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Abstract— We consider the problem of steering an autonomous
vehicle to locate a radiation source utilizing measurements of
the radiation intensity only. We propose a control algorithm that
locates the source through a sequence of line minimizations of
the radiation intensity. We implement in a hybrid controller,
with sample-and-hold and logic variables, a discretized version
of the algorithm suitable for steering a point-mass vehicle.
The algorithm confers global convergence and practical stability
properties to the closed-loop hybrid system. We discuss these
properties and characterize the region of convergence for the
vehicle. Convergence and stability results are supplemented with
simulations.

I. INTRODUCTION

In this paper, we study the problem of steering a vehicle to
the source of a radiation-like signal with minimal information,
namely, only measurements of the radiation intensity. The
radiation-like signal could be thought of as a potential function
in the vehicle’s environment, taking a maximum or minimum
value at the “source.” This setting is typical in the control of
autonomous vehicles without relative position sensors where
only measurements of a signal like light, sound, or temperature
are available.

This problem has been addressed before in the literature,
often in the context of autonomous underwater vehicles.
Burian et al. [2] examined methods for conducting a gradient
descent with a single vehicle, while Bachmayer and Leonard
[1] proposed methods for steering a network of vehicles to
the same effect. More recently, Silva et al. proposed a strategy
which executes the simplex optimization method with a team
of two vehicles in [15], [4]. In a related effort, Farrell et al.
[5], [10] proposed a statistical method for locating the source
of a chemical plume in the ocean. Lastly, Zhang et al. [18],
[17] proposed an extremum seeking control strategy for the
task.

In this paper, we take a hybrid systems approach to this
problem and propose a control strategy for a single au-
tonomous vehicle inspired by a minimization algorithm first
introduced by C.S. Smith [16]. This algorithm is implemented
with a hybrid controller that coordinates vehicle steering with
the optimization algorithm to locate the source. The hybrid
implementation introduces a “sample and hold” behavior to
the nominal algorithm, conferring global convergence and
stability properties and a margin of robustness to measurement
noise to the closed-loop system. We characterize the region
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of convergence of the closed-loop trajectories, and provide
simulations of the algorithm in various situations.

II. PROBLEM DESCRIPTION

We consider the problem of localizing a radiation source
in a real-world environment with an autonomous vehicle.
We assume the existence of a function f : R

2 → R with
a minimum at x∗ describing the radiation intensity. Only
measurements of this function are available for the control task
as the function f and the position of the vehicle are unknown.
This scenario is depicted in Figure 1.

Fig. 1. The main task of the controller is to steer the vehicle to the
destination, x∗, which minimizes a function f of the vehicle position, with
only measurements of f , perhaps at several locations, denoted by ◦.

We consider a simplified kinematic point-mass model of
the vehicle, allowing us to concentrate our discussion on the
control algorithm itself. That is, we assume that the dynamics
of the vehicle are given by ẋ = u with state x ∈ R

2 denoting
its position and input u ∈ R

2.
In this type of real-world scenario, measurement noise is

typical. Hence, it is desired that the control strategy confers a
margin of robustness to the closed-loop system.

III. MAIN IDEA: A CONJUGATE DIRECTION ALGORITHM

To accomplish the convergence task motivated in Section
II, we propose a control strategy which utilizes existing
optimization techniques and adapts them to our setting. The
optimization algorithm we use can be summarized in two
stages:

1) Explore the environment by conducting a series of
minimizations along a line, defined by a direction v.

2) Update the direction.



This general idea is common among several different opti-
mization algorithms, but the differences appear mainly in how
a new direction is chosen. The algorithm which we propose
uses the notion of conjugate vectors to choose a new direction,
without gradient information. These techniques appeared in
the numerical optimization literature in the early 1960’s and
include the work by Rosenbrock [13], Smith [16], and Powell
[11], among others. While these optimization techniques have
seen widespread use, to the best of our knowledge, exploiting
these ideas in problems like the one described in Section II is
novel.

