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Abstract—The property of desynchronization in an all-to-all network

of homogeneous impulse-coupled oscillators is studied. Each impulse-
coupled oscillator is modeled as a hybrid system with a single timer state

that self-resets to zero when it reaches a threshold, at which event all other

impulse-coupled oscillators adjust their timers following a common reset

law. In this setting, desynchronization is considered as each impulse-
coupled oscillator’s timer having equal separation between successive

resets. We show that, for the considered model, desynchronization is an

asymptotically stable property. For this purpose, we recast desynchroniza-
tion as a set stabilization problem and employ Lyapunov stability tools

for hybrid systems. Furthermore, several perturbations are considered

showing that desynchronization is a robust property. Perturbations on

both the continuous and discrete dynamics are considered. Numerical
results are presented to illustrate the main contributions.

I. INTRODUCTION

Impulse-coupled oscillators are multi-agent systems with state

variables consisting of timers that evolve continuously until a state-

dependent event triggers an instantaneous update of their values.

Networks of such oscillators have been employed to model the

dynamics of a wide range of biological and engineering systems.

In fact, impulse-coupled oscillators have been used to model groups

of fireflies [1], spiking neurons [2], [3], muscle cells [4], wireless

networks [5], and sensor networks [6]. With synchronization being

a property of particular interest, such complex networks have been

found to coordinate the values of their state variables by sharing

information only at the times the events/impulses occur [1], [7].

The opposite of synchronization is desynchronization. In simple

words, desynchronization in multi-agent systems is the notion that

the agents’ periodic actions are separated “as far apart” as possible

in time. Desynchronization is similar to clustering or splay-state

configurations, and is sometimes referred in the literature as inhibited

behavior [8], [9]. For impulse-coupled oscillators, desynchronization

is given as the behavior in which the separation between all of

the timers impulses is equal [10]. This behavior has been found to

be present in communication schemes in fish [11] and in networks

of spiking neurons [12], [13]. Desynchronization of oscillators has

recently been shown to be of importance in the understanding of

Parkinson’s disease [14], [15], in the design of algorithms that limit

the amount of overlapping data transfer and data loss in wireless

digital networks [5], and in the design of round-robin scheduling

schemes for sensor networks [6].

Motivated by the applications mentioned above and the lack of

a full understanding of desynchronization in multi-agent systems,

this paper pertains to the study of the dynamical properties of

desynchronization in a network of impulse-coupled oscillators with

an all-to-all communication graph. The uniqueness of the approach

emerges from the use of hybrid systems tools, which not only

conveniently capture the continuous and impulsive behavior in the

networks of interest, but also are suitable for analytical study of

asymptotic stability and robustness to perturbations.
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More precisely, the dynamics of the proposed hybrid system

capture the (linear) continuous evolution of the states as well their

impulsive/discontinuous behavior due to state triggered events. Anal-

ysis of the asymptotic behavior of the trajectories (or solutions) to

these systems is performed using the framework of hybrid systems

introduced in [16], [17]. To this end, we recast the study of desyn-

chronization as a set stabilization problem. Unlike synchronization,

for which the set of points to stabilize is obvious, the complexity

of desynchronization requires first to determine such a collection of

points, which we refer to as the desynchronization set. We propose

an algorithm to compute such set of points. Then, using Lyapunov

stability theory for hybrid systems, we prove that the desynchro-

nization set is asymptotically stable by defining a Lyapunov-like

function as the distance between the state and (an inflated version

of) the desynchronization set. In our context, asymptotic stability of

the desynchronization set implies that the distance between the state

and the desynchronization set converges to zero as the amount of time

and the number of jumps get large. Using the proposed Lyapunov-like

function and invoking an invariance principle, the basin of attraction

is characterized and shown to be the entire state space minus a set of

measure zero, which turns out to actually be an exact estimate of the

basin of attraction. Furthermore, also exploiting the availability of a

Lyapunov-like function, we analytically characterize the time for the

solutions to reach a neighborhood of the desynchronization set. In

particular, this characterization provides key insight for the design of

algorithms used in applications in which desynchronization is crucial,

such as wireless digital networks and sensor networks.

The asymptotic stability property of the desynchronization config-

uration is shown to be robust to several types of perturbations. The

perturbations studied here include a generic perturbation in the form

of an inflation of the dynamics of the proposed hybrid system model

of the network of interest and several kinds of perturbations on the

timer rates. Using the tools presented in [16], [17], we analytically

characterize the effect of these perturbations on the already estab-

lished asymptotic stability property of the desynchronization set. In

particular, these perturbations capture situations where the agents in

the network are heterogeneous due to having differing timer rates,

threshold values, and update laws. To verify the analytical results,

we simulate networks of impulse-coupled oscillators under several

classes of perturbations. Specifically, we show numerical results when

perturbations affect the update laws and the timer rates. Complete

numerical results can be found in an extended version of this paper

[18].

The remainder of this paper is organized as follows. Section II

is devoted to hybrid modeling of networks of impulse-coupled

oscillators. Section III-A introduces an algorithm to determine the

desynchronization set. Section III-B presents the stability results

while the time to convergence is characterized in Section III-C. The

robustness results are in Section III-D. Section IV presents numerical

results illustrating our results. Final remarks are given in Section V.

Notation The set R denotes the space of real numbers. The set

R
n denotes the n-dimensional Euclidean space. The set N denotes

the natural numbers including zero, i.e., N = {0, 1, 2, ...}. For an

interval K = [0, 1] and n ∈ N \ {0}, Kn is the n-product of the
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Fig. 1. An example of two impulse-coupled oscillators reaching desynchro-
nization (as ∆ti converges to a constant.) The internal resets (dark red circles)
map the timers to zero. The external resets (light green circles) map the timers
to a fraction (1 + ε) of their current value.

interval K, i.e., Kn = [0, 1] × [0, 1]× . . .× [0, 1]. The set B is the

closed unit ball centered around the origin in Euclidean space. The

symbol 1 represents the N -dimensional column vector of ones. The

symbol 1 represents the N ×N matrix full of ones. The symbol I

denotes the N ×N identity matrix. Given a closed set A ⊂ R
n and

x ∈ R
n, |x|A := minz∈A |x − z|. Given x ∈ R

n, |x| denotes the

Euclidean norm of x. The c-level set of V : domV → R is given

by LV (c) := {x ∈ domV : V (x) = c}.

II. HYBRID SYSTEM MODEL OF IMPULSE-COUPLED

OSCILLATORS

A. Mathematical Model

In this paper, we consider a model of N impulse-coupled oscilla-

tors. Each impulse-coupled oscillator has a continuous state (τi for

the i-th oscillator) defining its internal timer. Once the timer of any

oscillator reaches a threshold (τ̄ ), it triggers an impulse and is reset

to zero. At such an event, all the other impulse-coupled oscillators

rescale their timer by a factor given by (1 + ε) times the value of

their timer, where ε ∈ (−1, 0).1 Figure 1 shows a trajectory of two

impulse-coupled oscillators with states τ1 and τ2. In this figure, the

dark red circles indicate when a timer state has reached the threshold

and, thus, resets to zero. The light green circles indicate when an

oscillator is externally reset and, hence, decreases its timer by (1+ε)
times its current state.

According to this outline of the model, the dynamics of the

impulse-coupled oscillators involve impulses and timer resets, which

are treated as true discrete events and instantaneous updates, while

the smooth evolution of the timers before/after these events define

the continuous dynamics. We follow the hybrid formalism of [16],

[17], where a hybrid system is given by four objects (C, f,D,G)
defining its data:

• Flow set: a set C ⊂ R
N specifying the points where flows are

possible (or continuous evolution).

