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Abstract— The property of synchronization between two
identical linear time-invariant (LTI) systems connected through
a network with stochastically-driven isolated communication
events is studied. More precisely, the goal is to design feedback
controllers that, using information obtained over such networks,
asymptotically drive the values of their state to synchronization
and render the synchronization condition Lyapunov stable. To
solve this problem, we propose a dynamic controller with hybrid
dynamics, namely, the controller exhibits continuous dynamics
between communication events while it has variables that jump
at such events. Due to the additional continuous and discrete
dynamics inherent in the networked systems and communica-
tion structure, we utilize a hybrid systems framework to model
the closed-loop system. The problem of synchronization is then
recast as a set stabilization problem and, by utilizing recent
Lyapunov stability tools for hybrid systems, sufficient conditions
for asymptotic stability of the synchronization set are provided
for two network topologies: a cascade (unidirectional) network
and a feedback (bidirectional) communication network with
independent transmission instances. Furthermore, we study
the robustness of synchronization by considering a class of
perturbations on the transmitted data. Numerical examples are
provided.

I. INTRODUCTION

The idea of synchronization in networked systems has

been extensively studied in the literature and has been

approached by various viewpoints and methodologies. Syn-

chronization of coupled identical linear systems has been

throughly investigated in both the continuous and discrete

time domains [1], [2], [3]. Further studies involving nonlinear

systems within complex network structures are also available,

[4]. A typical approach is to study the network structure

using graph theory, which provides a solid understanding

of the connectivity of the network and its effect on the

individual dynamics of the systems [5], [6]. The study of

the stability of synchronization using systems theory tools,

like Lyapunov functions [7], [8], contraction theory [9], and

incremental input-to-state stability [10], [11] have also been

explored. Synchronization of state information in impulsive

networks with sporadic communication between LTI systems

naturally leads to a complex communication structure, for

which, perhaps due to a theory for synchronization of hybrid

systems not being available, there is a surprising lack of

solutions. Notably, recent research efforts on sample-data

systems [12], event-triggered control [13], [14], and tracking

[15] for the stabilization of sets provide results that can
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become useful for synchronization, though some of the

assumptions need to be carefully fit to the synchronization

problem under intermittent communication networks; e.g.,

the common event times conditions in [15] and [14] might

require specific structure in the network.

This article deals with the problem of synchronization of

the states between two linear continuous-time systems when

communication occurs only impulsively, at stochastically

determined instants. To solve this problem, we design a

dynamic hybrid controller that continuously evolves between

communication times and undergoes an instantaneous change

in its state when a new measurement is available. Due

to the combination of continuous and impulsive dynamics,

we use hybrid systems theory to model the systems, the

controllers, and two network topologies, and apply tools

for the stabilization of sets. More precisely, we recast the

synchronization problem as the stabilization of a compact

set and apply a Lyapunov theorem for hybrid systems. We

show that the resulting closed-loop system has an asymptotic

synchronization property that is robust to small perturbations.

The remainder of this paper is organized as follows. In

Section II we introduce the impulsive network model, control

structure and recast this model into the hybrid systems frame-

work. In Section III, we provide the sufficient conditions that

guarantee stability for each topology considered. The results

on robustness of synchronization are in Section III-C. Sec-

tion IV provides examples and numerical simulations. Due

to space limitations, the proofs will be published elsewhere.

Notation: The set R denotes the space of real numbers.

The set R
n denotes the n-dimensional Euclidean space.

