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Abstract— This paper introduces new incremental stability
notions for a class of hybrid dynamical systems given in terms
of differential equations and difference equations with state
constraints. Incremental stability is defined as the property
that the distance between every pair of solutions to the system
has stable behavior (incremental stability) and approaches zero
asymptotically (incremental attractivity) in terms of graphical
convergence. Basic properties of the class of graphically incre-
mentally stable systems are considered as well as those implied
by the new notions are revealed. Moreover, several sufficient and
necessary conditions for a hybrid system with such a property
are established. Examples are presented throughout the paper
to illustrate the notions and results.

I. INTRODUCTION

In recent years, incremental stability-like properties have

been used in the study of synchronization [1], [2], [3],

observer design [4], [5], control design [6], as well as the

study of convergent systems [7]. Unfortunately, the incre-

mental stability notions based on Euclidean and Riemannian

distance cannot be applied directly to systems with variables

that can change continuously and, at times, jump discretely.

These systems, known as hybrid systems, are capable of

modeling a wide range of complex dynamical systems,

including robotic, automotive, and power systems as well as

natural processes. Although set stability theory in terms of

Lyapunov functions is available (see [8], [9]), incremental

stability notions for such systems would enable the study

of properties similar to the current notion for continuous-

time systems. While the initial effort in [10] defines an

incremental stability notion that prioritizes ordinary time,

the notion therein might be difficult to guarantee for hybrid

systems that contain the so called “peaking phenomenon” as

recognized in, e.g., [11], [12].

In this paper, we introduce concepts for the study of

incremental graphical stability of hybrid systems that may

have the “peaking phenomenon.” In particular, for a class of

hybrid systems in the framework of [8], we introduce new

notions of incremental stability and incremental attractivity

based on the graphical distance between solutions. Moreover,

sufficient conditions based on those found in contraction

theory and finite-time stability theory within a neighborhood

of the jump set are established. Furthermore, it is shown

that finite-time stability within a neighborhood of the jump

set is also a necessary condition for a hybrid system to be

graphically incrementally stable or attractive. To the best
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of our knowledge, the notion of incremental stability and

its properties for hybrid systems have not been thoroughly

studied, only discussed briefly in [13] for a class of transition

systems in the context of bisimulations, and in [10] for a

particular class of hybrid systems prioritizing ordinary time.

The remainder of this paper is organized as follows.

Section II briefly reviews the hybrid system framework used

and its basic properties. Section III introduces the notion of

graphical incremental stability and attractivity, and illustrates

them in two examples. Section IV presents the main results,

which consist of several sufficient and necessary conditions.

Examples are discussed throughout the paper to illustrate the

results. Due to the space limitations, complete proofs will be

published elsewhere.

II. PRELIMINARIES ON HYBRID SYSTEMS

AND GRAPH NOTIONS

A. Notation

Given a set S ⊂R
n, the closure of S is the intersection

of all closed sets containing S, denoted by S; S is said to

be discrete if there exists δ > 0 such that for each x ∈ S,

(x+δB)∩S={x}; conS is the closure of the convex hull of

the set S. R≥0 :=[0,∞) and N := {0, 1, . . .}. Given vectors

ν ∈ R
n, w ∈ R

m, |ν| defines the Euclidean vector norm

|ν|=
√
ν⊤ν and [ν⊤ w⊤]⊤ is equivalent to (ν, w). Given a

function f : Rm →R
n, its domain of definition is denoted

by dom f , i.e., dom f := {x ∈ R
m : f(x) is defined}.

The range of f is denoted by rge f , i.e., rge f := {f(x) :
x ∈ dom f}. The right limit of the function f is defined

as f+(x) := limν→0+ f(x+ ν) if it exists. Given a point

y ∈ R
n and a closed set A ⊂ R

n, |y|A := infx∈A |x− y|. A

function α : R≥0→R≥0 is a class-K∞ function, also written

α ∈ K∞, if α is zero at zero, continuous, strictly increasing,

and unbounded; α is positive definite, also written α ∈ PD,

if α(s)> 0 for all s> 0 and α(0)=0. Given a real number

x ∈ R, floor(x) is the closest integer to x from below. A

function V : Rn → R≥0 is called a Lyapunov function with

respect to a set A if V is continuously differentiable and

such that c1(|x|A) ≤ V (x) ≤ c2(|x|A) for all x ∈ R
n and

some functions c1, c2 ∈ K∞.

B. Preliminaries

In this paper, a hybrid system H has data (C, f,D, g) and

is defined by

ż = f(z) z ∈ C,

z+ = g(z) z ∈ D,
(1)



where z ∈ R
n is the state, the map f defines the flow map

capturing the continuous dynamics and C defines the flow set

on which f is effective. The map g defines the jump map and

models the discrete behavior, while D defines the jump set,

which is the set of points from where jumps are allowed.

