
Hybrid Feedback Control Methods

for Robust and Global Power Conversion ⋆

Jun Chai
∗
Ricardo G. Sanfelice

∗

∗ University of California, Santa Cruz, CA 95064 USA
(e-mail: jchai3,ricardo@ucsc.edu).

Abstract: In this paper, the applicability and importance of hybrid system tools for the
design of control algorithms for energy conversion in power systems is illustrated in two hybrid
control designs, one pertaining to DC/DC conversion and the other to DC/AC inversion. In
particular, the mathematical models considered consist of constrained switched differential
equations/inclusions that include all possible modes of operation of the systems. Furthermore,
the obtained models can be analyzed and their algorithms designed using hybrid system tools
so as to attain key desired properties, such as stability, forward invariance, global convergence,
and robustness. We argue that hybrid system tools provide a systematic approach for analysis
and controller design of power systems. In particular, hybrid system tools usually leads to power
quantities that have better performance and robustness to state perturbations. Furthermore,
they provide guidelines on how to tune the controller parameters based on design requirements.
These factors motivate the implementation of the proposed hybrid controllers in modern power
conversion systems that use renewable energy sources. Simulations illustrating the main results
and benchmark tests are included.
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1. INTRODUCTION

Under the name “smart grid,” future power generation
and distribution systems ought to provide efficient, reliable
and environment-friendly power generation, conversion
and transmission to customers. In particular, advanced
power conversion methods from renewable energy sources
are required. Recently developed hybrid system tools have
the potential to enable the design of algorithms that
address such challenges; see examples in Escobar et al.
(1999); Heemels et al. (2003a); Senesky et al. (2003);
Geyer et al. (2004); Frasca et al. (2010); Vasca and
Iannelli (2012). In this paper, we show that the nonsmooth
and recurrent switching mechanisms in power conversion
systems demand the use of hybrid system tools for control
design of such systems.

We focus on recent designs of hybrid feedback controllers
for a DC/DC boost converter and a single-phase DC/AC
inverter. The systems involved in these design problems
have the following challenging features, which make tools
for hybrid systems very fitting (if not mandatory) for their
analysis and design:

1) Systems involve nonsmooth dynamics under constraints
due to the presence of switches and/or diodes;

2) Stabilization goals require recurrent switching;
3) Systems have state perturbations and unmodeled dy-

namics.

⋆ This research has been partially supported by the National Science
Foundation under CAREER Grant no. ECS-1450484 and by the Air
Force Office of Scientific Research under YIP Grant no. FA9550-12-
1-0366.

We show that tools for hybrid systems in Goebel et al.
(2012) can be applied to the modeling, controller design,
and analysis of these power conversion systems. In par-
ticular, key design steps and mathematical analysis in
the controller design process for each power converter
are outlined. We show that the application of hybrid
system theories to power conversion not only provides
implementable controllers, but also are useful in highlight-
ing the robustness introduced by such (hybrid) feedback.
Simulations for both problems confirm the usefulness of
hybrid systems methods in power conversion. In addition,
to allow simulation-based quantifiable performance com-
parison between our control algorithms and others, we
propose benchmark tests that focus on switching prop-
erties of these power systems. In particular, the proposed
benchmark tests are relevant when assessing durability of
the switching devices used in hardware/software imple-
mentations. Furthermore, we indicate that both control
algorithms have the flexibility of changing how often the
switches happen by adjusting a corresponding controller
parameter.

The remainder of the paper is organized as follows. A short
introduction on applying hybrid control theory to power
conversion is presented in Section 2. Section 3 highlights
the controller designs and analysis using hybrid system
tools from Theunisse et al. (2015) and Chai and Sanfelice
(2014). Numerical simulations and benchmark test results
are also included in Section 3. Finally, concluding remarks
are presented in Section 4.



