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Interconnected Observers for Robust Decentralized
Estimation with Performance Guarantees and

Optimized Connectivity Graph
Yuchun Li and Ricardo G. Sanfelice

Abstract—Motivated by the need of observers that are both
robust to disturbances and guarantee fast convergence to zero
of the estimation error, we propose an observer for linear
time-invariant systems with noisy output that consists of the
combination of N coupled observers over a connectivity graph.
At each node of the graph, the output of these interconnected
observers is defined as the average of the estimates obtained
using local information. The convergence rate and the robustness
to measurement noise of the proposed observer’s output are
characterized in terms of KL bounds. Several optimization
problems are formulated to design the proposed observer so as to
satisfy a given rate of convergence specification while minimizing
the H∞ gain from noise to estimates or the size of the connectivity
graph. It is shown that that the interconnected observers relax
the well-known tradeoff between rate of convergence and noise
amplification, which is a property attributed to the proposed
innovation term that, over the graph, couples the estimates
between the individual observers. Sufficient conditions involving
information of the plant only, assuring that the estimate obtained
at each node of the graph outperforms the one obtained with a
single, standard Luenberger observer are given. The results are
illustrated in several examples throughout the paper.

I. INTRODUCTION

We consider linear time-invariant systems of the form
ẋ = Ax, y = Cx+m(t), (1)

where x ∈ Rn, y ∈ Rp, and t 7→ m(t) denotes measurement
noise, for which there exists a Luenberger observer

˙̂xL = Ax̂L −KL(ŷL − y), ŷL = Cx̂L (2)
leading to the exponentially stable error system

ėL=(A−KLC)eL+KLm(t) :=ÃLeL+KLm(t) (3)
with estimation error given by eL := x̂L − x. It is well-
known that, under observability conditions of (1), the matrix
gain KL can be chosen to make the convergence rate of (3)
arbitrarily fast. However, due to the fast convergence speed
requiring a large gain, the price to pay is that the effect
of measurement noise m is amplified. Indeed, the design of
observers, such as those in the form (2), involves a tradeoff
between convergence rate and robustness to measurement
noise [1], [2]. In fact, in [1, page 597], D. G. Luenberger
makes the following remark about the error system (3) when
(C,A) is observable: “Theoretically, the eigenvalues can be
moved arbitrarily toward minus infinity, yielding extremely
rapid convergence. This tends, however, to make the observer
act like a differentiator and thereby become highly sensitive
to noise, and to introduce other difficulties.” Along the same
lines, the authors of [2] recognize the compromise between
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performance and robustness in the design of (2): “At this point
we can only offer some intuitive guidelines for a choice of K
to obtain satisfactory performance of the observer. To obtain
fast convergence of the reconstruction error to zero, K should
be chosen so that the observer poles are quite deep in the left-
half complex plane. This, however, generally must be achieved
by making the gain matrix K large, which in turn makes the
observer very sensitive to any observation noise that may be
present, added to the observed variable y(t). A compromise
must be found,” see [2, page 332]. Unfortunately, this issue is
also at the core of every estimation algorithm for multi-agent
systems.

A. Related work

Several observer architectures and design methods with the
goal of conferring good performance and robustness to the
error system have been proposed in the literature. In particular,
H∞ tools have been employed to formulate sets of Linear
Matrix Inequalities (LMIs) that, when feasible, guarantee that
the L2 gain from disturbance to the estimation error is below
a pre-established upper bound; see, e.g., [3], [4], [5], to just
list a few. Following ideas from adaptive control [6], observers
with a gain that adapts to the plant measurements have been
proposed in [7], [8], though the presence of measurement
noise can lead to large values of the gains. Such issues also
emerge in the design of high-gain observers, where the use of
high gain can significantly amplify the effect of measurement
noise, as in [9]. More recently, observers using adaptive gains
[10], two gains designed with different objectives [11], [12],
and switching between two observers [13] have been found
successful in certain settings.

Recent research efforts in multi-agent systems have lead
to enlightening results in distributed estimation and consen-
sus. Distributed Kalman filtering are employed for achieving
spatially-distributed estimation tasks in [14] and for sensor
networks in [15], [16], [17], [18], [19]. To characterize the
effect of unmodeled dynamics on the consensus multi-agent
system, in [20], a region-based approach is used for dis-
tributed H∞-based consensus of multi-agent systems with
an undirected graph. For dynamic average consensus, [21]
proposes a decentralized algorithm that guarantees asymptotic
agreement of a signal over strongly connected and weight-
balanced graphs. In [22], switching inter-agent topologies are
used to design distributed observers for a leader-follower
problem in multi-agent systems. For estimating the trajectory
of a moving target with perturbed dynamics, nonlinear filters
based on networked sensors are proposed in [23], [24]. How-
ever, distributed estimation algorithms that systematically meet
specifications of performance and robustness to measurement
noise are not available.
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B. Contributions
We propose a new observer, called interconnected ob-

servers, with improved convergence rate of the estimation error
and robustness to measurement noise, when compared with the
observer in (2). The proposed observer consists of N linear
time-invariant observers interconnected over a graph. The local
estimate at each node is provided by an observer featuring an
innovation term that appropriately injects the estimate obtained
from its neighbors, which can be computed in a decentralized
manner. The global estimate of the state of the plant is given
by the average of the local estimates.

The main contributions of this paper are threefold.
1) We establish that, under certain conditions involving its

parameters, and when compared to the Luenberger ob-
server in (2), the proposed observer significantly improves
the rate of convergence and the gain from measurement
noise to estimation error, with improvements of more than
50% at times (see Table III).

2) We characterize the convergence rate and the robustness
to measurement noise of the proposed observer in terms
of KL bounds, which provide useful information on how
the parameters of the observers affect such properties.

3) We formulate optimization problems for the purpose of
the design of interconnected observers.
i) For a fixed rate of convergence, optimization problems

are proposed for the design of interconnected observers
with optimized gain from measurement noise to esti-
mation error (local and global).

ii) For a fixed rate of convergence and a desired H∞ gain,
optimization problems that minimize the number of
edges of the connectivity graph are also formulated.

iii) An LMI condition involving only information about
the plant is provided to guarantee that the estimate
obtained at each node of the graph outperforms the one
obtained with a single, standard Luenberger observer.

Examples throughout the paper illustrate our results and their
applicability to estimation in multi-agent systems, such as
mobile and sensor networks. To the best of our knowledge, we
are not aware of an observer in the literature that guarantees
such properties simultaneously.

C. Organization of the Paper
The remainder of this paper is organized as follows. In Sec-

tion II, the idea and benefits behind interconnected observers
are presented in a motivational example. Section III introduces
the proposed observer in general form, the KL bounds, and
the design methods in terms of optimization problems.