A solution φ to H is parametrized by (t, j) ∈ R≥0 × N,

where t denotes ordinary time and j denotes jump time.

The domain dom φ ⊂ R≥0 × N is a hybrid time domain

when it satisfies [8, Definition 2.3]. A solution to H is

called maximal if it cannot be extended, i.e., it is not a

truncated version of another solution. It is called complete if

its domain is unbounded. A solution is Zeno if it is complete

and its domain is bounded in the t direction. A solution

is precompact if it is complete and bounded. The set SH

contains all maximal solutions to H, and the set SH(ξ)
contains all maximal solutions to H from ξ. A hybrid system

H is said to satisfy the hybrid basic conditions if it satisfies

[8, Definition 6.5]. The property of pre-forward completeness

of a hybrid system H is characterized in [8, Definition

6.12]. The graph of a hybrid arc is defined in [8, Definition

5.20], and the distance of graphs of two hybrid arcs is

measured by ε-closeness notion in [8, Definition 4.11]. In

order to characterize the property of hybrid arcs graphically

converging to each other, we introduce the following notion.

Definition 2.1: Given ε > 0, two hybrid arcs φ1 and φ2

are eventually ε-close if there exists T > 0 such that

(a) for each (t, j) ∈ domφ1 such that t + j > T , there

exists (s, j) ∈ domφ2 satisfying |t− s| < ε and

|φ1(t, j)− φ2(s, j)| < ε, (2)

(b) for each (t, j) ∈ domφ2 such that t + j > T , there

exists (s, j) ∈ domφ1 satisfying |t− s| < ε and

|φ2(t, j)− φ1(s, j)| < ε. (3)

We refer the reader to [8] and [9] for more details on these

notions and the hybrid systems framework.

III. INCREMENTAL GRAPHICAL STABILITY

In this paper, for hybrid systems H as in (1), we are

interested in characterizing the incremental stability property,

namely, the notion that the graphical distance between every

pair of maximal solutions to the system has stable behavior

and approaches zero asymptotically. To highlight the intri-

cacies of this property in the hybrid setting, a canonical

example of hybrid systems, the so-called bouncing ball

system, is considered.

Every maximal solution to the bouncing ball system is

Zeno1 and converges to the origin; see [8, Example 1.1 and

2.12] for more details. Consider two solutions to this system,

given by φ1 and φ2, from initial conditions φ1(0, 0) = (5, 0)
(ball initialized at a positive height with zero velocity) and

φ2(0, 0)=(0, 3) (ball initialized at the ground with a positive

velocity). Figure 1(a) shows the position (first) component

(φ1
i for i ∈ {1, 2}) of these two solutions, and Figure 1(b)

shows the velocity (second) component (φ2
i for i ∈ {1, 2})

of them. The Zeno behavior of the solutions makes it
1A solution is Zeno if it is complete and its domain is bounded in the t

direction.
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(a) The first component (height φ1

i
)

of solutions from φ1(0, 0) = (5, 0)
and φ2(0, 0) = (0, 3).
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(b) The projection of the second
component (velocity φ̄2

i ) of solu-

tions from φ̄1(0, 0) = (3, 3) and
φ̄2(0, 0) = (3, 3.1) on the t direc-
tion.

Fig. 1. Solutions to the bouncing ball system. The Euclidean distance,
which is d(φ̄2

1
(t, j1), φ̄2

2
(t, j2)) := |φ̄2

1
(t, j1)− φ̄2

2
(t, j2)| for all (t, j1) ∈

dom φ̄1 and (t, j2) ∈ dom φ̄2, has repetitive large peaks.

extremely difficult to analyze incremental property of these

two solutions. In fact, since graphical incremental stability

requires comparing the graphs between two solutions, if

one solution (φ1) reaches the Zeno time sooner than the

second solution (φ2), then the graphical distance between

these two solutions cannot be evaluated after one of them

has approached the Zeno time. This situation is shown in

Figure 1(a), where φ2 approaches Zeno at about t = 6sec

while φ1 is still describing the motion of the ball bouncing.

Such extreme difference in the domains of the solutions

makes it difficult (if not impossible) to compare φ1 and φ2.

Furthermore, a similar situation is encountered if, instead,

the pointwise distance is used to measure the distance

between solutions. As shown in Figure 1(b), the pointwise

distance of velocity (second) components of two solutions

(φ̄2
i for i ∈ {1, 2}) has repetitive large peaks, even though

they are initialized very close to each other.

To avoid such possible dramatic differences on the hybrid

time domains and distances between solutions to a hybrid

system, throughout the paper, we consider a class of hybrid

systems that satisfies the following assumption.

Assumption 3.1: The hybrid system H = (C, f,D, g) is

such that

1) each maximal solution to H has a hybrid time domain

that is unbounded in the t direction;

2) the flow map f is continuously differentiable;

3) there exists γ > 0 such that for each maximal solution

to H, the flow time between two consecutive jumps is

lower bounded by γ.