2. THE ROLE OF HYBRID SYSTEMS IN FEEDBACK
CONTROL FOR POWER CONVERSION

Most power conversion circuits include some sort of switch-
ing mechanism as well as passive components for filtering.
The switching mechanisms typically introduce changes in
the dynamics, which define different modes of operation
and associated discrete dynamics. The passive components
for filtering and other analog tasks introduce continuous
dynamics into the system. In this way, depending on the
configuration of the switches and/or diodes in the cir-
cuit, the system operates at different modes and switches
between them. By controlling the configuration of the
switches with an appropriate algorithm, the closed-loop
system generates desired output signals. Popular control
algorithms for such purpose are designed using pulse width
modulation (PWM), which is a technique that changes
the configuration of the switches by comparing a carrier
signal (e.g., a triangular signal for DC/AC inverter) and
a reference signal (e.g., a sinusoidal signal for DC/AC
inverter).
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(a) Single-phase DC/AC inverter.
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(b) DC/DC boost converter.

Fig. 1. Circuit diagram for two benchmark problems.

Due to the switching nature of these power convert-
ers/inverters and the associated continuous dynamics,
these systems have nonsmooth dynamics, which can be
modeled as differential equations/inclusions with con-
straints as in Goebel et al. (2012). For example, the single
phase DC/AC inverter with H-bridge in Fig. 1a has mul-
tiple operation modes, each of them is determined by a
different configuration of the switches and leading to a
differential inclusion; see Section 3.2.

Unfortunately, the desired output of the systems in Fig. 1
cannot be generated by choosing a single mode of oper-
ation for all time. In fact, for each fixed configuration of
the switches, the resulting system has an equilibrium point
that does not represent the desired output. More precisely,
for example, for the circuit in Fig 1a, in which iL and vC
represent the current though inductor and voltage across
the capacitor, when S1 = S3 = ON and S2 = S4 = OFF,
the resulting equilibrium is for iL = 0 and vC = VDC ,
while, when S1 = S3 = OFF and S2 = S4 = ON, the
equilibrium condition is iL = 0 and vC = −VDC (other
equilibrium points can be computed similarly). Due to

this, a control algorithm that changes the configuration of
the switches recurrently is required to achieve the desired
AC output for the inverter. Similarly, algorithms with the
same feature are required for the DC/DC boost converter
in Fig. 1b, where the control algorithm needs to switch
between two operation modes to generate an approximate
DC output signal.

In Theunisse et al. (2015) and Chai and Sanfelice (2014),
we model the nonsmooth dynamics of circuits for power
conversion, such as those in Fig. 1a, 1b, as well as their
algorithms as hybrid systems, for which the framework and
tools in Goebel et al. (2012) are employed. In addition
to stability properties, the hybrid analysis tools from
Goebel et al. (2012) allow us to conclude robustness
properties of the power conversion systems. In particular,
having the closed-loop systems with designed controller to
satisfy conditions in (Goebel et al., 2012, Assumption 6.5)
directly leads to robustness to small state perturbations
and unmodeled dynamics. Moreover, the same framework
also benefits the modeling and analysis of hybrid systems
that require periodic-like solutions, which can be studied
using the forward invariance of sets; see Section 3.2.

As in Goebel et al. (2012), a hybrid system H can be
written as

H
{
ż ∈ F (z) z ∈ C
z+ ∈ G(z) z ∈ D,

(1)

where C, F,D, and G represent the flow set, the flow map,
the jump set, and the jump map, respectively. Solutions
to (1) have continuous and/or discrete behavior depending
on the system data (C, F,D, G). Following Goebel et al.
(2012), besides the usual time variable t ∈ R≥0 :=
[0,+∞), we consider the number of jumps, j ∈ N :=
{0, 1, 2, ...}, as an independent variable. Thus, hybrid time
is parametrized by (t, j). A solution to the hybrid system
(1) is given by a hybrid arc φ satisfying the dynamics of
(1). For more details about solutions to hybrid systems,
see (Goebel et al., 2012, Chapter 2).

Furthermore, the following results from our recent works
are important for the purpose of this paper:

• Hybrid basic conditions from (Goebel et al., 2012,
Assupmtion 6.5):

(A1) C and D are closed subsets of Rn;
(A2) F : Rn

⇒ R
n is outer semicontinuous and locally

bounded relative to C, C ⊂ domF , and F (x) is
convex for every x ∈ C;

(A3) G : Rn
⇒ R

n is outer semicontinuous and locally
bounded relative to D, and D ⊂ domG.