II. MOTIVATIONAL EXAMPLE

Consider the scalar plant
ẋ = ax, y = x+m, (4)

where m denotes measurement noise and a < 0. Suppose
we want to estimate the state x from measurements of y.
Following (2), a Luenberger observer for (4) is given by

˙̂xL = ax̂L −KL(ŷL − y), ŷL = x̂L. (5)
The resulting estimation error system is given by (3) with
ÃL = a−KL. Its rate of convergence is a−KL and, when m is
constant, its steady-state error is e?L := KL

KL−am. It is apparent
that to get fast convergence rate, the constant KL needs to
be positive and large. However, as argued in the introduction,

with KL large, the effect of measurement noise is amplified. In
light of recent popularity of multi-agent systems, it is natural
to explore the advantages of using more than one measurement
of the plant’s output so as to overcome such a tradeoff.

In this paper, we show that it is possible to design intercon-
nected observers that are capable of relaxing the said tradeoff.
To illustrate the idea behind the proposed observer, consider
the estimation of the state of the scalar plant (4) with two
agents, each taking its own measurement of y. The two agents
can communicate with each other according to the following
directed graph: agent 1 can transmit information to agent 2,
but agent 2 cannot send data to agent 1. This is shown in
Figure 1.

x̄1 = x̂1 x̄2 = 1

2
(x̂1 + x̂2)

1© 2©

Fig. 1. Two agents connected as a direct graph.

Following the approach in this paper, an interconnected
observer would take the form

˙̂x1 = ax̂1 −K11(ŷ1 − y1),

˙̂x2 = ax̂2 −K22(ŷ2 − y2)−K21(ŷ1 − y1),

ŷ1 = x̂1, ŷ2 = x̂2, x̄1 = x̂1, x̄2 = (1/2)(x̂1 + x̂2),

(6)

where x̂i and x̄i are associated with agent i, each measured
plant output yi is corrupted by measurement noise mi, that is
y1 = x+m1 and y2 = x+m2, respectively, where mi’s are
independent. The term “−K21(ŷ1−y1)” defines an innovation
term exploiting the information shared by agent 1 with agent
2. The output x̄i of agent i defines the local estimate (at agent
i) of x. Since agent 1 only has access to its own information,
we have x̄1 = x̂1, while since agent 2 has also information
from its neighbor, agent 2’s output x̄2 can be taken as the
average of the states x̂1 and x̂2.1

To analyze the estimation error induced by the intercon-
nected observer in (6), define error variables ei := x̂i−x, i ∈
{1, 2}. Then, the error system is given by

ė1 = (a−K11)e1 +K11m1,

ė2 = −K21e1+(a−K22)e2+K21m1+K22m2,
(7)

which can be written in matrix form as
ė = Ãe+ K̃m, (8)

where e = [e1 e2]>, m = [m1 m2]>,

Ã=

[
a−K11 0
−K21 a−K22

]
, K̃=

[
K11 0
K21 K22

]
. (9)

Then, when K11,K21, and K22 are chosen such that Ã is
Hurwitz and when m is constant, the steady-state value of (8)
is given by

e?1=
K11

K11−a
m1, e

?
2=

−aK21

(K11−a)(K22−a)
m1+

K22

K22−a
m2. (10)

Furthermore, the local estimation error resulting from each
agent is given by the quantity ēi := x̄i − x, i ∈ {1, 2}, and
has a steady-state value given by

ē?1 =e?1, ē
?
2 =

K11(K22−a)−aK21

2(K11−a)(K22−a)
m1+

K22

2(K22−a)
m2.

Let K11 = K22 = KL. Because of the structure of Ã, it can be
verified that the rate of convergence for the estimation error (8)
is a−KL, which is the same as that of the Luenberger observer

1In general, x̄2 could be the convex combination of x̂1 and x̂2, i.e., x̄2 =
s1x̂1 + s2x̂2, s1 + s2 = 1, s1, s2 ∈ R.
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(5). Moreover, assuming that constant noise m1 and m2 are
equal, i.e., m1 = m2 = m0, then ē?2 = 2KL(KL−a)−aK21

2(KL−a)2 m0.

Interestingly, picking K21 = 2KL(KL−a)
a , we obtain ē?2 = 0

for any unknown constant m0, namely, the measurement noise
can be completely rejected. When constant noise m1 and m2

are not equal, the choice K21 = KL(KL−a)
a leads to ē?2 =

KL

2(KL−a)m2, which is a significant improvement (50%) over
the case that agent 2 only has access to its own measurement
(in which case ē?2 = KL

KL−am2). These properties cannot be
achieved by using the Luenberger observer in (5).

For general measurement noises m1 and m2 (not necessarily
constant), the H∞ norm2 from noise to the estimation error
can be employed to study the noise effect. In fact, when K21 ≈
−4.75, the H∞ gain from noise m to the local estimate ē2

achieves a minimum equal to 0.45, which is much smaller
than that of the Luenberger observer in (5), which is 0.8, with
equal rate of convergence (KL = 2, a = −0.5).

It is important to point out that the observer proposed in
this paper will also outperform the Luenberger observer in
(5) when, in addition, agent 2 can transmit information to
agent 1, i.e., the link between the two agents is bidirectional.
Such an improvement is unique for the following two reasons.
When the two agents are connected by a bidirectional link,
our observer can be considered to be a bank of two observers
providing a global estimate that averages the estimate of each
individual observer. When the innovation terms “−K21(ŷ1 −
y1)” and “−K12(ŷ2 − y2)” are missing, it can be shown that
the effect of noise in the global estimate cannot be reduced
– bank of observers currently available in the literature suffer
from this shortcoming (see [25, Appendix D] for a proof of
this claim). This suggests that the innovation terms in our
interconnected observer are key. The second reason stems from
the fact that our observer can be viewed as an “augmented-
dimension observer” since, in general, it would have dimen-
sion Nn for a plant of dimension n. This property would
contradict the well-known fact that an observer in the form (5)
(or, in general, of the form (2)) minimizing the mean square
estimation error under perturbations has necessarily the same
dimension as the plant (see, e.g., [2, Section 4.2, Definition
4.3, and Theorem 4.5] and [25, Section IV.C]). However, when
performance specifications (relative to the optimal observer)
are added, which, in this paper, are formulated in terms of
eigenvalue constraints, an n-dimensional observer may not
be optimal. The augmented dimension (larger than the plant)
is the key feature that enables our observer to outperform
observers of the form (5), in particular, by mitigating the
typical amplification of noise due to large gain required to
speed up convergence.

As we show next, the idea behind the proposed intercon-
nected observer illustrated in the example above generalizes
to the case where N agents can measure the plant’s output
and share information over a graph.

III. INTERCONNECTED OBSERVERS

A. Notation and basic definitions

Given a matrix A with Jordan form A = XJX−1,
α(A) := max{Re(λ) : λ ∈ eig(A)}, where eig(A) denotes
the eigenspace of A; µ(A) := max{Re(λ)/2 : λ ∈

2By “H∞ norm” we mean the L2 gain from m to e, which is the induced
2-norm of the complex matrix transfer function from m to e.

eig(A + A>)}; |A| := max{|λ| 12 : λ ∈ eig(A>A)};
κ(A) := min{|X||X−1| : A = XJX−1}; A is dissipative
if A + A> < 0. Given a vector u ∈ Rn, |u| :=

√
u>u.