• Flow map: a single-valued map f : RN → R
N defining the

flows.

• Jump set: a set D ⊂ R
N specifying the points where jumps are

possible (or discrete evolution).

• Jump map: a set-valued map G : RN
⇒ R

N defining the jumps.

A hybrid system capturing the dynamics of the impulse-coupled

oscillators is denoted as HN := (C, f,D,G) and can be written

in the compact form

HN : τ ∈ R
N

{
τ̇ = f(τ ) τ ∈ C
τ+ ∈ G(τ ) τ ∈ D

, (1)

1Cf. the model for synchronization in [1] where ε > 0.

where N ∈ N \ {0, 1} is the number of impulse-coupled oscillators.

The state of HN is given by τ := [τ1 τ2 . . . τN ]⊤ ∈ PN :=
[0, τ̄ ]N . The flow and jump sets are defined to constrain the evolution

of the timers. The flow set is defined by

C := PN , (2)

where I := {1, 2, . . . , N} and τ̄ > 0 is the threshold. During flows,

an internal clock gradually increases based on the homogeneous rate,

ω. Then, the flow map is defined as f(τ ) := ω1 for all τ ∈ C
with ω > 0 defining the natural frequency of each impulse-coupled

oscillator. The impulsive events are captured by a jump set D and

a jump map G. Jumps occur when the state is in the jump set D
defined as

D := {τ ∈ PN : ∃i ∈ I s.t. τi = τ̄} . (3)

From such points, the i-th timer is reset to zero and forces a

jump of all other timers. Such discrete dynamics are captured

by the following jump map: for each τ ∈ D define G(τ ) =
[g1(τ ) g2(τ ) . . . gN(τ )]⊤ , where, for each i ∈ I ,

gi(τ ) =





0 if τi = τ̄ , τr < τ̄ ∀r ∈ I \ {i}
{0, τi(1 + ε)} if τi = τ̄ ∃r ∈ I \ {i} s.t. τr = τ̄
(1 + ε)τi if τi < τ̄ ∃r ∈ I \ {i} s.t. τr = τ̄

(4)

with parameters ε ∈ (−1, 0) and τ̄ > 0; for τ ∈ D, gi is not

empty. When a jump is triggered, the state τi jumps according to

the i-th component of the jump map gi. When a state reaches the

threshold τ̄ , it is reset to zero only when all other states are less

than that threshold; otherwise, if multiple timers reach the threshold

simultaneously, the jump map is set valued to indicate that either

gi(τ ) = 0 or gi(τ ) = (1+ ε)τi is possible. This is to ensure that the

jump map satisfies the regularity conditions outlined in Section II-B.2

B. Basic Properties of HN

1) Hybrid Basic Conditions: To apply analysis tools for hybrid

systems in [16], which will be summarized in Section III, the data

of the hybrid system HN must meet certain mild conditions. These

conditions, referred to as the hybrid basic conditions, are as follows:

A1) C and D are closed sets in R
N .

A2) f : RN → R
N is continuous on C.

A3) G : RN
⇒ R

N is an outer semicontinuous3 set-valued map-

ping, locally bounded on D, and such that G(x) is nonempty

for each x ∈ D.

Lemma 2.1: HN satisfies the hybrid basic conditions.

Proof: For a proof of Lemma 2.1 see [18].

Note that satisfying the hybrid basic conditions implies that HN is

well-posed [16, Theorem 6.30], which automatically gives robustness

to vanishing state disturbances; see [16], [17]. Section III-D considers

different types of perturbations that HN can withstand.

2) Solutions to HN : Solutions to general hybrid systems H (HN

in particular) can evolve continuously (flow) and/or discretely (jump)

depending on the continuous and discrete dynamics and the sets

where those dynamics apply. We treat the number of jumps as an

independent variable j and the time of flow by the independent

variable t. More precisely, we parameterize the state by (t, j).
Solutions to H will be given by hybrid arcs on hybrid time domains

[16], [17]. In the context of hybrid systems, a subset of R≥0 × N

2In [8], a more general flow map and a jump map incrementing τi by ε > 0
are considered.

3A set-valued mapping G : RN
⇒ RN is outer semicontinuous if its graph

{(x, y) : x ∈ RN , y ∈ G(x)} is closed, see [16, Lemma 5.10] and [19].
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is a hybrid time domain if it is of the form ∪J
j=0([tj , tj+1]× {j}),

with 0 = t0 ≤ t1 ≤ t2 ≤ . . ., where J ∈ N ∪ {∞}.

Lemma 2.2: From every point in C ∪ D, there exists a solution

and every maximal solution to HN is complete and bounded.

Proof: For a proof of Lemma 2.2 see [18].

Due to the jump map G, if the elements of the solution are initially

equal (denote this set as S := {τ ∈ PN : ∃i, r ∈ I, i 6= r, τi = τr})

it is possible for them to remain equal for all time. Furthermore, it

is also possible for solutions to be initialized on the jump set such

that one element is at the threshold and another is equal to zero

then after the jump they will be equal, e.g. let τ1 = τ̄ , τ2 = 0
then τ+

1 = τ+
2 = 0. We denote this set as G := {τ ∈ D \ S :

∃i, r ∈ I, i 6= r, τi = 0, τr = τ̄}. The next result considers solutions

initialized on the set X := S ∪ G.

Lemma 2.3: For each τ (0, 0) ∈ X , there exists a solution τ to

HN from τ (0, 0) such that, for some M ∈ {0, 1}, τ (t, j) ∈ S for

all t+ j ≥ M , (t, j) ∈ dom τ .

Proof: Consider a solution τ to the hybrid system HN with

initial condition τ (0, 0) ∈ S . Due to the flow map for each state

being equal, τ remains in S during flows. Furthermore, at points

τ ∈ S∩D, the jump map G is set valued by the definition of gi in (4).

From these points, G(τ )∩S 6= ∅. In fact, for each τ (0, 0) ∈ S , there

exists at least one solution such that τ (t, j) ∈ S for all t + j ≥ 0,

with (t, j) ∈ dom τ . Consider the case of solutions initialized at

τ (0, 0) ∈ G (Note that τ (0, 0) ∈ D). It follows that for some r ∈ I ,

τr(0, 0) = τ̄ and gr(τ (0, 0)) = 0. Therefore, after the initial jump,

we have that G(τ (0, 0))∩S 6= ∅, by which using previous arguments

implies that τ (t, j) ∈ S for all t+ j ≥ 1.

Furthermore, there is a distinct ordering to the jumps. If τ is such

that τi 6= τr for all i 6= r then the ordering of each τi is preserved

after N jumps. More specifically, we have the following result.

Lemma 2.4: For every solution τ to HN with τ (0, 0) /∈ X ,

if at (tj , j) ∈ dom τ we have 0 ≤ τi1(tj , j) < τi2(tj , j) <
... < τiN (tj , j) ≤ τ̄ for some sequence of nonrepeated elements

{im}Nm=1 of I (that is, a reordering of the elements of the set

I = {1, 2, . . . , N}) then, after N jumps, it follows that 0 ≤
τi1(tj+N , j +N) < τi2(tj+N , j +N) < ... < τiN (tj+N , j +N) ≤
τ̄ .