Lemma 2.7 in [14] provides a sufficient condition for con-

dition 3). As we show later on, these assumptions are

not restrictive, in fact, some of them are necessary for

establishing sufficient conditions for a hybrid system to be

graphically incrementally stable.

The notion of incremental stability used in this work

measures the graph distance between solutions to hybrid

systems. It is defined as follows.

Definition 3.2: Consider a hybrid system H with state z ∈
R

n. The hybrid system H is said to be

1) incrementally graphically stable (δS) if for every ε >

0 there exists δ > 0 such that, for any two maximal



solutions φ1, φ2 to H, |φ1(0, 0)−φ2(0, 0)| ≤ δ implies

φ1 and φ2 are ε-close;

2) incrementally graphically locally attractive (δLA) if

there exists µ > 0 such that for every ε > 0, for any two

maximal solutions φ1, φ2 to H, |φ1(0, 0)−φ2(0, 0)| ≤ µ

implies that φ1 and φ2 are eventually ε-close;

3) incrementally graphically globally attractive (δGA) if

for every ε > 0, and for any two maximal solutions

φ1, φ2 to H, φ1 and φ2 are eventually ε-close;

4) incrementally graphically locally asymptotically stable

(δLAS) if it is both δS and δLA.

Remark 3.3: Note that the δLA notion is different from

the δS notion. The former requires that every pair of maximal

solutions to H initialized close converge to each other

graphically when complete, while the latter requires that

every pair of two maximal solutions to H initialized close

stay close graphically.

The following examples illustrate some of the incremental

stability notions (δS and δLAS) in Definition 3.2.

Example 3.4: (A timer) Consider the hybrid system H
ż = 1 z ∈ [0, 1], (4)

z+ = 0 z = 1. (5)

Note that every maximal solution to H is complete. Consider

two maximal solutions φ1, φ2 to the system. To show δS,

for a given ε > 0, let 0 < δ < ε and assume |φ1(0, 0) −
φ2(0, 0)| < δ. Without loss of generality, we further suppose

φ1(0, 0) > φ2(0, 0). Then, solution φ1 jumps before φ2. For

each j ∈ N \ {0}, let t̄j = max(t,j−1)∈domφ1∩domφ2
t and

t̄′j = min(t,j)∈domφ1∩domφ2
t. Then, we have that for each

t ∈ [0, t̄1], there exists (s, 0) ∈ domφ2 such that s = t and

|φ1(t, 0)−φ2(t, 0)|= |φ1(0, 0)+t−φ2(0, 0)−t|≤δ<ε. (6)

For each t ∈ [t̄1, t̄
′
1],

|φ1(t̄1, 0)− φ2(t, 0)| = |1− φ2(0, 0)− t|
≤ |φ1(0, 0)− φ2(0, 0)| ≤ δ < ε,

(7)

where we used the fact that φ1(0, 0)+ t̄1 = 1. Moreover, for

each t ∈ [t̄1, t̄
′
1],

|φ1(t, 1)− φ2(t̄
′
1, 1)| = |t− t̄1| ≤ δ < ε. (8)

Note that |t − t̄1| ≤ δ < ε holds for all t ∈ [t̄1, t̄
′
1]. In fact,

for each t ∈ [t̄′i−1, t̄i], where i ∈ N \ {0, 1},

|φ1(t, i− 1)− φ2(t, i− 1)|
= |(φ1(t̄

′
i−1, i− 1)− φ2(t̄

′
i−1, i− 1))| ≤ δ < ε.

Moreover, for each t ∈ [t̄i, t̄
′
i], where i ∈ N \ {0, 1},

|φ1(t̄i, i− 1)− φ2(t, i− 1)|
= |φ1(t̄i, i− 1)− φ2(t̄i, i− 1)− (t− t̄i)| < ε,

and |φ1(t, i) − φ2(t̄
′
i, i)| = |t − t̄i| ≤ δ < ε. Therefore,

the system is δS. Moreover, since the distance between φ1

and φ2 does not converge to zero, φ1, φ2 are not eventually

ε-close and thus the system is neither δLA nor δGA.

As shown in Figure 2(a), the domains of two solutions

to the timer system are different from each other. In such

case, the Euclidean distance may not be a good candidate of

a distance function for the study of incremental properties,
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(b) Comparison between Euclidean
distance (top) and graphical distance
(bottom) between φ1 and φ2.