Given a function m : R≥0 → Rn, |m|∞ := supt≥0 |m(t)|.
The set of complex numbers is denoted by C. The set of
natural numbers is denoted by N := {1, 2, 3, · · · }. Given a
symmetric matrix P , λmax(P ) := max{λ : λ ∈ eig(P )}
and λmin(P ) := min{λ : λ ∈ eig(P )}. For a continuous
transfer function C 3 s 7→ T (s) ∈ C, the H∞ norm is defined
as ||T ||∞ = supω∈R ||T (jω)||, T is called stable if all its
poles have negative real part, the dominant pole for a stable
transfer function is the pole with largest real part, the rate
of convergence of a closed-loop system with stable transfer
function is defined by the absolute value of real part of the
dominant pole. Given matrices A,B with proper dimensions,
we define the operator He(A,B) := A>B + B>A; A ⊗ B
defines the Kronecker product; and A ∗B defines the Khatri-
Rao product. Given a set S, the function card(S) defines
the cardinality of the set S. A function α : R≥0 → R≥0

is a class-K∞ function, also written α ∈ K∞, if α is zero
at zero, continuous, strictly increasing, and unbounded. A
function β : R≥0 × R≥0 → R≥0 is a class-KL function, also
written β ∈ KL, if it is nondecreasing in its first argument,
nonincreasing in its second argument, limr→0+ β(r, s) = 0 for
each s ∈ R≥0, and lims→∞ β(r, s) = 0 for each r ∈ R≥0.

B. Preliminaries on graph theory
A directed graph (digraph) is defined as Γ = (V, E , G).

The set of nodes of the digraph are indexed by the elements
of V = {1, 2, . . . , N}, and the edges are the pairs in the set
E ⊂ V × V . Each edge directly links two nodes, i.e., an edge
from i to j, denoted by (i, j), implies that agent i can send
information to agent j. The adjacency matrix of the digraph Γ
is denoted by G = (gij) ∈ RN×N , where gij = 1 if (i, j) ∈ E ,
and gij = 0 otherwise. A digraph is undirected if gij = gji
for all i, j ∈ V . The in-degree and out-degree of agent i are
defined by din(i) =

∑N
j=1 gji and dout(i) =

∑N
j=1 gij . The

in-degree matrix D is the diagonal matrix with entries Dii =
din(i), for all i ∈ V . The set of indices corresponding to
the neighbors that can send information to the i-th agent is
denoted by I(i) := {j ∈ V : (j, i) ∈ E}.
C. Observer structure and basic properties

The general form of the proposed observer consists of N
interconnected observers with output given by the average
over a graph of the states of the individual observers.3 Specif-
ically, consider a network of N agents defined by a graph
Γ = (V, E , G). For the estimation of the plant’s state, a local
state observer using information from its neighbors is attached
to each agent. More precisely, for each i ∈ V , the agent i runs
a local state observer given by

˙̂xi = Ax̂i −
∑
j∈I(i)

Kij(ŷj − yj),

ŷi = Cx̂i, x̄i =
1

card(I(i))

∑
j∈I(i)

x̂j ,
(11)

where x̂i denotes the state variable of the observer, x̄i is
the local estimate of the plant’s state x, and yi denotes
the measurement of y in (1) taken by the i-th agent under
measurement noise mi, that is yi = Cx+mi. The information

3More general linear combinations defining x̄i are possible, i.e., x̄i =∑
j∈I(i) ηj x̂j with ηj ∈ R for all j and

∑
j∈I(i) ηj = 1.
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that the i-th agent obtains from its neighbors are the values
of x̂j’s and yj’s for each j ∈ I(i). The collection of local
state observers in (11) connected via the graph Γ defines the
proposed interconnected observer.

To analyze the properties of interconnected observers, define
for each i ∈ V , ei := x̂i − x and the associated vector
e := (e1, . . . , eN ). Furthermore, define the local estimation
error ēi := x̄i − x, the global estimation error vector ē :=
(ē1, . . . , ēN ), and the noise vector m := (m1, . . . ,mN ). Then,
it follows that

ėi = Aei −
∑
j∈I(i)

KijCej +
∑
j∈I(i)

Kijmj ,

ēi =
1

card(I(i))

∑
j∈I(i)

ej ,
(12)

which can be rewritten in the compact form
ė = (IN⊗A−(K∗G>)(IN⊗C))e+(K∗G>)m,

ē = (D−1⊗In)(G>⊗In)e,
(13)

where G is the adjacency matrix, D is the in-degree matrix,

K =


K11 K12 · · · K1N

K21 K22 · · · K2N

...
...

. . .
...

KN1 KN2 · · · KNN

 , (14)

and the Khatri-Rao product K ∗G> is such that K is treated
as N ×N block matrices with Kij’s as blocks. Define

A := IN ⊗A− (K ∗G>)(IN ⊗ C),

B := K ∗G>, C := (D−1⊗In)(G> ⊗ In).
(15)

Then, the transfer function from measurement noise m to error
ē is given by T (s) = C(sI − A)−1B. For the purpose of
designing the proposed interconnected observer, each agent is
self-connected, i.e., (i, i) ∈ E . Therefore, we have tr(D) ≥ N .

Remark 3.1: The matrix IN ⊗A is a block diagonal matrix
with matrix A in each of the N diagonal blocks (of dimension
n×n). The matrix K∗G> defines the gain matrix for the graph,
while (D−1 ⊗ In)(G> ⊗ In) generates the estimation matrix
for each agent by averaging the local estimates.
It can be verified that, under a detectability condition, inter-
connected observers can be designed so that the origin of the
error system in (13) is (exponentially) stable.

Proposition 3.2: For the plant (1) with measurement noise
mi ≡ 0 for each agent i, if the pair (A,C) is detectable, then,
for any N ∈ N, there exists a digraph Γ with adjacency matrix
G and a gain K such that the matrix A is Hurwitz and the
resulting system (13) has its origin exponentially stable.
Proof: For any N ∈ N, consider G = IN . Then it follows that
ėi = (A−KiiC)ei for each i ∈ V . Under the assumption that
the pair (A,C) is detectable, immediately we know that, for
each i ∈ V , there exists Kii such that A −KiiC is Hurwitz.
Therefore, the resulting A is Hurwitz. �

D. KL characterization of performance and robustness
In this section, the performance and robustness properties

of observers are characterized in terms of KL bounds. More
precisely, given an observer with estimation error e, we are
interested in bounds of the form

|e(t)| ≤ β(|e(0)|, t) + ϕ(|m|∞) ∀t ≥ 0,

where t 7→ e(t) is a solution to the error system, β is a
class-KL function, and ϕ is a class-K∞ function. To establish

and compare this property with that of the interconnected
observers, the next result characterizes such bounds for the
proposed observer so that it can be designed to outperform
those due to a Luenberger observers.