• Forward invariance of a set for hybrid systems from
Chai and Sanfelice (2014):
A set K ⊂ R

n is forward invariant for H if every
maximal solution φ from K is complete and φ(t, j) ∈
K for all (t, j) ∈ domφ.

3. TWO CONTROLLER DESIGN BENCHMARK
PROBLEMS IN ENERGY CONVERSION

In this section, we propose the following two controller
design benchmark problems in energy conversion:

a) Design a controller for the DC/DC boost converter
in Fig. 1b with given system parameters VDC , L, C,



R, such that the closed-loop system outputs a DC-like
signal with desired value;

b) Design a controller for the single-phase DC/AC inverter
in Fig. 1a with given system parameters VDC , L, C, R,
such that the closed-loop system outputs a sinusoidal-
like signal with desired amplitude and frequency.

Next, we outline the modeling, stability analysis, and con-
troller designs from our previous works. Complete details
of the work in Section 3.1 and Section 3.2 are presented
in Theunisse et al. (2015) and Chai and Sanfelice (2014),
respectively. Functionality of each proposed controller is
proven by presenting both mathematical analysis and nu-
merical simulations. In addition, we propose benchmark
tests for each system. For the DC/DC boost converter
controller with spatial regulation, we study the number
of switches per second during its “steady state;” see Sec-
tion 3.1. For the DC/AC inverter controller, the bench-
mark tests consists of determining the number of switches
per period of the generated sinusoidal-like signal; see Sec-
tion 3.2.

3.1 DC/DC Boost Converter

The DC/DC boost converter circuit is shown in Fig. 1b.
It consists of a DC voltage source VDC , a capacitor C, an
ideal diode d, an inductor L, a resistor R, and an ideal
switch S. The voltage across the capacitor is denoted by
vC , and the current through the inductor is denoted by
iL. The presence of switching elements (d and S) causes
the overall system to be of switching/hybrid nature. The
purpose of the circuit is to draw power from the DC voltage
source, and supply power to the load at a higher DC
voltage value. This task is accomplished by first closing the
switch to store energy in the inductor, and then opening
the switch to transfer that energy to the capacitor, where
it is available to the load R. Depending on the (discrete)
state of an ideal diode and of an ideal switch, one can
distinguish four modes of operation, see details in Heemels
et al. (2003b) and Theunisse et al. (2015):

mode 1: (S = 0, d = 1) mode 2: (S = 1, d = 0)
mode 3: (S = 0, d = 0) mode 4: (S = 1, d = 1)

where d = 1 represents the diode conducting, i.e., id ≥
0, vd = 0; d = 0 represents the diode blocking current,
i.e., id = 0, vd ≤ 0; S = 1 represents when the switch
is “ON,” i.e., vS = 0; and S = 0 represents when the
switch is “OFF,” i.e., iS = 0. As shown in Theunisse et al.
(2015), these four modes can be combined into two modes
of operations corresponding to the switch in either “ON”
or “OFF” position. Defining x := (vC , iL), the dynamics
of the DC/DC boost converter can be expressed by two
differential inclusions with constraints as follows:

• For each x ∈ M̃0 := {x ∈ R
2 : iL ≥ 0}, we have

F0(x) :=





− 1

RC
vC +

1

C
iL

− 1

L
vC +

VDC

L


 if x ∈ {x ∈ R

2 : iL > 0}∪
{x ∈ R

2 : iL = 0, vC < VDC}
{
− 1

RC
vC

}
×
[
− 1

L
vC +

VDC

L
, 0

]

if x ∈ {x ∈ R
2 : vC ≥ VDC , iL = 0}.

• For each x ∈ M̃1 = {x ∈ R
2 : vC ≥ 0}, we have

F1(x) :=

[
− 1

RC
vC

VDC

L

]⊤
.

We introduce a switching variable q ∈ {0, 1} to model the
selection made by the control algorithm. Since q would be
constant in between switches, the flow map of the resulting
system as in (1) would be

F (x, q) =
[
Fq(x)

0

]
for each q ∈ {0, 1}.