Fig. 2. Two solutions φ1 and φ2 to the timer system in Example 3.4. Unlike
the Euclidean distance, which is d(φ1(t, j1), φ2(t, j2)) := |φ1(t, j1) −
φ2(t, j2)| for all (t, j1) ∈ domφ1 and (t, j2) ∈ domφ2, which assumes
the value 0.8 for 0.2 seconds after every 0.8 seconds, the graphical distance
satisfies dg(φ1(t, j), φ2) := min{|φ1(t, j) − φ2(s, j)| : |t − s| ≤
0.2, (t, j) ∈ domφ1, (s, j) ∈ domφ2}, which is upper bounded by 0.2.

as shown in the top subfigure of Figure 2(b). Note that no

matter how close the two maximal solutions are initialized,

the peak always exists for the Euclidean distance between

them. However, the graphical distance between the solutions,

as shown in the bottom subfigure of Figure 2(b), is bounded

by 0.2 for all hybrid time in the respective domain of the

solutions. We will present a systematic way to check the

property later on in this paper.2 △

Example 3.5: Consider a hybrid system H1 with data

f(z) : = −z ∀ z ∈ C :=
⋃

i∈{2k:k∈N}

[i, i+ 1]

g(z) : = z − 1 ∀ z ∈ D := {2k : k ∈ N \ {0}}.
(9)

Note that every maximal solution to H1 is complete. Given

ε > 0, consider two maximal solutions φ1 and φ2 such that

|φ1(0, 0)− φ2(0, 0)| < δ, where δ = min{1, ε}. Then, it is

guaranteed that J̄ := sup(t,j)∈domφ1
j = sup(t,j)∈domφ2

j <

∞. For each j ∈ N\{0}, let t̄j = max(t,j−1)∈domφ1∩domφ2
t

and t̄′j = min(t,j)∈domφ1∩domφ2
t. Without loss of gen-

erality, assume φ2(0, 0) > φ1(0, 0) ≥ 2, then φ1 jumps

first. Then, we have that for each t ∈ [0, t̄1], there exists

(s, 0) ∈ domφ2 such that s = t and

|φ1(t, 0)−φ2(t, 0)|= |φ1(0, 0)e
−t−φ2(0, 0)e

−t|≤δ<ε. (10)

For each t ∈ [t̄1, t̄
′
1],

|φ1(t̄1, 0)− φ2(t, 0)| = |e−t̄1φ1(0, 0)− e−tφ2(0, 0)|
≤ |e−t̄1φ1(0, 0)− e−t̄1φ2(0, 0)| ≤ δ < ε,

(11)

where we used the property e−t̄1φ1(0, 0)=floor(φ1(0, 0))=
floor(φ2(0, 0)) = e−t̄′1φ2(0, 0). Note that t̄1 =
ln(φ1(0, 0))− ln(floor(φ1(0, 0))) and t̄′1 = ln(φ2(0, 0)) −
ln(floor(φ2(0, 0))), therefore, t̄′1 − t̄1 = ln(φ2(0, 0)) −
ln(φ1(0, 0)). Furthermore, by mean value theorem, there

exists φ⋆
0 ∈ [φ1(0, 0), φ2(0, 0)] such that |t̄′1 − t̄1| =

1
φ⋆

0

|φ1(0, 0) − φ2(0, 0)| ≤ |φ1(0, 0) − φ2(0, 0)| ≤ δ < ε.

Similarly, for each t ∈ [t̄1, t̄
′
1],

|φ1(t, 1)− φ2(t̄
′
1, 1)| ≤ φ2(0, 0)− φ1(0, 0) ≤ δ. (12)

If φ1(0, 0), φ2(0, 0) ≤ 1, we have that |φ1(t, 0) −
2It may be possible to construct an alternative distance function that is

decreasing along solutions using the ideas in [15].
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Fig. 3. Two solutions φ1 and φ2 to the system H1. Unlike the Euclidean
distance, which is d(φ1(t, j1), φ2(t, j2)) := |φ1(t, j1) − φ2(t, j2)| for
all (t, j1) ∈ domφ1 and (t, j2) ∈ domφ2, which does not de-
crease along solutions, the graphical distance satisfies dg(φ1(t, j), φ2) :=
min{|φ1(t, j) − φ2(s, j)| : |t − s| ≤ 0.2, (t, j) ∈ domφ1, (s, j) ∈
domφ2}, which decreases along solutions.

φ2(t, 0)| ≤ e−t|φ1(0, 0) − φ2(0, 0)| ≤ δ for all (t, 0) ∈
domφ1 = domφ2. In fact, limt→∞,(t,0)∈domφ1

|φ1(t, 0) −
φ2(t, 0)| = 0. Therefore, the system H1 is δLAS.

As shown in Figure 3(a), the domains of two solutions to

the system H1 are different from each other. The Euclidean

distance between φ1 and φ2 is shown in the top subfigure of

Figure 3(b), while the graphical distance between them, as

shown in the bottom subfigure of Figure 3(b), converges to

zero asymptotically. △
IV. SUFFICIENT AND NECESSARY CONDITIONS

FOR GRAPHICAL INCREMENTAL STABILITY NOTIONS

In this section, we present several sufficient and necessary

conditions of incremental graphical stability properties for

hybrid systems that satisfy Assumption 3.1.