Proposition 3.3: For the plant (1), assume the pair (A,C)
is detectable. Let N ∈ N and a digraph Γ = (V, E , G) be
given. If there exists a gain K such that at least one of the
following conditions are satisfied:

1) The matrix A is Hurwitz with distinct eigenvalues;
2) The matrix A is dissipative, i.e., for some ᾱ > 0, A> +
A ≤ −2ᾱI;

3) There exists P = P> > 0 such that He(A, P ) ≤ −2ᾱP
for some ᾱ > 0;

then, there exist a class-KL function β : R≥0 × R≥0 → R≥0

and a class-K function ϕ : R≥0 → R≥0 such that the solution
ē of (13) from any e(0) ∈ RnN satisfies

|e(t)| ≤ β(|e(0)|, t) + ϕ(|m|∞) ∀t ∈ R≥0. (16)
In particular, the functions β and ϕ can be chosen, for
all s, t ≥ 0, as follows: if 1) holds, then, β(s, t) =

κ(A)|C|exp(α(A)t)s, ϕ(s) = κ(A) |B||C||α(A)|s; if 2) holds, then,

β(s, t) = |C| exp(µ(A)t)s, ϕ(s) = |B||C|
|µ(A)|s; if 3) holds,

then, β(s, t) =
√
cp|C| exp(−λt)s, ϕ(s) = cp

|B||C|
|λ| s, with

λ = ᾱλmin(P )
λmax(P ) and cp = λmax(P )

λmin(P ) .
Proof: The proof can be found in [25, Appendix A]. �

Proposition 3.3 provides a way to design parameters for the
interconnected observer as follows. Recall that ÃL and KL

are defined in (3).
Theorem 3.4: For the plant (1) with the Luenberger

observer (2) and the interconnected observers (11), let N ∈ N
and a digraph Γ be given. If KL is such that at least one of
the following conditions are satisfied:

1) ÃL is Hurwitz with distinct eigenvalues, and there ex-
ists K such that α(A) < α(ÃL) and κ(A) |B||C||α(A)| <

κ(ÃL) |KL|
|α(ÃL)| ;

2) ÃL is dissipative, and there exists K such that µ(A) <
µ(ÃL) (or α(A) < α(ÃL), respectively – see below c))
and |B||C|

|µ(A)| <
|KL|
|µ(ÃL)| ;

3) ÃL satisfies He(ÃL, PL) ≤ −2αLPL for some αL > 0
and PL = P>L > 0, and there exists K such that

3.1) item 3) of Proposition 3.3 holds with α > 0, P =
P> > 0,

3.2) λ := αλmin(P )
λmax(P ) < αLλmin(PL)

λmax(PL) =: λL and cp
|B||C|
|λ| <

cpL
|KL|
|λL| , with cp = λmax(P )

λmin(P ) and cpL = λmax(PL)
λmin(PL) ;

then, there exist β ∈ KL and ϕ ∈ K∞ such that the solution
ē of (13) from any e(0) ∈ RnN satisfies

a) |ē(t)| ≤ β(|e(0)|, t) + ϕ(|m|∞) for all t ≥ 0;
b) Given nonzero e(0) and eL(0), ∃t? ≥ 0 such that

β(|e(0)|, t) < βL(|eL(0)|, t) for all t > t?;
c) ϕ(s) < ϕL(s), for all s 6= 0, s ∈ R≥0.

In particular, the functions β ∈ KL and ϕ ∈ K∞ can be
chosen accordingly as in Proposition 3.3 while βL ∈ KL
and ϕL ∈ K∞ can be chosen, for all s, t ≥ 0, as follows:
if 1) holds, then βL(s, t) = κ(ÃL)exp(α(ÃL)t)s, ϕL(s) =

κ(ÃL) |KL|
|α(ÃL)|s; if 2) holds, then βL(s, t) = exp(µ(ÃL)t)s

(or βL(s, t) = κ(ÃL)exp(α(ÃL)t)s, respectively), ϕL(s) =
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|KL|
|µ(ÃL)|s; if 3) holds, then βL(s, t) =

√
cpL exp(−λLt)s,

ϕL(s) = cpL
|KL|
|λL| s.

Proof: The proof follows from Proposition 3.3. Note that the
Luenberger observer is a special case of the interconnected
observer with N = 1. �

Remark 3.5: Note that the boundedness property in item
2) in Theorem 3.4 guarantees that the rate of convergence of
the interconnected observers is faster than or equal to that
of a Luenberger observer by comparing the KL estimates
they induce (which is a reasonable measure of performance
when the KL functions are derived using similar bounding
techniques).
The KL bounds established in Proposition 3.3 characterize a
worse case property of the estimation error of the proposed
observer, which can be compared to that of a Luenberger
observer via Theorem 3.4. The following example illustrates
this point.

Example 3.6: We revisit the motivational example in Sec-
tion II and design an interconnected observer with N = 2
with an all-to-all graph as shown in Figure 2. Consider

x̄1 = x̄2 = 1

2
(x̂1 + x̂2)

1© 2©

Fig. 2. Two agents connected as a direct graph.

the case when two agents are experiencing common noises
m1 = m2 = m. The transfer functions from m to eL and
from m to e (global) are given by4 TL(s) = KL

s−a+KL
and

T (s) = C(sI − A)−1B. In particular, the proposed observer
takes the form

˙̂x1 = ax̂1 −K11(ŷ1 − y)−K12(ŷ2 − y),

˙̂x2 = ax̂2 −K22(ŷ2 − y)−K21(ŷ1 − y),

ŷ1 = x̂1, ŷ2 = x̂2, x̄1 = x̄2 =
x̂1 + x̂2

2
.

(17)

Then, we have the following result.
Proposition 3.7: Given a,KL ∈ R such that a 6= 0 and

a − KL < 0, then there exist K11,K22,K12,K21 ∈ R such
that the rate of convergence of the observer (17) is no smaller
than that of the one induced by the Luenberger observer and
the H∞ norm of T is smaller than the H∞ norm of TL, i.e.,
||T ||∞ < ||TL||∞.

Proof: The proof can be found in [25, Appendix B]. �

It should be noted that averaging the estimates of two uncou-
pled single Luenberger observers (one at each agent) does not
lead to both faster convergence rate and smaller steady state
error (see [25, Appendix D]). To perform a numerical compar-
ison, we consider the case where a = −0.5 and m : R≥0 → R
is a continuous bounded function. A Luenberger observer is
designed following (5) to achieve a convergence rate of 2.5
and an H∞ gain from m to eL equal to 0.8, which leads
to KL = 2. For the interconnected observers (17), using
Theorem 3.4, conditions 2) can be rewritten as

α(A) ≤ a−KL,√
2

2

√
(K11 +K12)2 + (K22 +K21)2

|µ(A)|
<

∣∣∣∣ a

a−KL

∣∣∣∣ . (18)

4For the particular choice of parameters K11 = K22 = KL and K12 =
K21 = 0, ||T ||∞ = ||TL||∞.