The set N denotes the natural numbers including zero, i.e.,

N = {0, 1, 2, ...}. Given two vectors x, y, we denote (x, y) =
[x⊤, y⊤]⊤. Given x ∈ R

n, |x| denotes the Euclidean norm

of x. The identity matrix is denoted by I . For a matrix

A ∈ R
n×m, A⊤ denotes the transpose of A and |A| denotes

the induced 2-norm. For two symmetric matrices with same

dimensions, A and B, A > B means that A−B is positive

definite. A function α : R≥0 → R≥0 is said to belong

to class K if it is continuous, zero at zero, and strictly

increasing and is a class K∞ function if it belongs to class

K and is unbounded. A function β : R≥0 × R≥0 → R≥0 is

said to belong to class KL if it is nondecreasing in its first

argument, non-increasing in its second argument, and is such

that lims→0 β(s, t) = limt→∞ β(s, t) = 0. Given a closed

set A ⊂ R
n and a vector x ∈ R

n, the distance from x to A
is |x|A := infz∈A |x− z|.

II. PROBLEM DESCRIPTION AND



MATHEMATICAL MODELING

A. Problem Description

We consider the problem of synchronizing the states x1

and x2 of two identical LTI systems given by

ẋ1 = Ax1 +Bu1, ẋ2 = Ax2 +Bu2, (1)

exchanging information about their variables intermittently,

where, for each i ∈ {1, 2}, xi ∈ R
n is the state and ui ∈ R

p

is the input to the i-th system. More precisely, our goal is to

design a feedback controller assigning the inputs u1 and u2

to drive the solutions to (1) to synchronization between x1

and x2 asymptotically and also rendering the set of points

where x1 is equal to x2 stable. Moreover, the outputs of each

system are available to the other system only at isolated time

instances.

To accommodate many real-world applications, we do

not assume that information arrival to each system occurs

simultaneously. Specifically, we assume that the state xℓ of

the ℓ-th system is available to the i-th system (i, ℓ ∈ {1, 2},

i 6= ℓ) only at impulsive time instances tik, where k ∈ N\{0}
is the communication event index and i ∈ {1, 2} is the index

denoting the system receiving information at such instants.

Given positive scalars T2 > T1, we assume that the time

between these events are governed by a discrete random

variable with some bounded probability distribution; i.e., for

each i ∈ {1, 2}, the random variable γi ∈ [T1, T2] determines

the time elapsed between such events, namely,

tik+1 − tik = γi ∀k ∈ N \ {0} (2)

The positive values T1 and T2 define the lower and upper

bounds, respectively, of the time allowed to elapse between

consecutive transmission time instances. In this way, the ran-

dom variable γi may take values only on the bounded interval

[T1, T2], while the probability density function governing its

distribution can be arbitrary on this interval.

Synchronization itself is most generally described as the

property that the distance between every pair of solutions,

one to each system, converges to zero. At times, stability of

the synchronization condition is also required. In this paper,

due to the interest in robustness, we consider stability and

attractivity of the set defining synchronization, which will be

presented in detail for hybrid systems in Definition 2.3.

To illustrate that achieving synchronization with intermit-

tent information is difficult, consider a pair of linear oscil-

lators, each with the dynamics ẋi =

[
0 1
−1 0

]
xi +

[
0
1

]
ui,

with state xi ∈ R
2, initial condition xi(0), and input ui ∈ R

for each i ∈ {1, 2}. It can be shown that for a network

transmitting continuously, the static controller given by ui =
Ki(xi−xℓ) (i, ℓ ∈ {1, 2} i 6= ℓ) asymptotically synchronizes

the interconnected system if there exist K1,K2 ∈ R
1×2 such

that the matrix A+B(K1+K2) is Hurwitz. See Figure 1(a)

for a numerical solution for K1 = K2 = [−1,−2] and initial

conditions x1(0) = (−2, 0) and x2(0) = (1, 0). The norm of

the error between x1 and x2 along the solution is also plotted.

As Figure 1(b) shows, a sample-and-hold implementation

of this controller may not work over a network in which
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(a) The distance between the solutions using continuous control decreases
to zero (right), implying that solutions synchronize asymptotically (left).
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(b) With ti
k+1 − ti

k
∈ [0.5, 1] for i ∈ {1, 2}, k ∈ N \ {0}, the intermittent

communication prevents the controller from driving the distance between
solutions to zero (right) and thus preventing synchronization (left).