Proof: Let τ be a solution to HN from PN \ X . There exists a

sequence ik of distinct elements with ik ∈ I for each k ∈ I , such that

0 ≤ τi1(t, j) < τi2(t, j) < . . . < τiN (t, j) ≤ τ̄ over [t0, t1] × {0}.

After the jump at (t, j) = (t1, 0) we have 0 = τiN (t, j + 1) <
τi1(t, j+1) < τi2(t, j+1) < . . . < τiN−1

(t, j+1) < τ̄ . Continuing

this way for each jump, it follows that after N − 1 more jumps, the

solution is such that 0 ≤ τi1(tN , j +N) < τi2(tN , j +N) < . . . <
τiN (tN , j +N) ≤ τ̄ and the order at time (t, j) is preserved.

Using these properties of solutions to HN , the next section defines

the set to which these solutions converge and establishes its stability

properties.

III. DYNAMICAL PROPERTIES OF HN

Our goal is to show that the desynchronization configuration of

HN , which is defined in Section III-A, is asymptotically stable. We

recall from [16], [17] the following definition of asymptotic stability

for general hybrid systems with state x ∈ R
n.

Definition 3.1 (stability): A closed set A ⊂ R
n is said to be

• stable if for each ε > 0 there exists δ > 0 such that each

solution x with |x(0, 0)|A ≤ δ satisfies |x(t, j)|A ≤ ε for all

(t, j) ∈ domx;

• attractive if there exists µ > 0 such that every maximal solution

x with |x(0, 0)|A ≤ µ is complete and satisfies

lim(t,j)∈domx,t+j→∞ |x(t, j)|A = 0;

• asymptotically stable if stable and attractive;

• weakly globally asymptotically stable if A is stable and if, for

every initial condition, there exists a maximal solution that is

complete and satisfies lim(t,j)∈domx,t+j→∞ |x(t, j)|A = 0.

The set of points from where the attractivity property holds is

the basin of attraction and excludes all points where the system

trajectories may never converge to A. In fact, it will be established

in Section III-B that the basin of attraction for asymptotic stability of

desynchronization of HN does not include any point τ such that any

two or more timers are equal or become equal after a jump, which

is the set X defined in Lemma 2.3. For this purpose, a Lyapunov-

like function will be constructed in Section III-B to show that a

compact set denoted A, defining the desynchronization condition, is

asymptotically stable and weakly globally asymptotically stable.

A. Construction of the set A for HN

In this section, we identify the set of points corresponding to

the impulse-coupled oscillators being desynchronized, namely, we

define the desynchronization set. We define desynchronization as

the behavior in which the separation between all of the timers’

impulses is equal (and nonzero), see Figure 1. More specifically

desynchronization is defined as follows:

Definition 3.2: A solution τ to HN is desynchronized if there

exists ∆ > 0 and a sequence of non-repeated elements {im}Nm=1 of

I (that is, a reordering of the elements of the set I = {1, 2, . . . , N})

such that limj→∞(timj − t
im+1

j ) = ∆ for all m ∈ {1, 2, . . . , N −1}

and limj→∞(tNj − ti1j ) = ∆, where {timj }∞j=0 is the sequence of

jump times of the state τim .

In fact, this separation between impulses leads to an ordered

sequence of impulse times with equal separation. The desynchroniza-

tion set A for the hybrid system HN captures such a behavior and

is parameterized by ε, the threshold τ̄ , and the number of impulse-

coupled oscillators N .

To define this set, first we provide some basic intuition about the

dynamics of HN when desynchronized. The set A must be forward

invariant and such that trajectories staying in it satisfy the property in

Definition 3.2. Due to the definition of the flow map f , there exist sets

in the form of “lines” ℓk, each of them in the direction 1, which is the

direction of the flow map, intersecting the jump set at a point which,

for the k-th line, we denote as τ̃k. We define the desynchronization

set as the union of sets ℓk collecting points τ = τ̃k + 1s ∈ PN

parameterized by s ∈ R.

To identify τ̃k, consider a point τ̃k ∈ D \ X with components

satisfying τ̃k
1 = τ̄ > τ̃k

2 > τ̃k
3 > ... > τ̃k

N . Due to Definition 3.2,

it must be true that the difference between jump times are constant.

This means that there must be some correlation between ∆ and the

difference between, in this case, τk
1 and τk

2 . Moreover, there must

be a correlation between τk
1 and all other states at jumps. It follows

that this point belongs to A only if the distance between the expiring

timer (τ̃k
1 ) and each of its other components (τ̃k

i , i ∈ I \{1}) is equal

to the distance between the value after the jump of the timer expiring

next (τ̃k
2
+) and the value after the jump of its other components (τ̃k

i
+,

i ∈ I \ {2}), respectively. This property ensures that, when in the

desynchronization set, the relative distance between the leading timer

and each of the other timers is equal, before and after jumps. More

precisely,

τ̃k
1 − τ̃k

i = τ̃k
2
+ − τ̃k

next(i)
+ ∀ i ∈ I \ {1}, (5)
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where τ̃k+ = G(τ̃k) and next(i) = i + 1 if i + 1 ≤ N and 1
otherwise.4 Since X contains all points such that at least two or more

timers are the same, we can consider the case when one component

of τ̃k is equal to τ̄ at a time. For each such case, we have (N − 1)!
possible permutations of the other components and N possible timer

components equal to τ̄ , leading to N ! total possible sets ℓk.

For the N case, the algorithm above results in the system of

equations Γτs = b, where

Γ =




1 0 0 0 . . . 0
0 (2 + ε) −(1 + ε) 0 . . . 0

0 (1 + ε) 1 −(1 + ε)
. . .

.

..

0 (1 + ε) 0 1
. . . 0

...
...

... 0
. . . −(1 + ε)

0 (1 + ε) 0 0 . . . 1




(6)

and b = τ̄1, where τs is the state τ̃k sorted into decreasing order.

It can be shown that for any ε ∈ (−1, 0), a solution τs exists (see

Lemma A.1). Then, τs needs to be unsorted and becomes τ̃k in the

definition of the set ℓk.

The solution to Γτs = b is the result of a single case of τ ∈ D\X .

As indicated above, to get a full definition of the set A, the N ! sets

ℓk should be computed. For arbitrary N , the set A is given as a

collection of sets ℓk given by

A =

N!⋃

k=1

ℓk, (7)

where, for each k ∈ {1, 2, . . . , N !}, ℓk := {τ : τ = τ̃k + 1s ∈
PN , s ∈ R}.

B. Lyapunov Stability

Lyapunov theory for hybrid systems is employed to show that the

set of points A is asymptotically stable. Our candidate Lyapunov-like

function, which is defined below and uses the distance function, is

built by observing that there exist points where the distance to A
may increase during flows. This is due to the sets ℓk being a subset

PN . To avoid this issue, we define

Ã =
N!⋃

k=1

ℓ̃k ⊃ A

where ℓ̃k is the extension of ℓk given by

ℓ̃k =
{
τ ∈ R

N : τ = τ̃k + 1s, s ∈ R

}
. (8)

Then, with this extended version of A, the proposed candidate

Lyapunov-like function for asymptotic stability of A for HN is given

by the locally Lipschitz function

V (τ ) = min{|τ |ℓ̃1 , |τ |ℓ̃2 , . . . , |τ |ℓ̃k , . . . , |τ |ℓ̃N !} ∀ τ ∈ PN \ X
(9)

where, for some k, |τ |ℓ̃k is the distance between the point τ and the

set ℓ̃k.5 The following theorem establishes asymptotic stability of A
for HN . We show that the change in V during flows is zero and that

at jumps we have a strict decrease of V ; namely, V (G(τ ))−V (τ ) =
−|ε|V (τ ). A key step in the proof is in using [16, Theorem 8.2] on

a restricted version of HN .