From solving (18), we pick parameters K11 = 1.7896, K22 =
2.2278, K12 = 0.0538, K21 = −1.1633. It can be verified
that the eigenvalues of A according to this set of parameters
are −2.5087± 0.1208i. Moreover, µ(A) = −1.9123.

Now we perform simulations using these parameters and
different measurement noises. With initial conditions x(0) =
3, x1(0) = x2(0) = xL(0) = 5, the first simulation is
ran for measurement noise m(t) ≡ 0 and the resulting
trajectories are shown in Figure 3(a). This figure shows that the
interconnected observers converge at a faster rate compared to
the Luenberger observer. In fact, item 2) of Theorem 3.4 holds
with t? ≈ 6.7s. Simulation results for m(t) ≡ 0.3 are shown
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Fig. 3. Comparisons of estimation errors of the proposed observer and that
of a Luenberger observer for different measurement noises with N = 2.

in Figure 3(b). The behavior of the interconnected observers
with constant noise is similar to that of with zero noise. It
is worth to note that there is an improvement of the steady-
state error by the interconnected observers since e? = 0.2272,
while the Luenberger observer gives e?L = 0.2400. As shown
in Figure 3(b), at around t ≈ 2s, e becomes closer to 0
than eL thereafter. To further explore the performance of
the interconnected observers, we also consider measurement
noise with different frequencies, i.e., a low frequency noise
m(t) = 0.3 + 0.3 sin(20t) and a high frequency noise m(t) =
0.3 + 0.3 sin(200t). The advantage of the interconnected
observers lies on the properties of damped oscillatory behavior
and smaller mean value of estimation error. Specifically, a
numerical comparison of the estimation errors after transient
is reported in the first two columns of Table I, which confirm
the improvements guaranteed by the interconnected observers.

4
TABLE I

COMPARISON OF ESTIMATION ERROR (ē) OF THE OBSERVERS WITH
MEASUREMENT NOISE OF DIFFERENT FREQUENCIES.

observer type
low freq. noise high freq. noise H∞ from m to ē

mean ē std ē mean ē std ē Thm. 3.4 Thm. 3.10

Luenberger’s 0.2419 0.0211 0.2395 0.0022 0.8000 0.8000
Interconnected 0.2286 0.0154 0.2268 0.0016 0.7600 0.5052
Improvement 5.5% 27.0% 5.3% 27.3% 5.0% 38.1%

E. Design via feasibility/optimization problems
The interconnected observers in (11) can be designed by

solving feasibility and optimization problems that minimize
the H∞ gain of the transfer function from measurement noise
m to estimation error ē (global) or ēi (local) under the rate of
convergence constraint. To formulate such problems, following
[26], the error system in (13) is rewritten as

ė = Aee+ u, ye = Cee+m, z∞ = X e, (19)
where Ae = IN ⊗ A, Ce = −IN ⊗ C, and the “input” u is
assigned via u = Muye with Mu = K ∗ G>. Note that z∞
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denotes the overall estimation error (or the local estimation
error) of the interconnected observers, i.e., z∞ = e with X =
C (or z∞ = ei with X = Ci). In the s-domain, the transfer
function from m to z∞ for (19) can be written as

T (s) = X
(
sI −A

)−1B +D, (20)
where A = Ae + MuCe,B = Mu, and D = 0. Within
this setting, feasibility (i.e., inequalities) and optimization
problems associated with the design of the interconnected
observers are formulated in the following sections.

1) Rate of convergence and H∞ gain in terms of matrix
inequalities: To guarantee that the rate of convergence of the
interconnected observers is better (or no worse) than that of
a Luenberger observer, the eigenvalues of the error system in
(13) will be assigned to the left of the vertical line at −σ
in the s-plane, where σ is the rate of convergence for the
Luenberger observer. Following [27], the error system (13)
has all eigenvalues located to the left of −σ on the s-plane if
and only if there exists a matrix PS such that

He(A, PS) + 2σPS < 0, PS = P>S > 0. (21)
Note that (21) is nonlinear because of the cross term PS(K ∗
G>) obtained when expanding PSA. The following theorem
provides an equivalent linear formulation and a sufficient
condition for (21).

Proposition 3.8: Condition (21) is satisfied if
a) and only if He(Ae, PS) + C>e M

>
p +MpCe + 2σPS<0,

PS = P>S > 0, in which case Mu = P−1
S Mp;

b) the graph is all-to-all connected and there exists h1, h2 ∈
R such that the following conditions hold:
b.1) h1 + h2 ≥ σ;
b.2) Pi = P>i > 0 for each i ∈ V
b.3) He((A−KiiC), Pi) + 2h1Pi < 0 for each i ∈ V;

b.4)


2h2P1 S12 · · · S1N

S>12 2h2P2 · · · S2N

...
...

. . .
...

S>1N S>2N · · · 2h2PN

 < 0, where Sij =

−(KjiC)>Pj − PiKijC.

Proof: Letting Mp = PSMu, and using the definition of A,
inequality (21) can be written as

He(Ae, PS) + C>e M
>
p +MpCe + 2σPS < 0,

with PS = P>S > 0. This proves item a). Now, assuming
b.1)-b.4) with h1, h2 ∈ R, note that the inequalities in b.3)
can be rewritten as

diag(Q1, . . . , QN ) + diag(2h1P1, . . . , 2h1PN ) < 0, (22)
with Qi = He((A − KiiC), Pi) for each i ∈ V . By b.2),
symmetry of the inequalities (22) and b.4), and the definition
of negative symmetric matrices, the sum of the left terms of
(22) and b.4) satisfies
Q1 S12 · · · S1N

S>12 Q2 · · · S2N

...
...

. . .
...

S>1N S>2N · · · QN

+


2h̄P1 0 · · · 0

0 2h̄P2 · · · 0
...

...
. . .

...
0 0 · · · 2h̄PN

<0, (23)

with h̄ = h1 + h2. Since h1 + h2 ≥ σ, (21) is satisfied with
PD = diag(P1, . . . , PN ). �

Proposition 3.9: Conditions b.1)-b.4) in Proposition 3.8
hold if and only if there exist h1, h2,∈ R, Yi, Wij , Pi for
i, j ∈ V and j 6= i such that:

a) h1 + h2 ≥ σ,
b) Pi = P>i > 0, for each i ∈ V ,
c) He(A,Pi)− C>Y >i − YiC + 2h1Pi < 0, for each i ∈ V ,

d)


2h2P1 R12 · · · R1N

R21 2h2P2 · · · R2N

...
...

. . .
...

RN1 RN2 · · · 2h2PN

 < 0,

where Rij = −C>W>ji −WijC.
The conditions b.3)-b.4) in Proposition 3.8 hold with Kii =
P−1
i Yi and Kij = P−1

i Wij for i, j ∈ V , j 6= i.
Proof: Let Yi = PiKii and Wij = PiKij for i, j ∈ V and
j 6= i, then, b.3)-b.4) in Proposition 3.8 can be rewritten as

He(A,Pi)− C>Y >i − YiC + 2h1Pi < 0

for each i ∈ V and
2h2P1 R12 · · · R1N

R21 2h2P2 · · · R2N

...
...