Notice that the switching variable q can be either 0 or
1, representing different (set-valued) vector fields, which,
at every instant, depends on the choice made by the
controller. This promotes the use of hybrid system analysis
and controller design tools.

As stated in benchmark problem a), the goal of the con-
troller is to approximate a DC output with given v∗C and
i∗L,

1 which represent the desired voltage cross capacitor
and current through inductor, respectively. The equiva-
lent design goal is to design a controller that guarantees
asymptotic stability of set Ax × {0, 1} for the closed-loop
system, where Ax := {x ∈ R

2 : x = x∗} and x∗ = (v∗C , i
∗
L).

The hybrid controller proposed to achieve the desired DC
voltage output is based on the following control Lyapunov
function:

V (x) = (x− x∗)⊤P (x− x∗), where P =

[
p11 0
0 p22

]
.

For each q ∈ {0, 1}, let γq(x) := maxξ∈Fq(x)〈∇V (x), ξ〉,
and γ̃q(x) be given for each x ∈ R

2 as

γ̃0(x) = γ0(x) +K0 (vC − v∗C)
2

γ̃1(x) = γ1(x) +K1 (vC − v∗C)
2
,

where K0 ∈
(
0, 2p11

RC

)
, K1 ∈

(
0, 2p11

RC

)
. Then, the control

law is designed such that we have γ̃q(x) ≤ 0 for each
x ∈ R

2, q ∈ {0, 1}. The closed-loop system with this
proposed controller can be expressed as in (1) with state
variable z = [x q]⊤ and dynamics

ż ∈
[
Fq(x)
0

]
=: F (z) z ∈ C

z+ =

[
x

1− q

]
=: G(z) z ∈ D

(2)

where C = {z ∈ R
2×{0, 1} : x ∈ M̃q, γ̃q(x) ≤ 0, q ∈ {0, 1}}

and D = {z ∈ R
2 × {0, 1} : x ∈ M̃q, γ̃q(x) = 0, q ∈ {0, 1}}.

Assuming all system parameters are positive, p11

C
= p22

L
,

v∗C > VDC , and i∗L =
v∗

C
2

RVDC
, it can be shown that the set

Ax × {0, 1} is globally asymptotic stable for the closed-
loop system; see (Theunisse et al., 2015, Theorem IV.5). In
addition, a design result is established in (Theunisse et al.,
2015, Lemma III.3), which permits tuning the switching
“frequency” between system modes by properly choosing
constants K0 and K1.

Simulation results for the closed-loop system H, shown in
Fig. 2, used the following system parameters: 2

1 In fact, i∗
L

is a function of v∗
C

for given system parameters
VDC , L, R, C.
2 All simulations of the closed-loop system H are performed using
the Hybrid Equations (HyEQ) Toolbox (see Sanfelice et al. (2013)).



VDC = 5V , R = 3Ω, C = 0.1F , L = 0.2H , P =[
C/2 0
0 L/2

]
, and x∗ = (7, 3.27). As can be seen, the

solution components (vC , iL) of the closed-loop system
converge from the given initial condition to the globally
asymptotic stable set Ax.
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Fig. 2. Simulation results for the closed-loop system H
with initial conditions x0 = (5, 0), q0 = 0, using
K0 = 0.05, K1 = 0.12.

In addition, the construction of the proposed controller is
such that the closed-loop system H has data satisfying the
hybrid basic conditions (A1)-(A3). With these properties,
we have that the asymptotic stability property is robust
to small perturbations, such as state noise and unmodeled
system dynamics; see (Theunisse et al., 2015, Theorem
IV.6).

Furthermore, the fact that (A1)-(A3) are satisfied implies
that the closed-loop system is robust to spatial regulariza-
tion. More precisely, we use the condition γ̃q(x) = ρ rather
than γ̃q(x) = 0 as switching boundaries at the controller
level, where ρ is a small positive constant. The motivation
for such a modification is to reduce the number of switches
and enlarge the time between switches by allowing a neigh-
borhood around x∗ between the two switching boundaries,
rather than having them intersect at the point x∗. The
regularized system is denoted as 3

Hρ = (Cρ, F,Dρ, G). (3)

Under the given assumptions, it can be shown that the
closed-loop solutions satisfy a practical KL bound from
compact sets, namely, for every ǫ > 0 and compact set
K ⊂ R

2, it is such that the solutions to the closed-loop
system from K × {0, 1} converge to a neighborhood of
Ax × {0, 1} after finite hybrid time (which depends on
ǫ). For more details, see (Theunisse et al., 2015, Theorem
IV.7).