Fig. 1. A numerical solution to (1) with a controller given by ui = Ki(xi−
xj) with K1 = K2 = [−1,−2] under (a) continuous communication and
(b) intermittent communication from initial conditions x1(0) = (−2, 0)
and x2(0) = (1, 0).

information cannot be transmitted arbitrarily fast. Since in-

formation arrives only at impulsive events (in this simulation,

we assume they occur at the same time instances for both

systems and [T1, T2] = [0.5, 1]), the controller is not capable

of synchronizing the systems. While very fast transmission

would solve the problem, we show in Section IV-A that

our controller synchronizes the systems with this “slow” and

nonperiodic transmission rate.

B. Outline of Proposed Solution

We propose a hybrid controller and a design procedure

for synchronization over intermittent networks. The proposed

controller for each system has state ηi, which assigns the

input as ui = ηi, where ηi ∈ R
p has the following dynamics:

η̇i(t) = fci(xi(t)) t /∈ {tik}
∞
k=1

ηi(t
+) ∈ Gci(xi(t), xℓ(t)) t ∈ {tik}

∞
k=1

(3)

where ηi(t
+) denotes the value of ηi after an instantaneous

change at time t. The map fci : R
n → R

p governs the

continuous evolution of the controller between time instances

tik while Gci : R
n ×R

n ⇒ R
p is a set-valued map updating

the state of the controller when new information arrives; the

functions fci and Gci from (3) are to be designed.

Due to the nonlinearities, nonperiodic arrival of informa-

tion, and impulsive dynamics, classical control theory pro-

vides little insight into modeling and design. This motivates

us to design the controller in (3) by recasting the closed-loop

interconnection as a hybrid system [16].

C. Hybrid Modeling

The closed-loop system obtained when controlling (1) with

(3) consists of a continuous-time plant and an impulsive con-

troller that is allowed to evolve both continuously between



transmission time instances (i.e., when the continuous time

parameter t satisfies t ∈ [tik, t
i
k+1)) and discretely when

information is received (i.e., when t = tik, k ∈ N \ {0}).

Following [17], for each system i ∈ {1, 2}, we model these

events using a timer variable τi that decreases during flows

and, once it reaches zero, is reset to any point in [T1, T2].

To model this mechanism and the closed-loop system,

we employ the hybrid systems framework in [16], where a

hybrid system is given by four objects (C, f,D,G) defining

its data:

• Flow set: a set C ⊂ R
n specifying the points where

(the continuous evolution or) flows are possible.

• Flow map: a single-valued map f : Rn → R
n defining

the flows.

• Jumps set: a set D ⊂ R
n specifying the points where

(the discrete evolution or) jumps are possible.

• Jump map: a set-valued map G : Rn ⇒ R
n defining

the value of the state after jumps.

A hybrid system with state ξ ∈ R
n is denoted by H =

(C, f,D,G) and can be written in the compact form

H : ξ ∈ R
n

{
ξ̇ = f(ξ) ξ ∈ C
ξ+ ∈ G(ξ) ξ ∈ D.

(4)

Using this framework, the evolution of the timers τi modeling

the events is given, for each i ∈ {1, 2}, by

τ̇i = −1 τi ∈ [0, T2],

τ+i ∈ [T1, T2] τi = 0.
(5)

The reset law of the timer state is set valued and it resets to

any value within the interval [T1, T2]. Due to this fact, any

sequence of points {tik}
∞
k=1 that satisfies (2) with γi given

by any probability density function is captured by (5).