The following result highlights a necessary property of the

hybrid time domains of two hybrid arcs that are graphically

close. In particular, it holds for solutions to a hybrid system

H that is δS or δGA.

Lemma 4.1: Given ε > 0 and two hybrid arcs φ1 and φ2,

the following hold:

1) If φ1 and φ2 are ε-close, then

sup
(t,j)∈domφ1

j = sup
(t,j)∈domφ2

j. (13)

2) If φ1 and φ2 are complete and eventually ε-close, then

(13) holds.

Example 4.2: Consider the Example 3.5, and two solu-

tions φ1 and φ2 to H1 from φ1(0, 0)=4.5 and φ2(0, 0)=1,

respectively. Solution φ1 jumps twice while solution φ2 never

jumps. Therefore, φ1 and φ2 is not eventually ε-close which

prevents the system from being δGA even though it is shown

to be δLAS in Example 3.5. △
The following result establishes that uniqueness is a nec-

essary condition for δS. In turn, in particular, it justifies the

choice of single-valued flow and jump maps in the definition

of H in (1).

Proposition 4.3: (uniqueness of solutions under δS) Con-

sider a hybrid system H with state z ∈ R
n. Suppose H

satisfies Assumption 3.1 and H is δS. Then, every maximal

solution to H is unique.

Based on Proposition 4.3, assuming uniqueness of solu-

tions to H is not at all restrictive when studying incremental

graphical stability. Hence, in the following results we impose

the following uniqueness of solutions assumption.

Assumption 4.4: The hybrid system H = (C, f,D, g) is

such that each maximal solution φ to H is unique.

A sufficient condition for guaranteeing uniqueness of maxi-

mal solutions requires f to be locally Lipschitz and no flow

from C ∩D, see [8, Proposition 2.11].

When the jump set D is a discrete set, the following

sufficient conditions for a hybrid system H to be δLAS

are established. In particular, the graphical distance between

any two maximal solutions to a hybrid system H strictly

decreases during flows.

Theorem 4.5: (δLAS through flow with D being a discrete

set) Consider a hybrid system H = (C, f,D, g) with state

z∈R
n. Suppose H satisfies Assumption 3.1, Assumption 4.4,

and the hybrid basic conditions. Moreover, suppose D is a

discrete set. If there exist β > 0 and δ0 > 0 such that H
satisfies

1) ∇f(z) +∇f⊤(z) ≤ −2βI for all z ∈ conC;

2) for each δ ∈ [0, δ0], each maximal solution φ to H from

φ(0, 0) satisfying

φ(0, 0) ∈ C, |φ(0, 0)|D = δ (14)

is such that there exists s ∈ [0, δ] satisfying

|φ(s, 0)|D = 0, |φ(t, 0)|D ≤ δ ∀t ∈ [0, s], (15)

and the maximal solution φ̄ to H from g(φ(s, 0))
satisfies

|φ̄(t, 0)− g(φ(s, 0))| ≤ δ ∀t ∈ [0, s]; (16)

then, H is δLAS.

Sketch of the Proof: Given ε > 0, and using δ0 as in

the item 2) of assumption and γ as in Assumption 3.1,

consider two maximal solutions φ1, φ2 to H such that

|φ1(0, 0) − φ2(0, 0)| < δ, where δ is chosen such that 0 <

δ ≤ min{ε, δ0, γ} and for each z ∈ D, (z+ δB)∩D = {z}.

If φ1(0, 0), φ2(0, 0)∈C and no jump occurs to either φ1 or

φ2, then, by the generalized mean value theorem for vector-

valued functions and item 1), for all t ∈ (0,∞), we have

d

dt
|φ1(t, 0)− φ2(t, 0)|2 ≤ −2β|φ1(t, 0)− φ2(t, 0)|2. (17)

Then, by the comparison lemma, for all t ∈ [0,∞),

|φ1(t, 0)−φ2(t, 0)|≤exp(−βt)|φ1(0, 0)−φ2(0, 0)|≤δ. (18)

Now consider the case when either φ1 or φ2 jump.

Assume φ1 jumps first and J = ∞. Furthermore, for each

j ∈ N \ {0}, let t̄j = max(t,j−1)∈domφ1∩domφ2
t and

t̄′j = min(t,j)∈domφ1∩domφ2
t, and t̄′0 = 0.