4Note that G is single valued at each τ̃k /∈ X .
5The set ℓ̃k can be described as a straight line in Rn passing through a point

τ̃k and with slope 1. Then, |τ |
ℓ̃k

can be written as the general point-to-line

distance |(τ̃k − τ)− 1/N((τ̃k − τ)⊤1)1|.

Theorem 3.3: For every N ∈ N, N > 1, τ̄ > 0, ω > 0, and

ε ∈ (−1, 0), the hybrid system HN is such that the compact set A is

asymptotically stable with basin of attraction given by BA := PN\X .

Furthermore, A is weakly globally asymptotically stable.

Proof: Let the set Xv define the v-inflation of X (defined in

Lemma 2.3), that is, the open set6 Xv := {τ ∈ R
N : |τ |X <

v}, where v ∈ (0, v∗) and v∗ = minx∈X ,y∈Ã |x − y|. Given any

v ∈ (0, v∗), we now consider a restricted hybrid system H̃N =
(f, C̃,G, D̃), where C̃ := C \ Xv and D̃ := D \ Xv , which are

closed. We establish that Ã is an asymptotically stable set for H̃N .

Note that the continuous function V , given by (9), is defined as the

minimum distance from τ to Ã, where Ã is the union of N ! sets ℓ̃k
in (8). To determine the change of V during flows7, we consider the

relationship between the flow map and the sets ℓ̃k. The inner product

between a vector pointing in the direction of the set ℓ̃k and the flow

map on C̃ satisfies

1
⊤f(τ ) = 1

⊤(ω1) = ωN = |1||ω1| = |1||f(τ )| cos θ

, which is only true if θ is zero. Therefore, the direction of the flow

map and of the vector defining ℓ̃k are parallel, implying that the

distance to the set Ã is constant during flows.

The change in V during jumps is given by V (G(τ ))− V (τ ) for

τ ∈ D̃ \ Ã. Due to the fact that we can rearrange the components of

τ ∈ PN \ X , without loss of generality, we consider a single jump

condition, namely, we consider τ such that τ̄ = τ1 > τ2 > . . . >
τN−1 > τN . Using the formulation in Section III-A and Lemma A.1,

the elements of the vector τ̃k associated with ℓ̃k for this case of τ

are given by τ̃k
i =

∑N−i
p=0

(ε+1)p

∑N−1
p=0

(ε+1)p
τ̄ , which by Lemma A.2 is equal

to
(ε+1)N−i+1−1

(ε+1)N−1
τ̄ . After the jump, G(τ ) is single valued and is

such that its elements are ordered as follows: g2(τ ) > g3(τ ) >
. . . > gN(τ ) > g1(τ ) = 0. Specifically, the jump map is G(τ ) =
[0, (1+ε)τ2, . . . , (1+ε)τN ]⊤. Then, the formulation in Section III-A

and Lemma A.1 leads to a case of τ̃k denoted as τ̃k′

. By Lemma A.2,

the elements of the vector τ̃k′

are given by τ̃k′

1 = ε

(ε+1)N−1
τ̄ and

τ̃k′

i = (ε+1)N−i+2−1

(ε+1)N−1
τ̄ for i > 1. Due to the ordering of τ and G(τ ),

τ̃k′

is a one-element shifted (to the right) version of τ̃k.

From the definition of τ̃k above, V at τ reduces to

V (τ ) = |τ |ℓ̃k =

∣∣∣∣(τ̃
k − τ )−

1

N
((τ̃k − τ )⊤1)1

∣∣∣∣

for some k. Note that

(τ̃k − τ )⊤1 =

N∑

i=1

τ̃k
i −

N∑

i=1

τi

reduces to
∑N

i=2 τ̃
k
i −

∑N

i=2 τi since τ1 = τ̃k
1 = τ̄ . Using

Lemmas A.2 and A.3, it follows that

N∑

i=2

τ̃k
i =

∑N

i=2

∑N−i

p=0 (ε+ 1)p

∑N−1
p=0 (ε+ 1)p

τ̄ =
((ε+ 1)N − 1)−Nε

ε((ε+ 1)N − 1)
τ̄ .

Then, the first element of the vector inside the norm in the expression

of V (τ ) is given as

(τ̃k
1 − τ1)−

1

N

(
((ε+ 1)N − 1) −Nε

ε((ε+ 1)N − 1)
τ̄ −

N∑

i=2

τi

)

= −
((ε+ 1)N − 1)−Nε

εN((ε+ 1)N − 1)
τ̄ +

1

N

N∑

i=2

τi,

6The set Xv is open since every point τ ∈ Xv is an interior point of Xv .
7Its derivative can be computed using Clarke’s generalized gradient [20].
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while the elements with m ∈ {2, 3, . . . , N} are given by

(τ̃k
m − τm)−

1

N

(
((ε+ 1)N − 1)−Nε

ε((ε+ 1)N − 1)
τ̄ −

N∑

i=2

τi

)

=

(
(ε+ 1)N−m+1 − 1

(ε+ 1)N − 1
τ̄ − τm

)

−
1

N

(
((ε+ 1)N − 1)−Nε

ε((ε+ 1)N − 1)
τ̄ −

N∑

i=2

τi

)

=
εN(ε+ 1)N−m+1 − ((ε+ 1)N − 1)

εN((ε+ 1)N − 1)
τ̄ −

N − 1

N
τm

+
1

N

N∑

i=2,i6=m

τi.

After the jump at τ , since G(τ ) is single valued, V (G(τ )) is given

by

|G(τ )|ℓ̃k′
=

∣∣∣∣(τ̃
k′

−G(τ ))−
1

N
((τ̃k′

−G(τ ))⊤1)1

∣∣∣∣ .

Note that (τ̃k′

− G(τ ))⊤1 =
∑N

i=1 τ̃
k′

i −
∑N

i=1 gi(τ ) reduces to∑N

i=1 τ̃
k′

i −
∑N

i=2(1+ ε)τi, since g1(τ ) = 0 and gi(τ ) = (1+ ε)τi
for i > 1. Using Lemmas A.2 and A.3, it follows that

N∑

i=1

τ̃k′

i =

∑N

i=1

∑N−i

p=0 (ε+ 1)p

∑N−1
p=0 (ε+ 1)p

τ̄

=
(ε+ 1)((ε+ 1)N − 1)−Nε

ε((ε+ 1)N − 1)
τ̄

which leads to

(τ̃k′

−G(τ ))⊤1 =
(ε+ 1)((ε+ 1)N − 1) −Nε

ε((ε+ 1)N − 1)
τ̄ −

N∑

i=2

(1 + ε)τi.

The first element inside the norm in V (G(τ )) is given by

(τ̃k′

1 − g1(τ ))−
1

N

(
(ε+ 1)((ε+ 1)N − 1) −Nε

ε((ε+ 1)N − 1)
τ̄

−
N∑

i=2

(1 + ε)τi

)

=
ε

(ε+ 1)N − 1
τ̄ −

(ε+ 1)((ε+ 1)N − 1)−Nε

εN((ε+ 1)N − 1)
τ̄

+
1

N

N∑

i=2

(1 + ε)τi

= (1 + ε)

(
−
((ε+ 1)N − 1)−Nε

εN((ε+ 1)N − 1)
τ̄ +

1

N

N∑

i=2

τi

)
.