A model of the closed-loop bidirectional system, denoted

Hb, has state ξ = (x̃1, x̃2) where, for each i ∈ {1, 2}, x̃i =
(xi, ηi, τi) ∈ R

n×R
p× [0, T2] =: S. The flow and the jump

sets are defined to constrain the evolution of the timers. From

the model in (5), the controller dynamics in (3), and the LTI

model given by (1), the flow set is defined by constraining

the timer states to the interval [0, T2]. Then, we have that the

flow set and flow map are given by

C := {ξ ∈ S2 : τ1 ∈ [0, T2], τ2 ∈ [0, T2]}, (6)

f(ξ) = (f1(ξ), f2(ξ)), (7)

respectively, where fi(ξ) = (Axi + Bηi, fci(xi),−1), for

each i ∈ {1, 2}. The impulsive events are captured by the

jump set D and the jump map G. Since jumps occur when

either τ1 = 0 or τ2 = 0, the jump set is defined as D :=
D1 ∪D2, where

D1 = {ξ ∈ S2 : τ1 = 0}, D2 = {ξ ∈ S2 : τ2 = 0}. (8)

Consider the case of ξ ∈ D1 \D2 (i.e., τ1 = 0 and τ2 > 0).
Then, a jump is triggered such that x̃1 is updated via G1 and
x̃2 is mapped to itself. Likewise, when ξ ∈ D2 \D1, x̃2 is
updated via G2 and x̃1 is mapped to itself. Such dynamics

are captured by the jump map given by

G(x) :=







































[

G1(ξ)
x̃2

]

if ξ ∈ D1 \D2

{[

x̃1

G2(ξ)

]

,

[

G1(ξ)
x̃2

]}

if ξ ∈ D1 ∩D2

[

x̃1

G2(ξ)

]

if ξ ∈ D2 \D1

(9)

where Gi(ξ) = (xi, Gci(xi, xℓ), [T1, T2]), for each i, ℓ ∈
{1, 2}, i 6= ℓ. If both τ1 and τ2 expire simultaneously, then

the second piece in the definition of the jump map indicates

that either x̃1 is reset or x̃2 is reset. Due to the properties of

the data of Hb, we have the following result.

Lemma 2.1: If, for each i ∈ {1, 2}, fci : Rn → R
p is

continuous for all ξ ∈ C and Gci : R
n ×R

n ⇒ R
p is outer

semicontinuous, bounded and nonempty for every ξ ∈ D,

then the hybrid system H with data given in (6) – (9) satisfies

the hybrid basic conditions.1

A solution φ to H is parametrized by (t, j) ∈ R≥0 × N,

where t denotes ordinary time and j denotes jump time. The

domain domφ ⊂ R≥0 × N is a hybrid time domain if, for

every (T, J) ∈ domφ, the set domφ∩([0, T ]×{0, 1, . . . , J})
can be written as ∪J

j=0(Ij × {j}), where Ij = [tj , tj+1] for

a time sequence 0 = t0 ≤ t1 ≤ · · · ≤ tJ ≤ tJ+1. The tj’s

with j > 0 define the time instants when the state of the

hybrid system jumps and j counts the number of jumps.

With a hybrid system having the data above, in particular

the jumps triggered by the timer in (5), we immediately have

the following result on solutions to H.

Lemma 2.2: Given two positive scalars 0 < T1 ≤ T2, any

maximal solution2 φ to H in (4) is such that for every T > 0,

(t, j) ∈ domφ and t+ j ≥ T , imply j ≥ T−T2

T2+1 .

We recast asymptotic synchronization as a set stabilization

problem, where we determine the stability of a set, which we

label A, enforcing that the appropriate state components of

the solutions to the resulting closed-loop hybrid system are

equal. For this purpose, we employ the following notion of

asymptotic stability for general hybrid systems.

Definition 2.3: [16, Definition 3.6] Consider a hybrid sys-

tem H on R
n. Let A ⊂ R

n be closed. The set A is said to

be

• uniformly globally stable (UGA) for H if there exists

a class-K∞ function α such that any solution φ to

H satisfies |φ(t, j)|A ≤ α(|φ(0, 0)|A) for all (t, j) ∈
domφ;

• uniformly globally attractive (UGS) for H if every

maximal solution to H is complete and for each ε > 0
and r > 0 there exists T > 0 such that, for any

solution φ to H with |φ(0, 0)|A ≤ r, (t, j) ∈ domφ
and t+ j ≥ T imply |φ(t, j)|A ≤ ε;

• uniformly globally asymptotically stable (UGAS) for H
if it is both UGA and UGS.