. . .
...

RN1 RN2 · · · 2h2PN

 < 0,

respectively. Therefore, c) and d) of Proposition 3.9 hold. �

2) Minimization of H∞ norm under rate of convergence
constraint with fixed connectivity graph: We consider the
design of interconnected observer over a fixed digraph Γ =
(V, E , G). The design specifications of our interest are the rate
of convergence and the H∞ gain from noise m to estimation
errors ē or ei.

Theorem 3.10: Given a plant as in (1) and a digraph Γ,
the rate of convergence is larger than or equal to σ and the
global H∞ gain (respectively, the local H∞ gain) from m to
estimation error ē in (13) (respectively, ēi in (12)) is minimized
if and only if there exist matrices K, PS , and PH such that
the following optimization problem has a solution:

inf γ (24a)
s.t. He(A, PS) + 2σPS < 0, (24b) He(A, PH) PHB X>

B>PH −γI 0
X 0 −γI

 < 0, (24c)

PS = P>S > 0, PH = P>H > 0, (24d)
where X = C (respectively, X = Ci and Ci is the sub-matrix
of C from the (in− n+ 1)-th row to the (in)-th row).
Proof: From [28, Theorem 2.41], the H∞ gain for a system
from input to output with realization T1(s) = C1(sI −
A1)−1B1 is less than or equal to γ if and only if there exists
some PH = P>H > 0 such that He(A1, PH) PHB1 C>1

B>1 PH −γI 0
C1 0 −γI

 < 0, (25)

Then, for system (13) with T (s) = C(sI − A)−1B, we have
that the global H∞ gain from m to ē is less than or equal to γ
if and only if (25) holds with A1 = A, B1 = B and C1 = C,
which leads to (24c) with X = C. The same argument applies
for Ti(s) = Ci(sI−A)−1B which leads to (24c) with X = Ci.
Then, the proof finishes by adding constraint (21). �

Remark 3.11: For a fixed connectivity graph, the optimiza-
tion problem in (24) can be solved offline. Moreover, due to the
form of the observer at each node as in (11), the information
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needed by each agent is what the neighbors provide through
the connectivity graph. Therefore, the resulting observers for
each agent are decentralized.

Note that the optimization problem (24) is not jointly
convex over the variables (PS , PH , Mu). Moreover, it is
nonlinear because of the existence of cross terms PHMu and
PSMu. In order to remove the nonlinearities and make the
two constraints jointly convex, following [26], we reformulate
the problem by seeking common solutions of PS and PH ,
and changing variables to Mp := PMu. Using item a) of
Proposition 3.8 to rewrite the terms He(A, PS) and He(A, PH)
in (24), we have the following result.

Theorem 3.12: Given a plant as in (1) and a graph Γ,
the rate of convergence is larger than or equal to σ and the
global H∞ gain (respectively, the local H∞ gain) from m to
estimation error ē in (13) (respectively, ēi in (12)) is minimized
if there exist Mp and P such that the following optimization
problem (LMI) is feasible:

inf γ

s.t.: He(Ae, P ) + C>e M
>
p +MpCe + 2σP < 0, He(Ae, P ) + C>e Mp +M>p Ce Mp X>

M>p −γI 0
X 0 −γI

 < 0,

P = P> > 0,

where X = C (respectively, X = Ci and Ci is the sub-matrix
of C from the (in− n+ 1)-th row to the (in)-th row).

Remark 3.13: The resulting observer gain matrix from
Theorem 3.12 is given by Mu = P−1Mp. By making the
optimization problem linear and convex, a global optimizer is
guaranteed. However, asking for common solution of PH =
PD may eliminate a better feasible solution to the original
optimization problem in (24).

Following [29], it is possible to formulate an equivalent
convex optimization problem to the one in Theorem 3.12 but
with noncommon PD and PH matrices, see [25, Appendix F].

Example 3.14: We revisit the motivational example with
connectivity graph as in Figure 1. To further indicate the
improvement obtained by the proposed observer, we choose
K11 = K22 = KL = 2, and K21 = −0.5KL = −1. The
resulting local H∞ gain from m to ē2 is 0.55, which is smaller
than that of the Luenberger observer, which is 0.8. If instead
the connectivity graph in Figure 2 is considered, we can
further optimize the parameters by solving the optimization
problem (24). Feasible parameters for (24) are found using the
solver PENBMI [30]. For K11 ≈ −6.7215, K22 ≈ 10.7215,
K12 ≈ −13.2202, K21 ≈ 5.7537, the resulting H∞ gain is
≈ 0.5051, which is ≈ 36.86% smaller than that of Luenberger
observer (which is 0.8 with KL = 2). This improvement and
the improvement obtained when using Theorem 3.4 are listed
in the last two columns of Table I.

In fact, when the rate of convergence specification is σ =
2.5, and the H∞ gain from m to ē is restricted to be less
than or equal to 0.8, then, by letting K11 = 2 and K22 = 2,
we can find the feasible region for K12 and K21 as shown in
Figure 4(a). Moreover, if the rate of convergence is required
to be σ = 3.0 with the same H∞ constraint, then, by letting
K11 = 2.5 and K22 = 2.5, we obtain the feasible region for
K12 and K21 as shown in Figure 4(b). As the figure suggests,

faster rate of convergence leads to a smaller feasible region
for the observer parameters. More importantly, for a single
Luenberger observer, there is no feasible solution for rate of
convergence larger than or equal to 3.0 and global H∞ gain
less than 0.8.
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Fig. 4. Feasible regions for observer parameters subject to different rate of
convergence specification and global H∞ gain less than 0.8.
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Fig. 5. Different graph structures for agent 1 with N = 6.

TABLE II
COMPARISON OF LOCAL H∞ NORMS FROM NOISE m TO ē1 WITH

DIFFERENT NUMBER OF INCOMING EDGES FOR AGENT 1.

number of non-self edges (M1)

0 1 2 3 4 5
Local H∞ 0.80 0.45 0.34 0.28 0.25 0.22
Improvement 0.00% 43.8% 57.5% 65.0% 68.8% 72.5%

Now, for the same plant, consider digraphs with 6 agents
where the edges are defined as in Figure 5. In all cases, each
agent is self connected. Let M1 denote the number of non-
self edges for agent 1, e.g., when M1 = 0 as shown in
Figure 5, it is implied that G = I6, while when M1 = 5,
G =

[
g1 g2

]
, g1 = [1 1>5 ]> and g2 = [0 I5]>. Let the rate

of convergence specification be σ = 2.5. Then, the local H∞
norms from noise m = (m1, . . . ,m6) to estimation error ē1

at agent 1 for the cases in Figure 5 are shown in Table II.
From case M1 = 0 to case M1 = 1, the improvement is
significant; in fact, when an incoming edge is added to agent
1, the local H∞ is improved by 43.8% when compared to the
case where a single Luenberger observer is used at agent 1.
When two agents provide information to agent 1 (M1 = 2), the
improvement is approximately 57.5%, while when three and
four agents communicate to agent 1, the improvement grows
to approximately 65% and 69% (M1 = 4), respectively. 4