Let V n = {v ∈ R
n | ‖ v ‖2 = 1}. Given a function

f : R
n → R, a point x0 ∈ R

n, and a non-zero vector v ∈ V n,
a line minimization from x0 in the direction of v consists of
finding the value λ ∈ R such that x0 + λv is a minimum of
f along v from x0. We denote the operation of performing
a line minimization from a point x0 ∈ R

n along a direction
v ∈ R

n on a function f and returning the value λ as a mapping
µf : R

2 × R
2 → R. Our algorithm is as follows.

Recursive Smith-Powell (RSP) Algorithm
Given x0 ∈ R

2 and v ∈ V 2,
Step 1) Calculate x∗1 = x0 + µf (x0, v)v
Step 2) Calculate1 x∗2 = x∗1 + µf (x∗1, v⊥)v⊥
Step 3) Calculate x∗3 = x∗2 + µf (x∗2, v)v
Step 4) If µf (x∗1, v⊥) 6= 0 and µf (x∗2, v) 6= 0, Update
the direction v with the vector v+ := (x∗3−x∗1)/‖x∗3−
x∗1‖. Otherwise, update the direction v with a vector
linearly independent from the current one, so that a large
set of directions are eventually explored.
Step 5) Set x0 = x∗3 and go to Step 1).

We now state convergence properties of RSP . Let

Qn = {f : R
n → R | f = σ ◦ fP }, (1)

where fP = f∗ +(x−x∗)>P (x−x∗) is a quadratic function
with P = P> > 0, and σ : R → R is strictly increasing and
continuous.

Theorem 3.1: Given f ∈ Q2, for any initial point x0 ∈
R

2 and for any initial direction v ∈ V 2, the RSP algorithm
converges to x∗, the global minimum of f in no more than
four line minimizations.
Figure 2 illustrates the steps of this algorithm for a quadratic
function, where the level sets are ellipses. It also suggests the
result stated in Theorem 3.1.

Similar results have been stated in the literature for n-
dimensional quadratic functions. As it is shown in [6, Section
4.2], see also [16], the number of line minimizations needed
for convergence to the minimum with an n-dimensional
quadratic function is n(n + 1)/2. Note that the result in
Theorem 3.1 is for n = 2 and it states that one more line
minimization is required; see Figure 2. This is due to the fact
that in order to conduct two parallel line minimizations in
the direction of v, we use another line minimization in the
direction of v⊥ to move the vehicle from x∗1 to x∗2. However,

1v⊥ ∈ V 2 denotes the vector orthogonal to v.

Fig. 2. A typical trajectory generated by the RSP algorithm on a quadratic-like
function. The initial condition is given by x0 ∈ R

2 and the initial direction
by v. Convergence to the destination is achieved after four line minimizations.
The ellipses (gray) denote level sets of the quadratic function.

any other strategy applied at x∗1 that moves the algorithm in
a linearly independent direction to v would suffice.

The core of RSP is the calculation of the direction v+ in
Step 4). In the case of f ∈ Q2, this step computes the so-
called conjugate direction to v. Then, Theorem 3.1 follows
directly from results relating conjugate directions and line
minimizations in [11].

Definition 3.2: (conjugate directions) Let P = P> > 0.
Nonzero vectors u1, u2 ∈ R

n are said to be conjugate (with
respect to P ) if u>

1 Pu2 = 0.
Vaguely, two directions are conjugate (with respect to f ∈ Q2

defined by the P ) if the minimization in one of the directions
does not “spoil” the minimization in the other direction.

