) pointing from model to plant. With the
predictive model (indexed by q) and the plant, each starting
from the same initial state ξ with the same constant input
u, each diverging into model state f̂q(ξ, u) and vehicle state

f̂(ξ, u) after the period ∆T (∆T = 0.1sec in simulation),

then we have model mismatch Γq(ξ) = f̂(ξ, u) − f̂q(ξ, u).
Since the predictive model and the plant share the same
tire angle δ and speed v, the model mismatch value can be
obtained by the following:

‚‚‚Γ̂q(ξ)
‚‚‚ =

‚‚‚ˆx′ y′ θ′
˜T‚‚‚
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Figure 4: (a) The dashed and solid squares represent the model and the plant, respectively. The bold arrow,
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smaller ∆t would produce larger divergence during ∆T .

Figure 5a and Figure 5b reveal example positional and
azimuthal divergence rates.

4.2 Return Time of MPC
Simulations were conducted to measure the return time

of KMPC and DMPC. For the convenience of comparison,
KMPC and DMPC are simulated under the same circum-
stances (the same initial state, obstacles and target state).
Results of elapsed time are shown in Figure 6, and the ex-
pected values of return time are selected as 0.02sec (KMPC)
and 0.05sec for DMPC. It is important to note that even
though KMPC is expected to return more than twice as fast
as DMPC in these simulations (and generally in our experi-
ence), there is still no guarantee for either approach that the
algorithms will return in bounded time. Therefore, we are
careful not to claim that our approach will always return a
result: rather, we instead use a knowledge of the expected
return time to select the model whose return time and error
divergence agree with our constraints on accuracy.

4.3 Influence of Uncontrollable Divergence
To study the influences of UDs on control performance,

the CarSim model is employed as the plant.
Since the original CarSim model we selected accepts open-

loop throttle, brake cylinder pressure and steering torque as
control inputs, we tuned a controller as the interface for con-
verting target speed and steering angle (elements in ξ∗k,k+1)
to controls on throttle, cylinder pressure and steering torque.
Step responses of the interface controller are shown in Fig-
ure 7 to demonstrate its ability to stabilize itself to the target
state within the required time.

When the CarSim plant is applied, vehicle trajectory di-
verges from the predicted path in an obvious manner, as
shown in Figure 8a and Figure 8b. Such divergences orig-
inate from model mismatch. For example, the predictive
model would have a larger curvature than that of the plant,
when given a specific steering angle and speed. Thus, this
steering angle value that the MPC thinks is adequate to
reach a certain curvature would probably produce an inad-
equate curvature in the plant, and the vehicle can rush into

the obstacle and then normally will bounce out (or return
infeasible solution of P∗(ξk)). As a consequence, the pre-
dicted path will oscillate, and the actual trajectory does not
fit the obstacle boundary well.

5. HYBRID PREDICTIVE CONTROLLER
By taking the

‚‚‚Γ̂q

‚‚‚ , ∀q ∈ Q = {0, 1} and ∆tq, ∀q ∈
Q obtained above into (16), we plot out the upper bound
of UDs in Figure 9. Recall the switching logic in (15), to
speed up at run time, we plot out the switching boundary
in Figure 10a based on Figure 9 and let the supervisory logic
inquiry the figure instead of computing the argmin for q.

The abscissa and ordinate of Figure 10a are velocity v and
steering angle δ. The asterisk points region (upside) is where
kinematic model outperforms. The other region belongs to
the dynamic model. We denote the switching boundary (the
solid line in Figure 10a) between KMPC (q = 0) and DMPC
(q = 1) by Ω : R×R→ R and fit the boundary by tuning a
constant c > 0:

Ω(v, δ) = v − c
˛̨̨̨
1

δ

˛̨̨̨
= 0

The mutual constraint between speed and steering angle de-
scribed in (11) is also plotted in the figure as a dashed curve.
Let q ∈ {0, 1} for the MPC control law κq(ξ) ,where 0 indi-

cates KMPC, and 1 indicates DMPC. Let ε :=
ˆ
q ξT

˜T ∈
{0, 1}×Rn, we describe the closed-loop system, as shown in
Figure 3, in (17).