Case I: When φ1(0, 0), φ2(0, 0) ∈ C, similarly as in (17),

for all t ∈ [0, t̄1], we have that

|φ1(t, 0)− φ2(t, 0)| ≤ δ. (19)

When t = t̄1, since φ1 jumps first, φ1(t̄1, 0) ∈ D and

φ1(t̄1, 1) = g(φ1(t̄1, 0)). Note that under item 3) of As-

sumption 3.1, g(D) ∩D = ∅. Therefore, by using (17) and

item 2), we obtain



a) for each j ∈ N \ {0} and each t ∈ [t̄′j , t̄j+1]:

|φ1(t, j)−φ2(t, j)|
≤exp(−β(t− t̄′j+∆j))|φ1(0, 0)−φ2(0, 0)|≤ε,

(20)

where ∆j :=
∑j

k=1(t̄k − t̄′k−1),
b) for each j ∈ N \ {0} and each t ∈ [t̄j , t̄

′
j]:

|φ2(t, j−1)−φ1(t̄j , j−1)|
≤ exp(−β∆j)|φ1(0, 0)−φ2(0, 0)|≤ε,

(21)

c) for each j ∈ N \ {0} and each t ∈ [t̄j , t̄
′
j]:

|φ1(t, j)− φ2(t̄
′
j , j)|

≤ exp(−β∆j)|φ1(0, 0)− φ2(0, 0)| ≤ ε.
(22)

Therefore, φ1 and φ2 are ε-close.

Case II If φ1(0, 0), φ2(0, 0) ∈ D, since D is a discrete set

and |φ1(0, 0) − φ2(0, 0)| ≤ δ, φ1(0, 0) = φ2(0, 0). By the

uniqueness of solutions, we have that φ1(t, j) = φ2(t, j) for

all (t, j) ∈ domφ1. Thus, φ1 and φ2 are ε-close.

Case III If φ1(0, 0) ∈ C, φ2(0, 0) ∈ D, the arguments

follows similarly as in Case I.

Therefore, by combining arguments in three cases, it is

proved that φ1 and φ2 are ε-close which implies H is δS.

Note that the case when J < ∞ follows similarly with

[t
′
J ,∞)× {J} ⊂ domφ1 ∩ domφ2 and above.

On the other hand, the δLA property follows from (20),

(21) and (22). �

Remark 4.6: The first condition in Theorem 4.5 guaran-

tees strict decrease of the graphical distance between two

maximal solutions on the intersections of their hybrid time

domains. The second condition in Theorem 4.5 implies that

on the mismatched parts of their hybrid time domains, the

graphical distance between them does not grow.

The condition proposed in item 2) of Theorem 4.5 can be

guaranteed by the following sufficient condition.

Proposition 4.7: Consider a hybrid system H =
(C, f,D, g) with state z ∈ R

n. Suppose H satisfies Assump-

tion 3.1, Assumption 4.4, and the hybrid basic conditions.

Moreover, suppose D is a discrete set. Then, item 2) of

Theorem 4.5 holds if there exists δ0 > 0 such that, for

any z⋆ ∈ D, the following hold: there exist c1, c2 > 0,

c2 ∈ (0, c1], and α ∈ (0, 1) such that

1) for V1(z) = |z − z⋆|2, we have 〈∇V1(z), f(z)〉 +
c1V

α
1 (z) < 0 and |z − z⋆|1−2α ≤ c1(1 − α) for all

z ∈ C
⋂
((z⋆ + δ0B) \D),

2) for V2(z) = |z − g(z⋆)|2, we have 〈∇V2(z), f(z)〉 −
c2V

α
2 (z) < 0 for all z ∈ C

⋂
(g(z⋆) + δ0B).

The following example illustrates the sufficient condition

in Theorem 4.5.

Example 4.8: Consider the system in Example 3.5 and

the set M = [0,M ], where M > 0. For the hybrid system

HM = (C ∩M, f,D∩M, g), the conditions in Theorem 4.5

can be verified as follows. Each maximal solution to HM is

complete and its domain is unbounded in the t direction.

Moreover, the flow map is continuously differentiable on

con(C ∩ M). Furthermore, for any maximal solution φ to

the system HM from φ(0, 0) ∈ (C ∪ D) ∩ M , denote

d⋆ := max{x : x ∈ C, x ≤ φ(0, 0)}. If φ(0, 0) ≤ 1, then

φ never jumps and the jump time between two consecutive

jumps is bounded below by ∞. If d⋆ ≥ 2, the flow time

between two consecutive jumps of φ is bounded below by

ln d⋆

d⋆−1 ≤ ln floor(M+2)

floor(M+1)
. For all z ∈ con(C ∩M), ∇f(z) +

∇f(z)⊤ = −2, so item 1) in Theorem 4.5 is satisfied

with β = 1. Moreover, given z⋆ ∈ D ∩ M , the Lyapunov

function V1(z) = |z − z⋆|2 satisfies 〈∇V1(z), f(z)〉 =

2(z − z⋆)(−z) ≤ −2z⋆(z − z⋆) = −2z⋆V
1
2

1 (z) for z ∈
(M ∩ C)