1See [16] for more information.
2A solution to H is called maximal if it cannot be extended, i.e., it is not

a truncated version of another solution. It is called complete if its domain
is unbounded.



With an appropriate definition of the set A, the notion in

Definition 2.3 corresponds to a synchronization property for

H. At times, when such a property holds, we say that the

hybrid system H asymptotically synchronizes.

III. MAIN RESULTS

A. Cascade Topology

As a special case of the network structure considered

in Section II-C, in this section, we address the case of a

cascade topology of two systems. In this setting, information

is transmitted only from system 1 to system 2, where system

1 is autonomous. Since the network is unidirectional, we use

a single timer, denoted by τ , satisfying the dynamics in (5)

to trigger the update of information. To adapt the hybrid

system model in Section II-C to this setting, we remove the

timer and the input to system 1. Then, the cascade topology

is reduced to a hybrid system Hc = (C, f,D,G) with state

ξ = (x1, x2, η2, τ) ∈ R
n ×R

n ×R
p × [0, T2] =: S1 and the

following data:

f(ξ) :=




Ax1

Ax2 +Bη2
fc2(x2)
−1


 C := {ξ ∈ S1 : τ ∈ [0, T2]}

G(ξ) :=




x1

x2

Gc2(x2, x1)
[T1, T2]


 D := {ξ ∈ S1 : τ = 0}.

(10)

with fc2 and Gc2 defining the hybrid controller during flows

and jumps, respectively.

We consider the case of a sample-and-hold state-feedback

controller. In this control structure, the controller state does

not change during flows, i.e., fc2(x2) = 0, but is updated

at jumps by the mapping Gc2(x2, x1) = −K(x2 − x1).
Following [17], we write the system in error coordinates

χ = (ε, η2, τ) ∈ R
n×R

p×[0, T2] =: S̃1, where ε = x1−x2.

The resulting hybrid system is denoted as Hc
ε with data

(C̃, f̃ , D̃, G̃). During flows, it follows that the error dynamics

are given by ε̇ = Aε − Bη2. Note that since the dynamics

of the timer state did not change from that of (5), the flow

set is given by C̃ := {χ ∈ S̃1 : τ ∈ [0, T2]}. If τ = 0, then

a jump is triggered, which, according to the error dynamics,

leads to ε+ = ε. Furthermore, due to the fact that x1 and x2

appear in Gc2 as a function of x2 − x1 only, we have that

η+2 = Kε. The jump set is D̃ := {χ ∈ S̃1 : τ = 0}. This

change of coordinates leads to

Hc
ε :






χ̇ =




Aε−Bη2

0
−1



 =: f̃(χ) χ ∈ C̃,

χ+ ∈




ε
Kε

[T1, T2]



 =: G̃(χ) χ ∈ D̃

(11)

Note that this system is independent of the dynamics of

the hybrid system Hc defined by the data in (10). Due

to the change of variables, we study synchronization by

determining the stability of the set given by

A := {χ ∈ S̃1 : ε = 0, τ ∈ [0, T2]} (12)

for the hybrid system Hc
ε in (11).

Following [16, Example 3.21], we partition the state as

χ = (z, τ), where z = (ε, η2). Then, the flow map and jump

map of Hε are defined by

f̃(χ) =

[
Afz

−1

]
G̃(χ) =

[
Agz

[T1, T2]

]
, (13)

respectively, where

Af =

[
A −B
0 0

]
Ag =

[
I 0
K 0

]
. (14)

Due to the definition of the controller, in fact, we want to

determine the stability of the set {χ ∈ S̃1 : z = 0, τ ∈
[0, T2]}, which is equivalent to A in (12). The following

result employs sufficient conditions for stability of hybrid

systems in [16] to determine the stability of A for Hε.