Remark 3.3: When computing a line minimization of f
from x0 in the direction of v (as in Step 1)), it can be
shown that there exists a line passing through x∗ where f
is minimized in the direction of v. The equation of this line,
parameterized by r ∈ R, is given by

lv(r) = rQ(x∗ − x0) + x∗, (2)

where Q = vv>P
v>Pv

−I . Note that Q2 = −Q, so Q is a projection
matrix. By some abuse of notation, we let lv = {x ∈ R

2 | x =
lv(r), r ∈ R}. In the 2-dimensional case, it can be shown that
Q has rank one, uniquely defining lv . Then, by conducting
two parallel line minimizations in the direction of v, one can
find two points on the line lv and calculate the direction to
x∗. This idea is illustrated in Figure 2, where x∗1 and x∗3 are
two points on the line lv, and v+ = x∗3 − x∗1 is a vector
pointing towards the minimizer from x∗3. This new direction,
which passes through the minimizer, and the direction v are
conjugate.

IV. ALGORITHM IMPLEMENTATION FOR VEHICLES

Implementing the Recursive Smith-Powell Algorithm algo-
rithm on a vehicle requires a controller capable of coordinating
vehicle steering with the optimization algorithm. In this sec-
tion, we show that such a synergy is made possible with hybrid
control.



Fig. 3. Block diagram of the proposed hybrid controller. The controller can
be thought to have several interacting components which ultimately steer the
vehicle to the minimum of f .

Our hybrid controller Hc is depicted in Figure 3. We
describe the control structure with interconnected components:

1) Sampler: takes measurements of f ;
2) Line Minimization: organizes the logic for conducting a

line minimization;
3) Direction Update: calculates the next search direction by

using the RSP algorithm;
4) Control Law & Timer: steers the vehicle between mea-

surements, keeps track of time for open-loop control law,
triggers jumps in the Line Minimization and Direction
Update.

Before we present the implementation of Hc, we discuss
a procedure for conducting a discretized version of a line
minimization with vehicles using a sample-and-hold steering
methodology.

A. Procedure for Conducting a Line Minimization
In the literature of numerical optimization, various methods

exist for conducting a line minimization. In general, the basic
idea is to compute a bracket (see [12], [6]).

Definition 4.1: Given a function f : R
n → R, x0 ∈ R

n,
and v ∈ V n, a bracket is defined as an interval (λ1, λ3) ⊂ R

such that ∃λ2 ∈ (λ1, λ3) with the property that f(x0+λ2v) <
f(x0 + λ1v) and f(x0 + λ2v) < f(x0 + λ3v).

With the concept of a bracket, a line minimization consists
of finding a bracket and estimating the minimum within the
bracket. A method for carrying out this task is illustrated in
Figure 4. Here, given an initial point x0 and direction v, the
algorithm takes steps of d ∈ R in the direction v from x0

(blocks 1a & 1b) and evaluates the change in f over each
step (blocks 2a & 2b). A bracket is located when the current
step produces an increase in f after the previous step produced
a decrease.

While there are many ways of answering the question,
“Did f decrease,” (in blocks 2a & 2b) and many ways
of estimating the minimum within a bracket (block 4), we
propose a discretized approach, which, as we will see shortly,
is applicable to vehicles.

B. Discretized Line Minimization Vehicle Implementation
For implementation on a digital controller, we assume

that only samples of measurements of f are available. To
accommodate the line minimization algorithm to such a sce-
nario, we propose a sample-and-hold implementation of the

Fig. 4. A discretized approach to locating a bracket when conducting a line
minimization. The change in f is evaluated over an interval of length d. A
decrease means that the minimum lies ahead. A bracket is found when there
is an increase in f directly following a decrease (forming a valley).

line minimization which we refer to as a discretized line
minimization. To execute a discretized line minimization with
an autonomous vehicle, the vehicle must be steered between
measurements along the line defined by x0 and v. Since we
are not assuming the availability of state measurements, open-
loop control will be used for steering. Following Figure 4,
there are three cases when open-loop control is needed during
a line minimization:

1) (Block 1a & 1b) Driving the vehicle forward to the next
measurement;

2) (Block 3) Turning the vehicle around to the previous
measurement when the opposite direction must be ex-
plored;

3) (Block 5) When a bracket is found, turning the vehicle
to the estimated minimum, ready to proceed in the next
direction (according to the algorithm).