⋂
((z⋆ + ln d⋆

d⋆−1B) \ (M ∩ D)), where we used

the property that z ≥ z⋆ for all z ∈ (M ∩ C)
⋂
((z⋆ +

ln d⋆

d⋆−1B) \ (M ∩D)). Furthermore, the Lyapunov function

V2(z) = |z − g(z⋆)|2 satisfies 〈∇V2(z), f(z)〉 = 2(z −
g(z⋆))(−z) ≤ 2z⋆(g(z⋆) − z) = 2g(z⋆)V

1
2

2 (z) for z ∈
(g(z⋆) + ln d⋆

d⋆−1B)
⋂
(C ∩M), where we used the property

that z ≤ g(z⋆) for all z ∈ (g(z⋆) + ln d⋆

d⋆−1B)
⋂
(C ∩ M)

and g(z⋆) = z⋆ − 1 < z⋆. Then, by Proposition 4.7 and

Theorem 4.5, we have that HM is δLAS. △
It follows that the finite-time convergence property in item

2) of Theorem 4.5 is a necessary condition for a hybrid

system H to be δS or δLA. Indeed, without the finite-time

convergence property nearby D and g(D), the graphs of the

solutions would not be close.

Theorem 4.9: (necessary condition for δS and δLA) Con-

sider a hybrid system H with state z ∈ R
n. Suppose H

satisfies Assumption 3.1, Assumption 4.4, and the hybrid

basic conditions. Furthermore, suppose H is δS or δLA.

Then, there exists δ0 > 0 such that each maximal solution φ

to H from φ(0, 0) satisfying |φ(0, 0)|D ≤ δ0 and φ(0, 0) ∈ C

converges to D within finite time, i.e., there exists s > 0 such

that |φ(s, 0)|D = 0.

Under further assumptions, the above results for a discrete

jump set can be extended to the case of a generic set D. For

this purpose, we introduce the following forward invariant

notion.

Definition 4.10: (forward invariance from away of D) A

set A ⊂ R
n is said to be forward invariant for H from away

of D if for each solution φ to H from φ(0, 0) ∈ A \ D,

φ(t, 0) ∈ A for all (t, 0) ∈ domφ.

Now, we are ready to present sufficient conditions for a

generic jump set.

Theorem 4.11: (δLAS through flow for generic D) Con-

sider a hybrid system H = (C, f,D, g) with state z ∈ R
n.

Suppose H satisfies Assumption 3.1, Assumption 4.4, and the

hybrid basic conditions. If there exist β > 0 and δ0 > 0 such

that H satisfies

1) ∇f(z) +∇f⊤(z) ≤ −2βI for all z ∈ conC;

2) for each δ ∈ [0, δ0], each maximal solution φ to H
satisfying

φ(0, 0) ∈ C, |φ(0, 0)|D = δ (23)

is such that there exists s ∈ [0, δ] satisfying

|φ(s, 0)|D = 0 (24)

and the set φ(s, 0)+δB is forward invariant from away



of D, and each maximal solution φ̄ to H from

φ̄(0, 0) ∈ g(φ(s, 0)) + δB (25)

satisfies

φ̄(t, 0) ∈ g(φ(s, 0)) + δB (26)

for all t ∈ [0, s];

3) the jump map g is locally Lipschitz on D with Lipschitz

constant L1 ∈ [0, 1],3 i.e., |g(z1)−g(z2)| ≤ L1|z1−z2|
for all z1, z2 ∈ D such that |z1 − z2| ≤ δ0;

then, H is δLAS.

The following result establishes a sufficient condition for a

hybrid system H to be δLAS “through jumps.” In particular,

the graphical distance between any two maximal solutions

to a hybrid system H strictly decreases during jumps.

Theorem 4.12: (δLAS through jumps for generic D) Con-

sider a hybrid system H = (C, f,D, g) with state z ∈ R
n.

Suppose H satisfies Assumption 3.1, Assumption 4.4, and the

hybrid basic conditions. If there exist δ0, L1, L2>0 such that

1) ∇f(z) +∇f(z)⊤ ≤ 0 for all z ∈ conC;

2) for each δ ∈ [0, δ0], each maximal solution φ to H from

φ(0, 0) satisfying

φ(0, 0) ∈ C, |φ(0, 0)|D = δ

satisfies |φ(s, 0)|D = 0 for some s ∈ [0, δ];

3) for each z ∈ D and each δ ∈ [0, δ0], the set z + δB is

forward invariant for H from away of D;

4) the jump map g is locally Lipschitz on D with Lipschitz

constant L1, i.e., |g(z1) − g(z2)| ≤ L1|z1 − z2| for all

z1, z2 ∈ D such that |z1 − z2| ≤ δ0;

5) f is bounded on conC with bound L2, i.e., |f(z)| ≤ L2

for all z ∈ conC;

6) L1 + L2 ≤ 1;

then, H is δS. Furthermore, if the domain of each maximal

solution to H is unbounded in the j direction, and L1 and

L2 can be chosen such that L1 + L2 < 1, then, H is δLAS.

The following example illustrates the conditions in Theo-

rem 4.12.