For each element m > 1, it follows that

(τ̃k′

m − gm(τ ))−
1

N

(
(ε+ 1)((ε+ 1)N − 1)−Nε

ε((ε+ 1)N − 1)
τ̄

−
N∑

i=2

(1 + ε)τi

)

=
(ε+ 1)N−m+2 − 1

(ε+ 1)N − 1
τ̄ − (1 + ε)

N − 1

N
τm

−
(ε+ 1)((ε+ 1)N − 1)−Nε

εN((ε+ 1)N − 1)
τ̄ +

1

N

N∑

i=2,i6=m

(1 + ε)τi

= (1 + ε)

(
εN(ε+ 1)N−m+1 − ((ε+ 1)N − 1)

εN((ε+ 1)N − 1)
τ̄

−
N − 1

N
τm +

1

N

N∑

i=2,i6=m

τi


 .

Combining the expressions for each of the elements inside the

norm of V (G(τ )), it follows that V (G(τ )) = (1 + ε)V (τ ).
Then, the change during jumps is given by V (G(τ )) − V (τ ) =

εV (τ ) where ε ∈ (−1, 0). With the property of V during flows

established above, the change of V along solutions is bounded

during flows and jumps by the nonpositive functions uC̃ and uD̃,

respectively, defined as follows: uC̃(z) = 0 for each z ∈ C̃

and uC̃(z) = −∞ otherwise; uD̃(z) = εV (z) for each z ∈ D̃

and uD̃(z) = −∞ otherwise. Using Lemma 2.1, the fact that C̃

and D̃ are closed, and the fact that every maximal solution to H̃
is bounded and complete, by [16, Theorem 8.2], every maximal

solution to H̃N approaches the largest weakly invariant subset of

LV (r′)∩ C̃ ∩ [Lu
C̃
(0)∪ (Lu

D̃
(0)∩G(Lu

C̃
(0)))] = LV (r′)∩ C̃ for

r′ ∈ V (C̃). Since every maximal solution jumps an infinite number

of times, the largest invariant set is given for r′ = 0 due to the fact

that V (G(τ )) − V (τ ) = εV (τ ) < 0 if r′ > 0. Then, the largest

invariant set is given by LV (0) ∩ C̃ = Ã ∩ C̃ which is identically

equal to A. Hence, the set A is attractive. Stability is guaranteed from

the fact that V is nonincreasing during flows and strictly decreasing

during jumps. Then, the set Ã is asymptotically stable for the hybrid

system H̃N . We have that A is (strongly) forward invariant and

from Theorem 3.4 we know that A is uniformly attractive from a

neighborhood of itself. Then by Proposition 7.5 in [16], it follows

that A is asymptotically stable.

Note that the set of solutions to H̃N coincides with the set of

solutions to HN from PN \Xv . Therefore, the set A is asymptotically

stable for HN with basin of attraction BA = PN \ Xv . Since v is

arbitrary, it follows that the basin of attraction is equal to PN \ X .

Note that the jump map G, at points τ ∈ X , is set valued by

definition of gi in (4). From these points there exist solutions to HN

that jump out of X . In fact, consider the case τ ∈ X . We have

that τi = τr for some i, r ∈ I . Then, after the jump it follows that

gi(τ ) ∈ {0, (1 + ε)τ̄} and gr(τ ) ∈ {0, (1 + ε)τ̄}, and there exist

gi and gr such that gi = gr or gi 6= gr. Since for every point in X
there exists a solution that converges to A and also a solution that

stays in X , X is weakly forward invariant.8

C. Characterization of Time of Convergence

In this section, we characterize the time to converge to a neigh-

borhood of A. The proposed (upper bound) of the time to converge

depends on the initial distance to the set Ã and the parameters of the

hybrid system (ε, τ̄).

Theorem 3.4: For every N ∈ N, N > 1, and every c1, c2 such that

c > c2 > c1 > 0 with c = maxx∈X |x|Ã, every maximal solution

to HN with initial condition τ (0, 0) ∈ (PN \ X ) ∩ L̃V (c2) is such

that τ (t, j) ∈ L̃V (c1) for each (t, j) ∈ dom τ, t + j ≥ M, where

M =
(
τ̄
ω
+ 1
) log

c2
c1

log 1
1+ε

and L̃V (µ) := {τ ∈ C ∪D : V (τ ) ≤ µ}.

Proof: Let τ0 = τ (0, 0) and pick a maximal solution τ to HN

from τ0. At every jump time (tj , j) ∈ dom τ , define ḡ1 = τ (t1, 1),
ḡ2 = τ (t2, 2), . . . , ḡJ = τ (tJ , J), for some J ∈ N. From

Theorem 3.3, we have that there is no change in the Lyapunov

8For example, consider the case N = 2. If τ(0, 0) = [τ̄ , τ̄ ]⊤ ∈ D, then
there are nonunique solutions due to the jump map begin set valued. It follows
that after the jump, each τi can be mapped to any point in {0, τi(1 + ε)},
which leads to any of the following four options of the states (τ1, τ2) after
such a jump: (0, 0), (0, τ̄(1 + ε)), (τ̄ (1 + ε), 0) or (τ̄(1 + ε), τ̄(1 + ε)). If
the state is mapped to either (0, 0) or (τ̄(1+ε), τ̄(1+ε)), then it remains in
X2. Conversely, if any of the other options are chosen, then (τ1, τ2) leaves
X2 and converges to A asymptotically.
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Fig. 2. Time to converge (over τ̄ + 1) as a function of ε ∈ [−0.9,−0.1],
with c2 = 0.99τ̄ and c1 ∈ {0.5τ̄ , 0.3τ̄ , 0.1τ̄ , 0.05τ̄}

function during flows. Furthermore, we have that for each τ ∈ D\A
the difference V (G(τ ))− V (τ ) = εV (τ ) with ε ∈ (−1, 0). Since,

for every j, τ (tj , j) ∈ D, we have V (ḡ1) − V (τ0) = εV (τ0),
which implies V (ḡ1) = (1 + ε)V (τ0). At the next jump, we have

V (ḡ2) = (1 + ε)V (ḡ1) = (1 + ε)2V (τ0). Proceeding in this way,

after J jumps we have V (ḡJ) = (1+ ε)V (gJ−1) = (1+ ε)JV (τ0).
From V (ḡJ) = (1+ε)JV (τ0), we want to find J so that V (ḡJ) ≤ c1
when V (τ0) ≤ c2. Considering the worst cast for V (τ0), we want

(1 + ε)Jc2 ≤ c1, which implies c2
c1

≤
(

1
1+ε

)J
, and therefore

J =

⌈
log

c2
c1

log 1
1+ε

⌉
> 0. For each j, the time between jumps satisfies

t1 − t0 ≤ τ̄
ω
, t2 − t1 ≤ τ̄

ω
, . . . , tj − tj−1 ≤ τ̄

ω
. Then, we have that

after J jumps,
∑J

j=1 tj − tj−1 ≤ J τ̄
ω
. With t0 = 0, the expression

reduces to tJ ≤ J τ̄
ω
=

⌈
log

c2
c1

log 1
1+ε

⌉
τ̄
ω
. Then, after t+ j ≥ tJ +J , the

solution is at least c1 close to the set Ã. Defining M = tJ + J we

then have M =
(
τ̄
ω
+ 1
) log

c2
c1

log 1
1+ε

.