Figure 5 illustrates this entire process. Here, the vehicle
begins at x0 (with λ = 0). The vehicle samples f at its initial
position, then moves to the next measurement and compares
a new sample of f with the previous sample. It first detects
an increase in f and then turns around to explore the opposite
direction. A bracket is located at the next increase in f .

C. Hybrid Control Implementation
As shown in Figure 3, our hybrid controller Hc has one

input, the value of f obtained from a sensor through the
sampler, and one control output to steer the vehicle.



Fig. 5. A discretized line minimization carried out by a vehicle. Open-loop
control is used to drive the vehicle between measurements until a bracket
containing a local minimum is located. The vehicle is driven to the estimated
(discretized) minimum.

We denote the state of the controller as xc, which has
several components. We describe these states, explain to which
module in Figure 3 they belong, and describe their continuous
and discrete evolution in the hybrid controller, Hc.

1) Control Law & Timer
• τ, τ∗ ∈ R: a timer and timer limit;

2) Line Minimization
• λ ∈ R: distance traveled by the line minimization;
• z ∈ R: keeps the previous measurement;
• p ∈ {−1, 1}: determines sign of exploration;
• q ∈ {0, 1, 2}: defines the state of the line minimiza-

tion;
– q = 0 if the line minimization is in its first step;
– q = 1 if the vehicle is going towards the mini-

mum;
– q = 2 if the line minimization is completed;

• m ∈ {0, 1};
3) RSP Direction Update

• α ∈ R
2: stores the last vector traveled;

• k ∈ {0, 1, 2}: defines the state of RSP;
• v ∈ V 2: the current direction of exploration.

We combine the logic of the RSP algorithm in Section
III with the discretized line minimization logic discussed in
Section IV-B in Hc. The modeling, notation, and concept of
solution used for Hc and the resulting hybrid closed-loop
system follow the framework for hybrid systems in [7], [8]
where solutions are given on hybrid time domains and the
dynamics of a hybrid system with state ξ are given by a flow
map F , a flow set C, a jump map G, and a jump set D. The
function F governs continuous evolution of the state when
ξ ∈ C and G governs discrete jumps of the state when ξ ∈ D.
In this framework, a solution ξ to a hybrid system on a hybrid
time domain dom ξ is parameterized by a continuous variable
t which keeps track of the continuous dynamics and a discrete
variable j which keeps track of the discrete dynamics. Then,
ξ(t, j) is the value of the solution at time (t, j) ∈ dom ξ.

The output of the controller for the point-mass vehicle is
given by u = γpv where γ > 0 is the velocity constant. With
this control law, the vehicle is steered between measurements.

The only controller state that changes during flows is the
timer τ . Then, the continuous dynamics of the controller are

given by

τ̇ = 1 xc ∈ C := {xc | τ ≤ τ∗}. (3)

Jumps of Hc are triggered when the timer expires, that is,
τ ≥ τ∗. Then, D := {xc | τ ≥ τ∗}. At every jump, the timer
state and constant are updated by

τ+ = 0, τ∗+ = T (xc, f(x)) , (4)

where T is a continuous function that computes the total time
needed by the open-loop control law to steer the vehicle to the
next measurement. For the point-mass vehicle, this function
is given by the constant d/γ so that the vehicle is steered
a distance d in between jumps. Additionally, at every jump,
the logic involved in the Line Minimization and Direction
Update modules is executed. We embed this logic into an
outer-semicontinuous2 set-valued map Gc that updates the
states λ, z, p, q, m, α, k, v, and is constructed from the maps
gi(xc, f(x)) and the sets Di, i = 1, 2, . . . , 6. These are given
below. We omit the update law of the state variables that
remain constant at jumps.