Moreover, it characterizes the rate of convergence via a class-

KL function.

Theorem 3.1: Given two positive scalars T1 ≤ T2, if there

exists a positive definite symmetric matrix P ∈ R
(n+p)×(n+p)

and a matrix K ∈ R
p×n such that

A⊤
g e

A⊤

f νPeAfνAg − P < 0 ∀ν ∈ [T1, T2], (15)

then the set A is UGAS for the hybrid system (11). Further-

more, every maximal solution φ to Hε satisfies

|φ(t, j)|A ≤

√
c

c
eθj/2|φ(0, 0)|A

for every (t, j) ∈ domφ, where θ = ln(1 − β/c),

β ≤ min
τ∈[T1,T2]

|A⊤

g e
A⊤

f τ
Pe

AfτAg − P |,

c = min
τ∈[0,T2]

λmin(e
A⊤

f τ
Pe

Afτ ), c = max
τ∈[0,T2]

λmax(e
A⊤

f τ
Pe

Afτ ).

Remark 3.2: Note that condition (15) is akin to the

discrete Lyapunov equation with system matrix H(ν) =
eAfνAg . Furthermore, condition (15) is satisfied if the eigen-

values of H(ν) are within the unit circle for all ν ∈ [T1, T2].

Remark 3.3: The form of condition (15) may be difficult

to satisfy numerically. In fact, this condition is not convex

in K and P , and needs to be verified for infinitely many

values of ν. In [17], the authors use a polytopic embedding

strategy, in which, one needs to find some matrices Xi such

that the exponential matrix is an element in the convex hull

of the Xi matrices to solve an linear matrix inequality. These

results can be adapted to our setting.

Remark 3.4: When full state measurements are not avail-

able, but rather, the output yi = Mxi is measured, the jump

map would have a second component given by G̃c2(ε) =
KMε. Following Lemma 3.1, given T1 ≤ T2, if there exist

K and P = P⊤ > 0 of appropriate dimensions such that

(15) holds with Ag =

[
I 0

KM 0

]
, then A is UGAS.



B. Bidirectional communication with a sample-and-hold

controller

Following the construction in Section II-C, we design a

sample-and-hold state-feedback controller with fci(xi) = 0
and Gci(xi, xℓ) = K(xi − xℓ) for each i, ℓ ∈ {1, 2}, i 6= ℓ.
We rewrite the closed-loop hybrid system, denoted by Hb

ε =
(C̃, f̃ , D̃, G̃), in the coordinates χ = (χ1, χ2), where χi =
(zi, τi) ∈ R

n+p × [0, T2] and zi = (εiℓ, ηi) with εiℓ being

the error quantity εiℓ := xi−xℓ for each i, ℓ ∈ {1, 2}, i 6= ℓ.
Then, for each i ∈ {1, 2}, the continuous dynamics of each

zi are given by

żi = Afzi +Bfzℓ (16)

for all χ in C := {χ ∈ S : τ1 ∈ [0, T2], τ2 ∈ [0, T2]}, while

at jumps (i.e., χ ∈ D), zi is updated to Agzi when τi = 0

and is updated to zi otherwise, where Af =

[
A B
0 0

]
, Ag =

[
I 0
K 0

]
and Bf =

[
0 −B
0 0

]
; this update law is properly

implemented by G̃ below. From the above continuous and

discrete dynamics, the closed-loop hybrid system, which we

denote Hb
ε, has the following data:

f̃(χ) = (f1(χ), f2(χ))