Example 3.15 (second order plant): First, we con-
sider a second-order plant given as in (1) with A =[
−5/2 1/10
4/100 −3

]
, C =

[
1 2

]
. For a given Luenberger

observer with KL = [1.5 − 0.16]>, its rate of convergence
is −3.34 and its H∞ norm from measurement noise m to
estimation error eL is approximately equal 0.34. With the
interconnected observers for N = 2 connected via an all-
to-all connectivity graph, we obtain that the optimal global
H∞ norm from measurement noise m to estimation error
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ē is approximately 0.05 and the optimal local H∞ norm
from m to ē1 (or ē2) is 0.03 with Mu = [v1 v2], where
v1 = [10.3834 − 1.6019 − 10.7581 1.5963]> and v2 =
[7.1992 − 1.2410 − 7.3028 1.2426]>. The resulting global
and local H∞ gains are ≈ 87.88% and ≈ 91.43% smaller than
that of Luenberger observers, respectively.

Then, we consider a second-order plant with oscillatory be-

havior given as in (1) with A =

[
0 −1
1 0

]
, C =

[
1 0

]
.

For a given Luenberger observer with KL = [2 0]>, its
rate of convergence is −1 and its H∞ norm from mea-
surement noise m to estimation error eL is equal 2. With
the interconnected observers with N = 2 connected via
an all-to-all connectivity graph, by formulating the problem
according to (19), the optimization problem in Theorem 3.10
is solved and the gain matrix is found as Mu = [v1 v2],
where v1 = [7.9503 − 9.9554 − 5.9424 9.0014]> and
v2 = [−5.9324 9.1143 7.9605 −9.8426]>. Its corresponding
global H∞ norm from m to e is≈ 1.4125 and its local H∞
norm from m to ē1 (or ē2) is≈1. Comparing to the Luenberger
observer, the global H∞ norm is decreased by≈ 29.4% and
the local H∞ norm is decreased by≈50.0%. 4
The improvements on the local H∞ gain guaranteed by the
proposed interconnected observers in the examples above are
justified by the fact that the sufficient condition given in the
upcoming Section III-F are satisfied; see Theorem 3.20 and
below it, where these examples are revisited.

3) Minimization of H∞ norm under rate of convergence
constraint with optimized connectivity graph: For intercon-
nected observers whose digraph has not yet been specified,
a natural question to ask is whether there exists a digraph
that minimizes the number of links between agents for the
given specifications. In applications, such minimizations could
potentially lower the cost of a distributed system as it could
reduce the number of agents and communication links. The
following result provides a sufficient and necessary condition
for such optimization problem.

Theorem 3.16: For the error system (13), the rate of
convergence is larger than or equal to σ and the global
H∞ norm (respectively, the local H∞ norm) from noise m
to estimation error ē in (13) (respectively, ēi in (12)) is less
than or equal to γ? over a digraph Γ with minimized number
of edges if and only if there exist matrices K, G, PS , and PH
such that the following optimization problem has a solution:

inf tr(D) (26a)
s.t. He(A, PS) + 2σPS < 0, (26b) He(A, PH) PHB X>

B>PH −γ?I 0
X 0 −γ?I

 < 0, (26c)

PS = P>S > 0, PH = P>H > 0, (26d)
where X = C (respectively, X = Ci).
Proof: Following the proof of Theorem 3.10, the global H∞
gain over a digraph Γ is less than or equal to γ? if and only
if (25) holds with A1 = A, B1 = B, C1 = C, γ = γ? and
PH = P>H > 0. The same argument applies to the local H∞
gain. Moreover, the rate of convergence condition is satisfied
if and only if (26b) holds. Since tr(D) =

∑N
i=1

∑N
j=1 gij ,

where gij = 1 indicates there is an edge from node j to node

i, then the number of edges of the graph is minimized if and
only if tr(D) is minimized. �

The constraints in (26b) and (26c) are nonlinear and not jointly
convex. By changing variables, the nonlinear constraints in
(26b) and (26c) can be linearized as a function of Q and P .

Theorem 3.17: For the error system (13), the rate of
convergence is larger than or equal to σ and the global
H∞ norm (respectively, the local H∞ norm) from noise m
to estimation error ē in (13) (respectively, ēi in (12)) is less
than or equal to γ? over a digraph Γ with minimized number
of communication links if there exist matrices K, G, and P
such that the following optimization problem is feasible:

inf tr(D) (27a)
s.t. He(IN ⊗A,P ) + Z + 2σP < 0, (27b) He(IN ⊗A,P ) + Z Q X>

Q> −γ?I 0
X 0 −γ?I

 < 0, (27c)

P = P> > 0, (27d)
where Q = P (K ∗G>), Z = −Q(IN ⊗C)− (IN ⊗C)>Q>,
and X = C (respectively, X = Ci).
Proof: Let K, G and P be solutions of the optimization prob-
lem (27). Since the matrix K∗G> is such that Q = P (K∗G>),
using P = P> and the definition of A in (15), we have

He(IN ⊗A,P )−Q(IN ⊗ C)− (IN ⊗ C)>Q>

= (IN ⊗A)>P + P (IN ⊗A)

− (IN ⊗ C)>(K ∗G>)>P> − P (K ∗G>)(IN ⊗ C)

= He(A, P ).

Then, K, G, PS = P and PH = P satisfy (26). �

Remark 3.18: The results above define the graph via the
resulting G. The resulting K and G from (27) satisfies K ∗
G> = P−1Q, which may not be unique.

Example 3.19: Consider the scalar plant in (4) with a=−0.5
as in Example 3.14, which can represent the dynamics of a mo-
bile agent whose state is to be estimated using multiple sensors
either fixed or mobile (in relative coordinates). Suppose that
the rate of convergence specification is σ = 2.5. When using
the graph that is all-to-all as shown in Figure 6(a), it is natural
to ask the effect that the number of agents has on the improve-
ment of the global H∞ norm. As shown in Figure 6(b), the
resulting global H∞ gain is reduced as the number of agents
N grows. These results are obtained following Theorem 3.16.
The improvement is summarized in Table III. Note that the

TABLE III
COMPARISON OF GLOBAL H∞ NORMS FROM NOISE m TO ē WITH

DIFFERENT NUMBER OF AGENTS UNDER ALL-TO-ALL CONNECTION.

number of agents (N )
1 2 3 4 5 6 7

global H∞ 0.80 0.51 0.40 0.34 0.33 0.32 0.31
improvem’t 0.00% 36.3% 50.0% 57.5% 58.8% 60.0% 61.3%
local H∞ 0.80 0.38 0.24 0.23 0.21 0.20 0.19
improvem’t 0.00% 52.5% 70.0% 71.3% 73.8% 75.0% 76.3%

improvement is less significant for N > 6. In particular, the
table indicates that if the global H∞ gain is required to be
less than or equal to 0.40, then, as shown in Figure 6(b),
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Fig. 6. The influence of the number of agents on the H∞ gain from noise
m to estimation error ē.

the least number of agents needed is three5. For the same
scalar plant with three interconnected observers, according
to Theorem 3.16, we establish a relationship between tr(D)
and the global H∞ gain from m to estimation error ē in
Table IV. In particular, for tr(D) smaller than six, there is
no improvement in the H∞ gain when compared to that
of Luenberger observers. Moreover, the table indicates that,
with three interconnected observers, if the global H∞ gain is
required to be less than or equal to 0.6, then the minimum
number of links required in the connectivity graph Γ is seven.