1) Continue a positive line search:
D1 = {z ≥ f(x) and p = 1 and q ∈ {0, 1} and m = 0}
g1 : z+ = f(x), q+ = 1, λ+ = λ + p

2) Correct overshoot:
D2 = {z ≤ f(x) and q ∈ {0, 1} and m = 0}
g2 : p+ = −p, q+ = q + 1, m+ = 1

3) Start negative line search:
D3 = {m = 1 and p = −1 and q = 1}
g3 : z+ = f(x), m+ = 0, λ+ = 0

4) Continue a negative line search:
D4 = {z ≥ f(x) and p = −1 and q = 1 and m = 0}
g4 : z+ = f(x), λ+ = λ + p

5) Update direction and start positive line search:
D5 = {τ ≥ τ∗ and q = 2}

g5 :

q+ = 0, p+ = 1, λ+ = 0, m+ = 0,
α+ = λv
k+ = (k + 1) mod 3

v+ =







Rπ/2v k = 0
R−π/2v k = 1

Φ(α, λ, v) k = 2
z+ = f(x)

where Φ(α, λ, v) =

{
λv + α α 6= 0 and λ 6= 0
Π(v) otherwise

6) Handle other conditions:
D6: any state xc /∈

⋃

i=1,...,5 Di

g6 : q+ = 2

In 1), g1 describes how the state evolves when a beneficial
measurement is found during a line minimization. Simply,
it records the new measurement and increments λ. In 2),
“Correct overshoot” is addressing the case where the vehicle
either needs to “Turn around” to the previous measurement and
start a search in the negative direction or “Move to minimum,”

2A set-valued mapping G defined on an open set O is outer semicontinuous
if for each sequence xi ∈ O converging to a point x ∈ O and each sequence
yi ∈ G(xi) converging to a point y, it holds that y ∈ G(x).



in the sense of Figure 4. The way Di and gi are designed
causes the state to jump according to the directed graph in
Figure 6 (after the timer expires).

Fig. 6. A directed graph showing the flow of xc, the state of Hc, through the
jump set partitions Di.

In 5), Π : R
2 → R

2 is a function which forces the RSP
algorithm to explore a large set of direction when conjugate
information is not available. For a given function Γ : X → X ,
we denote Γn as the composition of Γ n times, that is,

Γn = Γ ◦ . . . ◦ Γ
︸ ︷︷ ︸

n times

.

Then, Π is such that ∀u0 ∈ V 2, {u ∈ V 2 | u = Πm(u0), m ∈
Z>0}

3 is dense in V 2. One could easily implement this
function as a rotation matrix that rotates the vector through
a rational angle (in radians). The simulations in the sequel use
this implementation.

V. CONVERGENCE AND STABILITY RESULTS

We denote the closed-loop hybrid system shown in Figure
3 as Hcl. The following global convergence result holds for
the trajectories of Hcl.

Theorem 5.1: (global practical convergence) For every f ∈
Q2, initial condition of Hcl, and ε > 0 there exists d∗ such
that for all d ∈ (0, d∗], the x trajectories of Hcl converge to
εB(x∗) 4.

The theorem states that despite our discretized implementa-
tion of the line minimization, the hybrid controller Hc steers
the vehicle to a region around x∗. This result can be shown
using invariance principles for hybrid systems in [14]. In fact,
the hybrid controller Hc is constructed such that the variable
z is monotonically non-increasing along solutions. With the
Lyapunov function V (x, xc) = z2 and results in [14], given
d > 0, it can be shown that z converges to

Z =
{
z ∈ R | z = f(x) ≤ f(x ± dv), x ∈ R

2, v ∈ V 2
}

.
(5)

The set to which the x trajectories of Hcl converge is given
by

X =
{
x ∈ R

2 | x ∈ dB(x0), f(x0) ∈ Z
}

. (6)

Additionally, the closed-loop system has the following sta-
bility property.