Example 4.13: Consider the timer system in Example 3.4.

Each maximal solution φ to it has a domain that is unbounded

in the t and j direction. Moreover, the flow time between

two consecutive jumps of φ is lower bounded by 1. The

condition in item 1) of Theorem 4.12 can be verified as

∇f(z)+∇f(z)⊤=0 for all z∈conC. The condition in item

2) can be verified according to Proposition 4.7. Consider

δ0 ∈ (0, 1) and the Lyapunov function V (z) = |z|2D. For

each z ∈ (D+δ0B)∩C \D, we have V (z) = (z−1)2 and

〈∇V (z), f(z)〉=−2(1− z)=−2V
1
2 (z), where we used the

property that z ≤ 1 for all z ∈ (D+δ0B)\D. Item 3) of

Theorem 4.12 follows from the fact D= {1} is a singleton

and 〈∇V (z), f(z)〉=−2(1−z)<0 for all z∈(D+δ0B)∩C\D.

Item 4) of Theorem 4.12 is satisfied with c1 =0, and item

5) of Theorem 4.12 is satisfied with c2 = 1. Therefore, the

timer system in Example 3.4 is δS. △
3Such g is also known as a weak contraction map.

V. CONCLUSION

In this paper, we show that graphical incremental stability

is a key notion for the study of incremental stability for

hybrid systems. Other notions based on pointwise Euclidean

distance fall short when applied to systems that exhibit

the “peaking phenomenon,” which is a typical behavior in

tracking and observer design for hybrid systems. Several

sufficient and necessary conditions for a hybrid system to be

graphically incrementally stable and graphically incremen-

tally attractive were provided and illustrated in examples.

REFERENCES

[1] C. Cai and G. Chen. Synchronization of complex dynamical networks
by the incremental ISS approach. Physica A: Statistical Mechanics

and its Applications, 371(2):754 – 766, 2006.
[2] Q. Pham, N. Tabareau, and J. J. Slotine. A contraction theory approach

to stochastic incremental stability. IEEE Transactions on Automatic

Control, 54(4):816–820, April 2009.
[3] A Hamadeh, G. B Stan, and J. Goncalves. Constructive synchroniza-

tion of networked feedback systems. In Proc. 49th IEEE Conference

on Decision and Control, pages 6710–6715, Dec 2010.
[4] R. G. Sanfelice and L. Praly. Convergence of nonlinear observers

on Rn with a Riemannian metric (Part I). IEEE Transactions on

Automatic Control, 57(7):1709–1722, July 2012.
[5] A. P. Dani, S. J. Chung, and S. Hutchinson. Observer design for

stochastic nonlinear systems using contraction analysis. In Proc. 51st

Annual Conference on Decision and Control, pages 6028–6035, Dec
2012.

[6] M. Zamani and P. Tabuada. Backstepping design for incremental
stability. IEEE Transactions on Automatic Control, 56(9):2184–2189,
Sept 2011.

[7] A. Pavlov, N. van de Wouw, and H. Nijmeijer. Frequency response
functions for nonlinear convergent systems. IEEE Transactions on
Automatic Control, 52(6):1159–1165, June 2007.

[8] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid Dynamical
Systems: Modeling, Stability, and Robustness. Princeton University
Press, New Jersey, 2012.

[9] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dynamical systems.
IEEE Control Systems Magazine, 29(2):28–93, April 2009.

[10] Y. Li, S. Phillips, and R. G. Sanfelice. Results on incremental
stability for a class of hybrid systems. In Proc. of IEEE 53rd Annual
Conference on Decision and Control, pages 3089–3094, Dec 2014.

[11] R. G. Sanfelice, J. J. B. Biemond, N. van de Wouw, and W. P.
Maurice. H. Heemels. An embedding approach for the design of state-
feedback tracking controllers for references with jumps. Int. J. Robust
Nonlinear Control, 24:1585–1608, 2014.

[12] S. Galeani, L. Menini, and A. Potini. Robust trajectory tracking for a
class of hybrid systems: An internal model principle approach. IEEE
Transactions on Automatic Control, 57(2):344–359, Feb 2012.

[13] P. Prabhakar, J. Liu, and R. M. Murray. Pre-orders for reasoning about
stability properties with respect to input of hybrid systems. In Proc.
of the International Conference on Embedded Software (EMSOFT),
pages 1–10, Sept 2013.

[14] R. G. Sanfelice, R. Goebel, and A. R. Teel. Invariance principles
for hybrid systems with connections to detectability and asymptotic
stability. IEEE Transactions on Automatic Control, 52(12):2282–2297,
2007.

[15] J. J. B. Biemond, N. van de Wouw, W. P. M. H. Heemels, and
H. Nijmeijer. Tracking control for hybrid systems with state-triggered
jumps. IEEE Transactions on Automatic Control, 58(4):876–890, April
2013.