Figure 2 shows the time to converge (divided by τ̄
ω
+ 1) versus ε

with constant c2 = 0.99τ̄ and varying values of c1. As the figure

indicates, the time to converge decreases as |ε| increases, which

confirms the intuition that the larger the jump the faster oscillators

desynchronize.

D. Robustness Analysis

Lemma 2.1 establishes that the hybrid model of N impulse-

coupled oscillators satisfies the hybrid basic conditions. In light of this

property, the asymptotic stability property of A for HN is preserved

under certain perturbations; i.e., asymptotic stability is robust [16].

In the next sections, we consider a perturbed version of HN and

present robust stability results. In particular, we consider generic

perturbations to HN , and two different cases of perturbations only

on the timer rates to allow for heterogeneous timers.

1) Robustness to Generic Perturbations: We start by revisiting the

definition of perturbed hybrid systems in [16]. Using this definition,

we can deduce a generic perturbed hybrid system modeling N
impulse-coupled oscillators. Then, for the hybrid system HN , we

denote HN,ρ as the ρ-perturbation of HN . Given the perturbation

function ρ : R
N → R≥0, the perturbed flow map is given by

Fρ(τ ) = ω1 + ρ(τ )B for all τ ∈ Cρ, where the perturbed flow

set Cρ is given by Cρ = {τ ∈ R
N : (τ + ρ(τ )B) ∩ PN 6= ∅}.

For example, if N = 2 and ρ(τ ) = ρ̄ > 0 for all τ ∈ R
N , which

would correspond to constant perturbations on the lower value and

threshold, then Cρ = C + ρB. The perturbed jump map and jump

set are defined as Dρ = {τ ∈ R
N : (τ + ρ(τ )B) ∩ D 6= ∅},

Gρ = [g1,ρ(τ ), . . . , gN,ρ(τ )]
⊤, where gi,ρ is the i-th component of

Gρ. The following result establishes that the hybrid system HN is

robust to small perturbations.

Theorem 3.5: (robustness of asymptotic stability) If ρ : R
N →

R≥0 is continuous and positive on R
N \ A, then A is semiglobally

practically robustly KL asymptotically stable with basin of attraction

BA = PN \ X , i.e., for every compact set K ⊂ BA and every

α > 0, there exists δ ∈ (0, 1) such that every maximal solution τ to

HN,δρ from K satisfies |τ (t, j)|A ≤ β(|τ (0, 0)|A, t+ j) +α for all

(t, j) ∈ dom τ .

Proof: From Lemma 2.1, the hybrid system HN satisfies the

hybrid basic conditions. Therefore, by [16, Theorem 6.8] HN is

nominally well-posed and, moreover, by [16, Proposition 6.28] is

well-posed. From the proof of Theorem 3.3, we know that the set A is

an asymptotically stable compact set for the hybrid system HN with

basin of attraction BA. Since by Lemma 2.2, every maximal solution

is complete, then [16, Theorem 7.20] implies that A is semiglobally

practically robustly KL asymptotically stable.

Section IV-B1 showcases an example simulation of HN with ρ-

perturbations on the jump map.

2) Robustness to Heterogeneous Timer Rates: We consider the

case when the continuous dynamic rates are perturbed in the form of
d
dt
|τ (t, j)|Ã = c(t, j) for a given solution τ . For example, consider

the perturbation of the flow map given by

f(τ ) = ω1+∆ω (10)

where ∆ω ∈ R
n is a constant defining a perturbation from the

natural frequencies of the impulse-coupled oscillators. Then for some

k, during flows, along a solution τ such that over [tj , tj+1] × {j}
satisfies V (τ (t, j)) = |τ (t, j)|ℓ̃k , it follows that c reduces to

c(t, j) =

(
r⊤ℓk

(τ(t,j))( 1
N

1−I)

|τ(t,j)|ℓk

)
∆ω.9 Furthermore, the norm of the

hybrid arc c can be bounded by a constant c̄ given by

c̄ =

∣∣∣∣
(

1

N
1− I

)
∆ω

∣∣∣∣ . (11)

Building from this example, the following result provides properties

of the distance to Ã from solutions τ to HN under generic pertur-

bations on f (not necessarily as in (10)).

Theorem 3.6: Suppose that the perturbation on the flow map of

HN is such that a perturbed solution τ satisfies, for each j such that

{t : (t, j) ∈ dom τ} has more than one point, d
dt
|τ (t, j)|Ã = c(t, j)

for all t ∈ {t : (t, j) ∈ dom τ} and τ (t, j) ∈ PN \ X for all

(t, j) ∈ dom τ , for some hybrid arc c with dom c = dom τ . Then,

the following hold:

• The asymptotic value of |τ (t, j)|Ã satisfies

lim
t+j→∞

|τ (t, j)|Ã ≤ lim
t+j→∞

j∑

i=0

(1 + ε)j−i

∫ ti+1

ti

c(t, j)dt

(12)

9Let rℓk (τ) be the vector defined by the minimum distance from

τ to the line ℓk . Then, it follows that V (τ) = (r⊤ℓk
(τ)rℓk (τ))

1
2 .

To determine its change during flows, note that on C \ (X ∪ A)

the gradient is given by ∇V (τ) = ∂
∂τ

(
r⊤
ℓk
(τ)rℓk (τ)

) 1
2

=
(
r⊤ℓk

(τ) ∂
∂τ

rℓk
(τ)

)

|τ |ℓk
where each j-th entry of ∂

∂τ
rℓk (τ) is given

by ∂
∂τ

rj
ℓk
(τ) = ∂

∂τ

(
(τ̃jk − τj)−

1
N

∑N
i=1(τ̃i

k − τi)⊤
)

=
[

1
N
, 1
N
, . . . , 1

N
,−1 + 1

N
, 1
N
, . . . , 1

N

]
– the term −1 + 1

N
corresponds to

the j-th element of the vector. It follows that ∂
∂τ

rℓk (τ) = 1
N
1 − I. Then,

for each τ ∈ C \ X , 〈∇V (τ), f(τ)〉 =

(
r⊤ℓk

(τ)( 1
N

1−I)

|τ |ℓk

)
f(τ).
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• If there exists c̄ > 0 such that |c(t, j)| ≤ c̄ for each (t, j) ∈
dom τ then

lim
t+j→∞

|τ (t, j)|Ã ≤
c̄τ̄

|ε|ω
. (13)

• If j̃ : R≥0 → N is a function that chooses the appropriate

minimum j such that (t, j) ∈ dom τ for each time t and

t 7→ c(t, j̃(t)) is absolutely integrable, i.e., ∃B such that∫∞

0
|c(t, j̃(t))|dt ≤ B, then

lim
t+j→∞

|τ (t, j)|Ã ≤
B

ε
. (14)

Proof: Consider a maximal solution τ to HN with initial

condition τ (0, 0) ∈ PN \X . This proof uses the function V from the

proof of Theorem 3.3. With V equal to the distance from τ to the set

Ã, then, for each τ ∈ D\X , we have that V (G(τ ))−V (τ ) = εV (τ ).
Using the fact that V (τ ) = |τ |Ã and the fact that, G along the

solution is single valued, it follows that |τ |Ã after a jump can be

equivalently written as |τ (tj , j + 1)|Ã = (1 + ε)|τ (tj, j)|Ã. By

assumption, in between jumps, the distance to the set Ã is such that
d
dt
|τ (t, j)|Ã = c(t, j), which implies that at tj+1 the distance to the

desynchronization set is given by

|τ (tj+1, j)|Ã =

∫ tj+1

tj

c(s, j)ds+ |τ (tj , j)|Ã.