4
TABLE IV

COMPARISON OF GLOBAL H∞ NORMS FROM NOISE m TO ē WITH
DIFFERENT CONNECTIVITY GRAPH WITH N = 3.

tr(D)
6 7 8 9

global H∞ 0.64 0.53 0.43 0.40
improvement 20.0% 33.8% 46.3% 50.0%

F. A sufficient condition guaranteeing smaller local H∞ gain
In this section, we are interested in conditions on the plant

(1) for which it is possible to design interconnected observers
that, for a given rate of convergence σ, have local H∞ gains
smaller than when a single Luenberger observer is used at
each agent. Note that the local H∞ gain affects the quality of
the estimates obtained at each node. These estimates can be
computed efficiently and in a decentralized manner using local
information, while computing the global estimate requires
additional algorithms – see [25, Section IV.B]. The following
result provides one such condition.

Theorem 3.20: Given σ ≥ 0, suppose KL is such that the
eigenvalues of the error system (3) of the Luenberger observer
(2) for the plant (1) are located in the region D = {s ∈ C0 :
Re(s) < −σ}, and the H∞ gain from m to eL is γL > 0. If
there exist α̃ ∈ R and P = P> > 0 such that He(A−KLC,P ) PKLC −α̃In

C>K>L P −In (1 + α̃)In
−α̃In (1 + α̃)In −In

 < 0, (28)

then, for every N ∈ N, N > 1, there exist a digraph Γ and a
gain K for N interconnected observers in (11) such that the
error system (13) has its eigenvalues in D and the local H∞
gain from m to associated ēi for all agents are less than or
equal to γL. Moreover, for at least N − 1 agents, the local
H∞ gain from m to associated ēi is strictly less than γL.

5The optimization problem related to the examples shown in this paper are
solved by PENBMI [30].

Proof: For any N > 1, let the digraph Γ have adjacency matrix

GN =

[
1 1>N−1

0 IN−1

]
. (29)

This choice of G indicates that agent 1 can share information
with all other agents. Moreover, for each i ∈ V , let Ti be
the transfer function from m to ēi. Take N = 2 and K11 =
K22 = KL, K12 = 0, and K21 to be determined later. Then,
the interconnected observers in (11) reduce to

˙̂x1 =Ax̂1 −KL(ŷ1 − y1),

˙̂x2 =Ax̂2 −KL(ŷ2 − y2)−K21(ŷ1−y1),

ŷ1 =Cx̂1, ŷ2 =Cx̂2, x̄1 = x̂1, x̄2 =
x̂1 + x̂2

2
,

(30)

with associated error system as in (13) with

A =

[
A−KLC 0
−K21C A−KLC

]
, B =

[
KL 0
K21 KL

]
.

If KL is such that (2) has its eigenvalues in D={s ∈ C0 :
Re(s)<−σ}, then, due to the block matrix form of A, the
eigenvalues of A are also in D. Now, suppose (28) holds with
α ∈ R and P = P> > 0. Then, if (28) is treated as an H∞
constraint, equivalently, we have∣∣∣∣∣∣−α̃(sI − ÃL)−1KLC + (1 + α̃)I

∣∣∣∣∣∣
∞
< 1. (31)

Therefore, the transfer function T2(s)=C2(sI−A)−1B satisfies

T2 =
1

2

[
I I
][ sI − ÃL 0

K21C sI − ÃL

]−1[
KL 0
K21 KL

]
.

By using the inversion identity for a block matrix (inversion
lemma), it follows that[

sI−ÃL 0

K21C sI − ÃL

]−1

=

[
(sI−ÃL)−1 0

F (sI−ÃL)−1

]
,

where F = −(sI − ÃL)−1K21C(sI − ÃL)−1 Then, by
assigning K21 = α̃KL, T2 can be simplified as

T2 =
[

1
2TL −

1
2 α̃TLCTL + 1

2 α̃TL
1
2TL

]
,

where TL(s) = (sI − ÃL)−1KL. Therefore, we obtain

||T2||∞ ≤
1

2
||(1 + α̃)TL − α̃TLCTL||∞ +

1

2
||TL||∞.

Using (31), it follows that ||T2||∞ < ||TL||∞ = γL. Now
consider for any N > 1, N ∈ N, with digraph whose
adjacency matrix is GN , it follows that the transfer function
Ti from noise m to ēi satisfies Ti = T2 for all i ∈ V, i 6= 1.
Therefore, ||Ti||∞ < γL for all i ∈ V, i 6= 1. �

Note that condition (28) is a property on the plant for a
given KL; basically, an H∞ inequality as in (24c). Next, we
illustrate this condition in the examples throughout the paper.

Example 3.21: For the scalar plant (4) with the Luenberger
observer (5), the transfer function in the s-domain from m to
eL is given by TL(s) = KL

s−a+KL
. Since (28) is an LMI with

respect to P and α̃, its feasibility can be easily verified, e.g.,
for a = −0.5 and KL = 2, P = 0.47 and α̃ = −0.5 solve
(28). Therefore, for the plant (4), there exist interconnected
observers such that at least N − 1 local H∞ gains are smaller
than γL = 0.8 with KL = 2. This justifies the improvement
shown in the motivational example as in Table I. 4

Example 3.22: We revisit the systems in Example 3.15. For
the first system discussed in Example 3.15, the improvement
is justified by the fact that condition (28) in Theorem 3.20
holds with α̃ = −0.3241 and P = 0.1I . 4
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While it may be possible to get further improvement by
designing the gains of the interconnected observers as in the
design of Kalman filters, it should be noted that the tradeoff
between performance and robustness affects general Kalman
filters; see [25, Section IV.C] for a discussion on this.

IV. CONCLUSION

In contrast to standard observers for linear time-invariant
systems, interconnected observers have the capability of at-
taining fast rate of convergence rate without necessarily jeop-
ardizing robustness to measurement noise in the H∞ sense.
The comparison between KL bounds between interconnected
and Luenberger observers leads to checkable conditions that
can be used for design – though potentially conservative.
When solved for specific systems, the stated feasibility and
optimization problems lead to significant improvements, when
compared to single Luenberger observers. Such improvement
is guaranteed by the satisfaction of an LMI condition. While
the optimization of the number of internal observers and
the connectivity graph are not necessarily linear and convex,
numerical results for a particular plant indicate that the im-
provement obtained in robustness is significant only up to a
finite number of such internal observers.
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