C̃ := {χ ∈ S : τ1 ∈ [0, T2], τ2 ∈ [0, T2]}
(17)

where, for each i, ℓ ∈ {1, 2}, i 6= ℓ, the local flow map is

given by fi(χ) = (Afzi +Bfzℓ,−1). The jump map is

G̃(χ) =





[
G̃1(χ)
χ2

]
if χ ∈ D̃1 \ D̃2

{[
G̃1(χ)
χ2

]
,

[
χ1

G̃2(χ)

]}
if χ ∈ D̃1 ∩ D̃2

[
χ1

G̃2(χ)

]
if χ ∈ D̃2 \ D̃1

D̃ := D̃1 ∪ D̃2, D̃i := {χ ∈ S : τi = 0}

(18)

with G̃i(χ) = (Agzi, [T1, T2]) for each i ∈ {1, 2}. Then, we

have the following result.

Theorem 3.5: Let T1 and T2 be two positive scalars such

that T1 ≤ T2. Suppose there exist σ, ǫ, β > 0, a matrix K ∈
R

n×p, and a positive symmetric matrix P ∈ R
(n+p)×(n+p)

satisfying β < c,

1−
β

c
< exp

(
−T2

(
ρǫ

c
− σ +

1

ǫ

))
,

and

eσνA⊤
g e

A⊤

f νPeAfνAg − P < 0

for each ν ∈ [T1, T2], where

β ≤ min
ν∈[T1,T2]

|eσνA⊤
g e

A⊤

f νPeAfνAg − P |

c = eσT2 max
τ∈[0,T2]

λmax(e
A⊤

f τPeAfτ )

c = min
τ∈[0,T2]

λmin(e
A⊤

f τPeAfτ )

ρ = exp(σT2) max
τ∈[0,T2]

∣∣∣B⊤eA
⊤τP11e

AτB
∣∣∣

Then, the set A = {z ∈ S : zi = 0, τi ∈ [0, T2], i ∈ {1, 2}}
is UGAS for the hybrid system Hb

ε with data given by (17)

and (18).

Sketch of Proof: Consider the function Vi(z̃i) :=

eστiz⊤i eA
⊤

f τiPeAfτizi, σ > 0. Due to the construction of

the set A, we have that |z̃i|A is equivalent to |zi| and

c|z̃i|A ≤ Vi(z̃i) ≤ c|z̃i|A, where c is defined above and

c = eσT2 maxτ∈[0,T2] λmax(e
A⊤

f PeAfτ ). During flows, the

change in Vi is 〈∇Vi(z̃i), fi(χ)〉 ≤ −(σ− 1
ǫ )Vi(z̃i)+

ρ
cVℓ(z̃ℓ)

(ℓ 6= i), which may not be negative for some χ ∈ C̃.

During jumps we have that χ ∈ D̃ is such that τi =
0, and after the jump we have that for each (g1, g2) ∈
G̃(z), Vi(gi) − Vi(z̃i) ≤ −β

c Vi(z̃i) < 0. Then, we define

V (χ) = V1(z̃1) + V2(z̃2) and study the change of V over

the worst case solution that allows a maximum amount of

flow time between jumps. Due to the assumptions and by

using standard bounding techniques, it can be shown that V
decreases after T2 units of flow time, which corresponds to

the worst case. �

C. Robustness properties of the closed-loop systems

In a realistic setting, the information transmitted would be

subjected to some amount of noise. In this section, we con-

sider system in Section III-A under the effect of measurement

noise mi induced by perturbations in the communication

network between system 1 and system 2. Specifically, the

j-th system receives the state of the i-th system perturbed

by mi ∈ R
n, i.e., consider the information provided by the

i-th system to be given by yi = xi + mi. In such a case,

the update law of the controller state in (11) becomes η+2 =
Kε+K(m1 −m2). Note that the larger the controller gain

the higher the amplification of the noise. Inspired by [17],

we show that the hybrid system in Section III-A is input-

to-state (ISS) stable with respect to noise measurements mi

(a similar result holds for Hb
ε in Section III-B). For a notion

of ISS for hybrid systems, see [19].