H =

8>><>>:
ε ∈ ({0} × C0) ∪ ({1} × C1), ε+ =

»
q

f̂ (ξ, κq(ξ))

–
ε ∈ ({0} × D0) ∪ ({1} × D1), ε+ =

»
1− q
ξ

– (17)

% ∈ R+ is a tuned value to prevent the possibility of several
instantaneous switches between controllers. C and D are
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Figure 5: (a). Comparison of positional divergence rate (
‚‚[x′ y′]T

‚‚ /∆T ) of the dynamic model (the bottom
surface) and the kinematic model(the upper surface). (b). Comparison of azimuthal divergence rate (‖θ′‖ /∆T )
of the dynamic model (the bottom surface) and the kinematic model (the upper surface).

Figure 6: Comparison of expected return time of
KMPC ∆tq |q=0= 0.02 and DMPC ∆tq |q=1= 0.05.

defined in (18).

C0 = {ξ ∈ Rn : Ω(v, δ)− % < 0}
D0 = {ξ ∈ Rn : Ω(v, δ)− % > 0}
C1 = {ξ ∈ Rn : Ω(v, δ) + % > 0}
D1 = {ξ ∈ Rn : Ω(v, δ) + % 6 0} (18)

The CarSim trajectory controlled by the hybrid MPC is
shown in Figure 10b. We plot out the trajectories generated
by the hybrid controller, KMPC and DMPC in Figure 11.
The DMPC has similar performance as the hybrid controller,
and they both outperform the KMPC. Figure 12 shows the
deviations between trajectories and predictions. The KMPC
deviation oscillates more frequently than the DMPC, due to
its low control accuracy and frequent re-adjustment. The
hybrid controller and the DMPC have the similar deviations.

Figure 13 shows the return time of these 3 controllers.
The hybrid MPC reduces the return frequency; KMPC is
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Figure 7: Step response of controllers that convert
MPC signal into CarSim-compatible input. The
maximum acceleration is 3m/s2, which means the
maximum increasing speed difference of 10km/h may
happen within 1sec. The upper figure reveals the
controller’s ability to track target speed. Similarly,
the response in the bottom figure satisfies the max-
imum steering speed of 22.5◦ within 1sec.
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Figure 8: (a). Kinematic MPC (q = 0) only; there is significant divergence of the predicted from the plant
model, which results in a path that is unable to navigate between the two obstacles. (b). Dynamic MPC
(q = 1) only; here the selected trajectory and its tracking are much more aggressive.
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Figure 9: Comparison of UDs. The upper sur-
face belongs to KMPC, and the bottom belongs to
DMPC. These two surfaces are close at some region,
and diverge when v and δ increase.

still fastest, but with higher error (see Figure 12).

6. CONCLUSION
This work proposes a metric called uncontrollable diver-

gence, which accounts for tradeoffs of the divergence of model
and plant caused by model mismatch by normalizing the di-
verging models according to the effort required to optimize
with these models in a predictive controller. Based on this
metric, a mechanism for switching between multiple predic-
tive controllers is developed in order to lower the controller’s
return time while maintaining predictive accuracy.

The work is relevant to many kinds of problems in cyber-
physical systems where the runtime of a computer-in-the-
loop affects the performance of the system: if the models
used by the computer can impact this runtime in various
ways, then the technique proposed in this paper may be
used as a metric to determine whether switching between
models poses a significant runtime benefit.

Future work involves investigation of the stability and ro-
bustness of the controllers. We are also interested in switch-
ing controllers where more than two predictive models may
be used. Work by K. Zhang and J. Sprinkle is supported
in part by the National Science Foundation under award
CNS-1253334. Research by R. G. Sanfelice has been par-
tially supported by the National Science Foundation under
Grant no. ECS-1150306 and by AFOSR under Grant no.
FA9550-12-1-0366.
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