Using the regularized system in (3), we propose the fol-
lowing benchmark test for the DC/DC boost converter:
given a constant ǫ representing the maximum deviation
of the output range vC from v∗C , determine the average
number of switches per second after the solutions reach
the set {z ∈ R

2 × {0, 1} : |vC − v∗C | ≤ ǫ} and remain in it.
Moreover, we also compute the average number of switches
and its standard deviation (Std) as a function of ǫ. We use
the same system parameters and the relationship ǫ ≈ 1.3ρ
from (Theunisse et al., 2015, Table II) for this benchmark
test. In addition, for each value of ǫ, we present the average

3 See (Theunisse et al., 2015, Section IV.E) for details on definitions
of system data.

dwell time for switching. The number of switches per
second reported are rounded.

Table 1. Benchmark test for DC/DC boost converter.

ǫ x0

Average number
of switches
per second

Average & Std
Average dwell-time
between switches

0.01

(0,5) 1467

Average = 1587
Std = 61.21

S = ON : 9× 10−4s

S = OFF : 3.6× 10−4s

(4,3) 1625
(6,2) 1625
(3,8) 1592
(5,0) 1625

0.05

(0,5) 348

Average = 356
Std = 4.37

S = ON : 4× 10−3s

S = OFF : 1.6× 10−3s

(4,3) 360
(6,2) 360
(3,8) 355
(5,0) 359

0.1

(0,5) 179

Average = 179
Std = 0.075

S = ON : 8× 10−3s

S = OFF : 3.1× 10−3s

(4,3) 179
(6,2) 179
(3,8) 179
(5,0) 179

The numerical results in Table 1 indicate that, for smaller
values of ǫ, switching happens more frequently. While the
number of switches varies slightly with the initial condi-
tion, the standard deviations suggest that the dispersion
around the average is small. In addition, the average dwell
time results indicate that the switch stays at the “ON”
position longer than at the “OFF” position, which is
expected, but more importantly, indicate that the time be-
tween consecutive switching times has a reasonable lower
bound. Such lower bound gives an indication of how fast
the switch happens during the “steady state.”

3.2 Single-Phase DC/AC Inverter

A single-phase DC/AC inverter circuit consists of four
controlled switches connecting to a series RLC filter, as
shown in Fig. 1a. The DC signal VDC is the input to
the inverter. The output signal vC denotes the voltage
across the capacitor C, and iL denotes the current through
the inductor L. The objective of a controller selecting the
positions of the switches S1 − S4 is to generate an output
vC that approximates a sinusoidal signal by appropriately
toggling the switches. The presence of switches in the
circuit introduces nonsmooth dynamics. By controlling
the position of the switches, to either “ON” or “OFF”
position, the voltage Vin to the RLC filter will equal either
VDC , −VDC , or 0. The dynamics of the system are

[
i̇L
v̇C

]
= fq(x) :=



VDC

L
q − R

L
iL − 1

L
vC

1

C
iL


 , (4)

whereR,L,C are parameters of the circuit, x := (iL, vC) ∈
R

2, and q ∈ Q := {−1, 0, 1} is a logic variable that
describes the position of the switches. We have q = 1 when
S1 = S3 = ON and S2 = S4 = OFF; we have q = −1, when
S1 = S3 = OFF and S2 = S4 = ON; and we have q = 0
when S1 = S4 = OFF and S2 = S3 = ON. Notice that
each value of the switching variable q represents a different
vector field, which, at every instant, depends on the choice
made by the controller. This promotes the use of hybrid
system analysis and controller design tools.