It follows that

|τ (t1, 0)|Ã =

∫ t1

0

c(s, 0)ds+ |τ (0, 0)|Ã,

|τ (t1, 1)|Ã = (1 + ε)

(∫ t1

0

c(s, 0)ds+ |τ (0, 0)|Ã

)

= (1 + ε)

∫ t1

0

c(s, 0)ds+ (1 + ε)|τ (0, 0)|Ã,

|τ (t2, 1)|Ã =

∫ t2

t1

c(s, 1)ds+ (1 + ε)

∫ t1

0

c(s, 0)ds

+(1 + ε)|τ (0, 0)|Ã,

|τ (t2, 2)|Ã = (1 + ε)

(∫ t2

t1

c(s, 1)ds

+(1 + ε)

∫ t1

0

c(s, 0)ds+ (1 + ε)|τ (0, 0)|Ã

)

Then, proceeding in this way, we obtain

|τ (tj , j)|Ã = (1 + ε)j |τ (0, 0)|Ã

+

j−1∑

i=0

(1 + ε)j−i

∫ ti+1

ti

c(s, i)ds.

For the case of generic tj+1 ≥ t ≥ tj , we have that

|τ (t, j)|Ã = (1 + ε)j |τ (0, 0)|Ã +

j∑

i=0

(1 + ε)j−i

∫ t

ti

c(s, i)ds.

Since, we know that as either t or j goes to infinity, j
or t go to infinity as well, respectively. The expression

reduces to limt+j→∞ |τ (t, j)|Ã = limj→∞(1 +
ε)j |τ (0, 0)|Ã + limt+j→∞

∑j

i=0(1 + ε)j−i
∫ t

ti
c(s, i)ds =

limt+j→∞

∑j

i=0(1+ε)j−i
∫ t

ti
c(s, i)ds. If c(t, j) ≤ c̄, it follows that

limt+j→∞ |τ (t, j)|Ã = limt+j→∞

∑j

i=0(1 + ε)j−i
∫ t

ti
c(s, i)ds ≤

c̄τ̄
|ε|ω

.

Lastly, since this hybrid system has the property that for any

maximal solution τ with (t, j) ∈ dom τ , if t approaches ∞
then the parameter j also approaches ∞, the expression given

by limt+j→∞ |τ (t, j)|Ã can be simplified. To do this, we know
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Fig. 3. Solutions to HN that asymptotically converge to the set A for N ∈
{2, 3, 7, 10}.

that the series
∑j

i=0(1 + ε)j−i = (1+ε)j+1−1
ε

approaches 1
|ε|

as

j → ∞. Since 1 + ε > 0 for ε ∈ (−1, 0), the series is absolutely

convergent and its partial sum sj =
∑j

i=0(1 + ε)j−i is such that

{sj}
∞
j=m is a nondecreasing sequence (for each m). This implies

that sj ≤ 1/|ε| for all j and for each m. Then, it follows that

(1+ε)j−i ≤ 1
|ε|

for every j, i ∈ N. Since the expression is a function

of j only and, for complete solutions, t is such that as t → ∞,

then j → ∞, we obtain limt+j→∞

∑j

i=0(1 + ε)j−i
∫ t

ti
c(s, i)ds =

limj→∞

∑j

i=0(1 + ε)j−i
∫ t

ti
c(s, i)ds ≤ 1

|ε|

∫∞

0
|c(s, j(s))|ds.

IV. NUMERICAL ANALYSIS

This section presents numerical results obtained from simulating

HN . First, we present results for the nominal case of HN given

by (1). Then, we present results for HN under different types of

perturbations. The Hybrid Equations (HyEQ) Toolbox in [21] was

used to compute the trajectories.

A. Nominal Case

The possible solutions to the hybrid system HN fall into four cate-

gories: always desynchronized, asymptotically desynchronized, never

desynchronized, and initially synchronized. Due to space constraints,

in this article we present numerical results for the case of asymptoti-

cally desynchronized solutions. For more information regarding each

case, see [18]. The parameters used in these simulations are τ̄ = 1
and ε = −0.2.

A solution of HN that starts in PN \ (X ∪ A) asymptotically

converges to A, as Theorem 3.4 indicates. Figure 3(a) and Figure 3(b)

show solutions to both H2 and H3 converging to their respective

desynchronization sets.

For H2, if τ (0, 0) = [0, 0.1]⊤, then the initial sublevel set is

L̃V (c2) with c2 = 0.24. Using Theorem 3.4, the time to converge

to the sublevel set L̃V (c1) with c1 = 0.1 leads to M = 7.84.

Figure 3(a) shows a solution to the system for 10 seconds of flow

time. From the figure, it can be seen that V (τ (t, j)) ≈ 0.1 at

(t, j) = (3, 4). Then, the property guaranteed by Theorem 3.4,

namely, V (τ (t, j)) ≤ c1 for each (t, j) such that t + j ≥ M ,

is satisfied. Figure 3(b), shows a solution and the distance of this

solution to A. Notice that the initial sub level set is L̃V (c2) with

c2 = 0.32. From Theorem 3.4 it follows that the time to converge

to L̃V (c1) with c1 = 0.1 is given by M = 10.14, which is actually

already satisfied at (t, j) = (2.2, 4). Figure 3(c) and Figure 3(d) show

solutions to HN that asymptotically desynchronize for N ∈ {7, 10}.
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(a) Initial condition τ(0, 0) =
[0.1, 0.2]⊤.
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(b) Distance to the set Ã for 10 so-
lutions to H2 with initial conditions
randomly chosen from C.

Fig. 4. Solutions to the hybrid system with perturbed jump conditions. Figures
(a) and (b) have the perturbation given in Section IV-B1 with ρ̃1 = ρ̃2 = 0.1.
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(a) Distance to the set Ã for 10
solutions with random initial condi-
tions τ(0, 0) ∈ C with ρ̃1 = 0.15
and ρ̃2 = 0.1.
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(b) Distance to the set Ã for 10
solutions with random initial condi-
tions τ(0, 0) ∈ C with ρ̃1 = 0.02
and ρ̃2 = 0.01.

Fig. 5. Numerical simulations of the perturbed version of H2 with the
perturbed “bump” on the jump map with ρ̃1 6= ρ̃2.

B. Perturbed Case

In this section, we present numerical results to validate the state-

ments in Section III-D.

1) Simulations of HN with perturbed jumps: In this section, we

consider perturbations on the “bump” component of the jump map.

More precisely, the component (1+ε)τi of the jump map is perturbed,

namely, we use τ+
i = (1+ε)τi+ρi(τi), where ρi : R≥0 → PN \X is

a continuous function. The perturbed jump map Gρ has components

gρi that are given as gi in (4) but with τi(1 + ε) + ρi(τi) replacing

τi(1 + ε).
Consider the case ρi(τi) = ρ̃iτi with ρ̃i ∈ (0, |ε|) and let ε̃i =

ε + ρ̃i ∈ (−1, 0). Then τ+
i reduces to τ+

i = (1 + ε̃i)τi and the

jump map gρi is given by (4) with ε̃i in place of ε. This type of

perturbation is used to verify Theorem 3.5 with ρ affecting only the

“bump” portion of the jump map. Figures 4 and 5 show simulations

to HN with the parameters ω = 1, τ̄ = 3, ε = −0.3, and N = 2.