Theorem 3.6: Given two positive scalars T1 ≤ T2, if there

exists a symmetric positive definite matrix P ∈ R
(n+p)×(n+p)

and a matrix K ∈ R
p×n satisfying (15), then the hybrid

system Hc
ε in (11) with η+2 = Kε+K(m1−m2) is ISS with

respect to m1 −m2 relative to the set A in (12).

Remark 3.7: Since the hybrid system Hb
ε in Section III-A

and Hc
ε in Section III-B satisfy the hybrid basic conditions

and have a compact set A UGAS, the stability of A is robust

to general perturbations. See [16] for more information.

IV. EXAMPLES

A. Linear oscillator over a feedback topology with bidirec-

tional communication

Now, we revisit the harmonic oscillator example in Sec-

tion II-A with the same time interval T1 = 0.5 and

T2 = 1. From Theorem 3.5, we generate a controller

matrix K = [−0.5,−0.7], a positive definite symmet-

ric matrix P ≈




20.4 2.02 3.56
⋆ 7.11 −0.38
⋆ ⋆ 3.56



, β = 2.6965,
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Fig. 2. Solutions to a coupled harmonic oscillator system on the bidi-
rectional topology from (x1(0, 0), η1(0, 0), τ1(0, 0)) = (1, 0, 0, 0.2)
(x2(0, 0), η2(0, 0), τ2(0, 0)) = (−2, 0, 0, 0.1).
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Fig. 3. Solutions of an unstable first order system on the cascade network
topology from x1(0, 0) = −5, (x2(0, 0), η2(0, 0)) = (10, 0) and
τ(0, 0) = 0.4.

ǫ = 3, σ = 0.4. Figure 2 shows a numerical solu-

tion of the hybrid system Hb in Section II-C from ini-

tial conditions (x1(0, 0), η1(0, 0), τ1(0, 0)) = (1, 0, 0, 0.2),
(x2(0, 0), η2(0, 0), τ2(0, 0)) = (−2, 0, 0, 0.1). In this figure,

we have (left) an x1 − x2 planar view of the original states

x1 and x2 and (right) the Lyapunov function V along the

solution (based on the error coordinates in Section III-B),

where V (χ) =
∑2

i=1 e
στiz⊤i eA

⊤

f τiPeAfτizi. Notice, while

at times, that the Lyapunov function increases due to the

injection term in (16), the controller designed for this system

asymptotically synchronizes the systems unlike the controller

used in Section II-A (see Figure 1(b)).

B. Unstable first order system on the cascade topology

Consider the unstable LTI system given by ẋi = xi + ηi
operating on a cascade network topology with T1 = 0.1,

T2 = 0.5. By Theorem 3.1, we find K = −1.4 and the posi-

tive definite symmetric matrix given by P ≈

[
13.60 0.93
⋆ 2.35

]
.

Figure 3 shows a numerical simulation of the hybrid system

Hc given by the data in (10) with state ξ = (x1, x2, η2, τ)
from ξ(0, 0) = (−5, 10, 0, 0.4). In this figure, we have (left)

a plot of each xi versus the hybrid flow time parameter t.
The right figure shows the Lyapunov function V evaluated

along the solution, which is constant during flows and strictly

decreases at jumps.

V. CONCLUSION

In this paper, we showed that hybrid sample-and-hold

state-feedback controllers are viable algorithms for syn-

chronizing two LTI systems with stochastic transmission

events. The communication network between the systems

was modeled by a decreasing timer that is reset to some

point in a bounded interval, which allowed us to allow for

arbitrary probability distributions triggering the transmission

events. Recasting synchronization as the stabilization of a

compact set, Lyapunov functions were constructed to certify

asymptotic stability of this set, implying that the networked

systems synchronize asymptotically.

The results in this paper can be used to design large-

scale networked systems that communicate at stochastically

instants. Future directions of research include the study of

such systems with networks defined by general graphs and

nonlinear dynamics.
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