As stated in benchmark problem b), the controller design
goal is to generate a sinusoidal-like voltage output across



the capacitorC. In particular, the desired signal is a steady
state (oscillatory) response of the RLC filter in Fig. 1a
to a sinusoidal input signal t 7→ Vin(t) = A sin (ωt+ θ),
where A,ω > 0 are the amplitude and angular frequency,
respectively, and θ is the initial phase. Using the equations
of the filter, under the effect of the input t 7→ Vin(t),
every steady state solution, in particular, (i∗L, v

∗
C), satisfies

V (i∗L(t), v
∗
C(t)) = c for all t ≥ 0 and some positive constant

c, where

V (x) :=

(
iL
a

)2

+
(vC

b

)2

x ∈ R
2 (5)

with constants a := 1√
R2+(Lω− 1

Cω
)2
, and b := a

Cω
.

A hybrid control strategy is developed for the inverter
to switch among the three operation modes described
previously, which guarantees that the output trajectory
converges to a region (tracking band) that is defined as
a neighborhood around the set {x ∈ R

2 : V (x) = c}.
More precisely, given ci and co such that ci < c < co, the
tracking band is given by {x ∈ R

2 : ci ≤ V (x) ≤ co}.
On the (iL, vC) plane, the tracking band has an outer
boundary given by So = {x ∈ R

2 : V (x) = co}, and an
inner boundary given by Si = {x ∈ R

2 : V (x) = ci}. The
reference trajectory, is enclosed by the tracking band. A
trajectory to (4) with the proposed control strategy ought
to remain in the tracking band for all time while describing
a periodic-like orbit.

The feedback control architecture for such a hybrid con-
troller is shown in Fig. 3, where p ∈ P := {1, 2} is a
logic variable that select between controller Hfw and Hg;
see Chai and Sanfelice (2014) for detailed definitions and
analysis of the three controllers Hs, Hfw and Hg.

p q

q i̇L = −R
L
iL − 1

L
vC + VDC

L
q

v̇C = 1
C
iL

Hg

Hfw
Hs

x

κ(x)

Fig. 3. Full closed-loop system withHs,Hg, andHfw. (Chai
and Sanfelice, 2014, Fig. 4)

A key result, see (Chai and Sanfelice, 2014, Proposition
1), for the closed-loop system with Hfw in the loop, i.e.,
Hcl

fw = (Cfw, f cl
fw,Dfw, G

cl
fw), is the forward invariance of

the set T := Q × {x ∈ R
2 : V (x) ∈ [c1, co]} for Hcl

fw. This
property is guaranteed by the inner product properties of
(4) and the Lyapunov-like function V in (5); see (Chai
and Sanfelice, 2014, Lemma 2). Furthermore, the closed-
loop system data (Cfw, f cl

fw,Dfw, G
cl
fw) satisfies conditions

(A1)-(A3); see (Chai and Sanfelice, 2014, Lemma 1).
Thus, according to (Goebel et al., 2012, Section 6.1), the
behavior of the hybrid closed-loop system Hcl

fw is robust to
small perturbations.

As a result, the full closed-loop system that combines
the dynamics of the three controllers, Hfw, Hg and Hs,
is autonomous and has state variable z = (p, q, x) (with
some abuse of notations). Its hybrid model is given as in
(1), where the flow map f is given as

f(z) =




0
0

−R

L
iL − 1

L
vC +

VDC

L
q

1

C
iL



,

the flow set C is given as

C = {z ∈ Z : p = 1, (q, x) ∈ Cfw} ∪ {z ∈ Z : p = 2, x ∈ Cg},
where Z := P ×Q× R

2, the jump map is given as

G(z) =




1
Gfw(q)
iL
vC


 ,

and the jump set is given as

D = {z ∈ Z : (p, x) ∈ Ds} ∪ {z ∈ Z : p = 1, (q, x) ∈ Dfw}
∪ {z ∈ Z : p = 2, x ∈ Dg} .

With further analysis, it can be shown that the set T
is globally asymptotically stable for the full closed-loop
system; see (Chai and Sanfelice, 2014, Theorem 1).