Consider the case of H2 with Gρ when ρ̃1 = ρ̃2 = 0.1, leading to

ε̃1 = ε̃2 = 0.2. Figure 4(a) shows a solution on the (τ1, τ2)-plane for

this case with initial condition τ (0, 0) = [0.1, 0.2]⊤. Notice that the

solution approaches a region around A (green line), as Theorem 3.5

guarantees. Figure 4(b) shows the distance to the set Ã over time

for 10 solutions with initial conditions τ (0, 0) ∈ C. It shows that

solutions approach a distance to Ã of ≈ 0.09 after ≈ 40 seconds of

flow time.

Next, we consider the case of Gρ with ε̃1 6= ε̃2. Figure 5(a)

shows the distance to Ã for 10 solutions with perturbations given

by ρ̃1 = 0.15 and ρ̃2 = 0.1. For this case, the distance to Ã satisfies

|τ (t, j)|Ã ≤ 0.3 after ≈ 40 seconds of flow time. Figure 5(b) shows

simulation results with ρ̃1 = 0.02 and ρ̃2 = 0.01. Notice that the

smaller the value of the perturbation is, the closer the solutions get

to the set Ã. For this case, after ≈ 30 seconds of flow time, the

distance to Ã satisfies |τ (t, j)|Ã ≤ 0.06. These simulations validate

Theorem 3.5 with ρ affecting only the jump map, verifying that the

smaller the size of the perturbation the smaller the steady-state value

of the distance to Ã would be.
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(a) Initial condition τ(0, 0) =
[0, 0.01]⊤.
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(b) Distance to the set A for 10
solutions of the perturbed H2 with
random initial conditions τ(0, 0) ∈
C.

Fig. 6. Solutions to the hybrid system H2 with perturbed flow map given by
the cases covered in Section IV-B2. Figures (a) and (b) show solutions given

by the flow perturbation ∆ω = [0.120, 0.134]⊤ given in Section IV-B2(2).
Note that these figures have a dashed black line denoting the calculated

distance from Ã in (15).

2) Perturbations on the Flow Map: In this section, we consider a

class of perturbations on the flow map. More precisely, consider the

case when there exists a function (t, j) 7→ c(t, j) such that c(t, j) ≤ c̄
with c̄ as in (11). Then, from Theorem 3.6 with (10), we know that

lim
t+j→∞

|τ (t, j)|Ã ≤
∣∣∣ c̄τ̄
εω

∣∣∣ ≤
∣∣∣∣∣

∣∣( 1
N
1− I)∆ω

∣∣ τ̄
εω

∣∣∣∣∣ . (15)

Figure 6 shows a simulation so as to verify this property. The

parameters of this simulation are N = 2, ω = 1, ε = −0.3, τ̄ = 4,

and ∆ω = [0.120, 0.134]⊤ . It follows from (11) that c = 0.0105.

Then, from (13), it follows that limt+j→∞ |τ (t, j)|Ã ≤ 0.1047.

Specifically, Figure 6(a) shows a solution on the (τ1, τ2)-plane of

the perturbed hybrid system H2 with initial condition τ (0, 0) =
[0, 0.01]⊤ . This figure shows the solution (blue line) converging to

a region around Ã (between dash-dotted lines about A in green).

Figure 6(b) shows the distance to the set Ã of 10 solutions with

initial conditions τ (0, 0) ∈ C with a dashed line denoting the upper

bound on the distance in (15). Notice that all solutions are within this

bound after approximately 15 seconds of flow time and stay within

this region afterwards.

V. CONCLUSION

We have shown that desynchronization in a class of impulse-

coupled oscillators is an asymptotically stable and robust property.

These properties are established within a solid framework for model-

ing and analysis of hybrid systems, which is amenable for the study

of synchronization and desynchronization in other impulse-coupled

oscillators in the literature. The main difficulty in applying these

tools lies on the construction of a Lyapunov-like quantity certifying

asymptotic stability. As we show here, invariance principles can be

exploited to relax the conditions that those functions have to satisfy,

so as to characterize convergence, stability, and robustness in the class

of systems under study. Future directions of research include the study

of nonlinear reset maps, such as those capturing the phase-response

curve of spiking neurons, as well as impulse-coupled oscillators

connected via general graphs.
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APPENDIX

The following result derives the solution to Γτs = b with Γ given

in (6) and b = τ̄1 via Gaussian elimination.

Lemma A.1: For each ε ∈ (−1, 0), the solution τs to Γτs = b
with Γ given in (6) and b = τ̄1 is such that its elements, denoted as

τk
s for each k ∈ {1, 2, . . . , N}, are given by τk

s =
∑N−k

i=0
(ε+1)i

∑N−1

i=0
(ε+1)i

τ̄ .

Proof: The N ×N matrix in (6) and the N × 1 matrix b = τ̄1
leads to the augmented matrix [Γ|b] given by



1 0 0 0 . . . 0 τ̄
0 (ε+ 2) −(ε+ 1) 0 . . . 0 τ̄
0 (ε+ 1) 1 −(ε+ 1) . . . 0 τ̄
...

...
...

. . .
. . .

. . .
...

0 (ε+ 1) 0 0
. . . −(ε+ 1) τ̄

0 (ε+ 1) 0 0 . . . 1 τ̄




.

(16)

To solve for τk
s , we apply the Gauss-Jordan elimination technique to

(16) to remove the elements −(ε + 1) above the diagonal. Starting
from the N -th row to remove the −(ε+1) component in the N − 1
row, and continuing up to the second row, gives



1 0 0 0 . . . 0 τ̄

0
∑N−1

i=0 (ε+ 1)i 0 0 . . . 0
∑N−2

i=0 (ε+ 1)iτ̄

0
∑N−2

i=1 (ε+ 1)i 1 0 . . . 0
∑N−3

i=0 (ε+ 1)iτ̄
...

...
...

. . .
. . .

...
...

0
∑2

i=1(ε+ 1)i 0 0
. . . 0 τ̄ + (1 + ε)τ̄

0 (ε+ 1) 0 0 . . . 1 τ̄




.

(17)

Denoting the augmented matrix in (17) as [Γ′|b′], with τ 1
s = τ̄ and

τ 2
s =

∑N−2

i=0
(ε+1)i

∑N−1

i=0
(ε+1)i

τ̄ , the solution for each element of τk
s with k > 2

can be derived from (16) as Γ′
k,2τ

2
s + τk

s = b′k where Γ′
k,2 denotes

the (k, 2) entry of Γ′. Noting that τ 1
s can be rewritten as τ 1

s =∑N−1

i=0
(ε+1)i

∑N−1

i=0
(ε+1)i

τ̄ leads to τk
s =

∑N−k
i=0

(ε+1)i

∑N−1

i=0
(ε+1)i

τ̄ .

Lemma A.2: For each x 6= 1, and m,n ∈ N such that n−1 ≥ m,

the finite sum
∑n−1

i=m xi satisfies
∑n−1

i=m xi = xn−xm

x−1
.

For a proof of Lemma A.2 see [18].

Lemma A.3: For each x 6= 1, and each m,N ∈ N such that N ≥
m, the finite sum

∑N

n=m

∑N−n

i=0 xi satisfies
∑N

n=m

∑N−n

i=0 xi =
xN−m+2+(m−N−2)x+(N−m+1)

(x−1)2
.

For a proof of Lemma A.3 see [18].
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