Theorem 5.2: (practical stability) For every f ∈ Q2, v0 ∈
V 2, and ε > 0, there exist δ > 0 and d∗ > 0 such that for

3
Z>0 denotes the set of integers greater than zero, i.e., {1, 2, . . .}

4By δB(x), we denote the closed δ-ball centered at x in R
2.

all d ∈ (0, d∗], initial conditions of Hc with v(0, 0) = v0,
and initial vehicle position x0 ∈ δB(x∗), every x trajectory of
Hcl starting from x0 satisfies x(t, j) ∈ εB(x∗) for all (t, j) ∈
domx.

These results for the closed loop system are closely related
to the convergence of RSP under discretization. In fact, when
RSP is implemented with discretized line minimizations, it
converges to the set

R =
{
x ∈ R

2 | f(x) ∈ Z
}

=
{
x ∈ R

2 | f(x + dv) ≥ f(x), v ∈ V 2
}

=
⋂

v∈V 2 Lv,
(7)

where, for a given v ∈ V 2,

Lv =
{
x ∈ R

2 | f(x ± dv) ≥ f(x)
}

, (8)

which we refer to as the turning tube for the direction v.
During a discretized line minimization in the direction v, the
RSP algorithm drives the vehicle into the turning tube for
the direction v and turns to proceed in the next direction.
An execution of the RSP algorithm is depicted with turning
lines and turning tubes using discretized line minimizations in
Figure 7.

When f ∈ Q2, we can describe Lv precisely as

Lv =

{

x ∈ R
2 | x = lv(r) + δv, r, δ ∈ R, |δ| ≤

d

2

}

, (9)

where lv(r) is the turning line for the direction v, defined in
(2). Because each turning tube has a width of d along v about
x∗, we have that

R ⊂
d

2
B(x∗). (10)

This follows from the fact that R is formed from the intersec-
tion of all turning tubes as in (7).

Fig. 7. Turning lines (gray) and turning tubes (outlined in red) are plotted
for the direction v and its orthogonal. The region R is partially formed by
the intersection of Lv with Lv⊥

. The “inflation” of the turning lines by d/2
define the turning tubes. A typical algorithm path (solid blue) is shown when
discretization (gray circles) is introduced.

Remark 5.3: From the regularity properties of the data of
Hcl, the closed-loop system is nominally robust to external
perturbations [9]. Moreover, the sample-and-hold implementa-
tion of the control algorithm confers to the closed-loop system
a margin of robustness to measurement noise. Furthermore,



the convergence properties of Hcl in Theorem 5.1 imply
robustness to slowly-varying changes in f ; see [3].

VI. SIMULATION RESULTS

Figure 8 illustrates the algorithm approaching x∗ in four
(discretized) line minimizations on a quadratic function and
eventually reaching R through exploration of many directions.
The function Π is implemented by rotating the current direc-
tion by a rational angle close to π/6.

(a) Convergence on a quadratic function.

(b) Zoomed view of R ⊂ (d/2)B(x∗).

Fig. 8. Convergence to x∗ on a quadratic function f(x) = 5x2

1
+0.1x2

2
with

d = 1. (a) A vehicle is steered to a neighborhood of x∗ = 0 with RSP . The
vehicle trajectory (magenta) “overshoots” the minimum along discretized line
minimizations. The algorithm path (black -◦-) is shown on top of the vehicle
path and converges to R, a subset of (d/2)B(x∗) (solid blue). Level sets
of f are also illustrated. (b) A zoomed view of R (magenta -·-), a subset of
(d/2)B(x∗) (blue dashed) with algorithm path (black -◦-). Vehicle trajectories
and level sets are not shown for clarity.

Figure 9 depicts the algorithm steering the point-
mass to a neighborhood of the minimum of fR(x) =√

10(x2 − x2
1)

2 + 5(1 − x1)2, a variant of the Rosenbrock
function (see [6, Ch. 1]). Here, the algorithm doesn’t converge
to the minimum in four line minimizations; however, the
calculation of conjugate directions guides the algorithm along
narrow valleys of fR.
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