Next, we show a simulation confirming that the proposed
controller is robust to variations of VDC , which is a key
robustness property of our controller. The following system
constants are used: R = 0.7Ω, L = 0.106H , C = 0.663µF ,
ω = 120π (or, equivalently, the frequency is 60 Hz),

ǫ = 0.042, co = 1.1, ci = 0.9, b = 120
√
2, and c = 1.

The initial condition x(0, 0) = (3
√
2, 0) is used in this

simulation.
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(a) vC output of the single-phase inverter controlled by
our hybrid algorithm with a step change in VDC at 3s.
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Fig. 4. Simulations with a step in VDC at 3s.

Fig. 4a shows the output voltage vC close to its steady
state that is preserved even after a step change in VDC



from 220V to 200V at 3s (see Figure 4b). A Fast Fourier
Transform (FFT) analysis is also performed to show that
the output signal has the desired frequency; see (Chai and
Sanfelice, 2014, Fig. 6a).

In addition to the functionality of the proposed controller,
one can tune the width of the “tracking band” to assure
that the output trajectory is close as desired to the
ideal trajectory on the R

2 plane. However, the thinner
the tracking band, the larger the number of switches
within a “period” are. Thus, we propose a benchmark test
for control algorithms of single-phase DC/AC inverters
that focuses on the switching properties of the designed
controllers. More precisely, we are interested in the average
number of switches during one “period” of the output
sinusoidal-like signal vC of the closed-loop system. In this
benchmark test, for different value of ci and co, we record
the average number of switches during a time period
of 2π

ω
after the “transient” state of solutions from five

different initial conditions. 4 In addition, we also compute
the average number of switches and its standard deviation
(Std) for three different widths co−ci of the tracking band.
The numbers of switches per period are rounded.

Table 2. Benchmark test for single-phase DC/AC inverter.

ci & co x0

Average number
of switches
per period

Average & Std

ci = 0.9
co = 1.1

co − ci = 0.2

(3
√
2,0) 3277

Average = 3230
Std = 105

(1.06, 164. 32) 3123
(2.12, 146.97) 3348
(3.18,112.25) 3114

(0, 120
√
2) 3289

ci = 0.95
co = 1.05

co − ci = 0.1

(3
√
2,0) 6557

Average = 6432
Std = 231

(1.06, 164. 32) 6397
(2.12, 146.97) 6604
(3.18,112.25) 6042

(0, 120
√
2) 6559

ci = 0.99
co = 1.01

co − ci = 0.02

(3
√
2,0) 3.18e4

Average = 3.18e4
Std = 219

(1.06, 164. 32) 3.14e4
(2.12, 146.97) 3.19e4
(3.18,112.25) 3.17e4

(0, 120
√
2) 3.19e4

Table 2 shows that with smaller width of the tracking band
(namely, higher precision), switching is more frequent,
which is expected. Furthermore, the number of switches
varies with different initial conditions, but the average and
standard deviation results reported in Table 2 imply that
by tuning the value of co and ci, it is possible to control
the number of switches per “period.” The resulting data
also gives a general guideline for choosing appropriate co
and ci values for given system parameters.

4. CONCLUSION

The switching nature of power conversion systems requires
modeling and analysis tools that can handle both discrete
and continuous dynamics, which promote the use of hybrid
system tools for modeling, analysis, and controller de-
sign. To illustrate such a methodology, two control design
benchmark problems, one for a DC/DC boost converter
and the other for a single-phase DC/AC inverter, are

4 By “transient” we mean the time before trajectories enter the set
T .

solved taking a hybrid control systems approach. Bench-
mark tests characterizing the switching properties of the
closed-loop systems are also proposed. The benchmark test
results obtained for the proposed algorithms can be used
as baseline results to compare with other algorithms in the
literature, such as PWM-based controllers.

Additional benchmark tests involving analysis of transient
response of closed-loop systems can be developed. In par-
ticular, for the DC/DC boost converter, one can charac-
terize the time it takes and the number of switches needed
to reach a neighborhood of the desired steady state value
of the output. Also, for the single-phase DC/AC inverter,
one could be interested in computing the time it takes
and the number of switches needed for the output voltage
vC to be desired sinusoidal. Another potential benchmark
test could focus on comparing the energy efficiency of the
control algorithms.
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