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Abstract— This paper deals with the problem of estimating
the state of a linear time-invariant system in the presence
of sporadically available measurements. An observer with a
continuous intersample injection term is proposed. Such an
intersample injection is provided by a linear dynamical system,
whose state is reset to the measured output estimation error at
each sampling time. The resulting system is augmented with a
timer triggering the arrival of a new measurement and analyzed
in a hybrid system framework. The design of the observer
is performed to achieve global exponential stability of a set
wherein the estimation error is equal to zero. Moreover, three
computationally efficient procedures are proposed to design the
observer. Finally, the effectiveness of the proposed methodology
is shown in two examples.

I. INTRODUCTION

State estimation of continuous-time dynamical systems
in the presence of discrete-time measurements has been
an interesting and appealing issue addressed by researchers
over the last decades. Indeed, in real-world engineering
applications, assuming to continuously measuring the output
of a given plant is undoubtedly unrealistic. This practical
needed has brought to life a new research area aimed at
developing observer schemes accounting the discrete nature
of the available measurements; see, e.g, [1], [3], [4], [14],
[15], just to cite a few. In these works, by assuming a
periodical availability of the measured output, the authors
propose a discrete-time approach to the state estimation prob-
lem, which consists of designing a discrete-time observer for
the discretized version of the plant. However, this approach
entails two main drawbacks. The first drawback stems from
the fact that the intersample behavior is completely lost
due only studying the evolution of the estimation error at
sampling times. In fact, with such a discrete-time approach,
no explicit bounds on the estimation error in between con-
secutive samples are available. The second drawback is that
any mismatch between the actual sampling time and the
one used to discretize the plant model induces an error in
the discrete-time description of the state estimation problem.
The third drawback is that in many modern applications,
such as networked control systems, the output of the plant is
often accessible only sporadically, making the fundamental
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assumption of periodically measuring unrealistic; see, e.g,
[81, [10], [24].

To address these issues, several strategies are presented in
the literature. Such strategies essentially belong to two main
families. The first one pertains to observers whose state is
entirely reset, according to a suitable law, whenever a new
measurement is available, and that run open-loop in between
such events (continuous-discrete observers). This approach
is, for instance, pursued in [2], [5], [16]. The second family
of strategies considers instead continuous-time observers,
for which the output injection error in between consecutive
samples is estimated via a continuous-time processing of the
last received measurement. This approach is pursed, e.g., in
[13], [19], [21].

In this paper, to exponentially estimate the state of a
continuous-time linear system in the presence of sporadic
measurements, we propose an observer with a continuous
intersample injection and state resets. Such an intersample
injection is provided by a linear system, whose state is reset
to the measured output estimation error at each sampling
time. Differently from existing works, as those in [13], [18],
[21], we base our methodology on the Lyapunov results for
hybrid systems presented in [7]. Pursuing this approach, we
first propose a hybrid model of the observer interconnected
with the plant, that captures all the possible occurrences of
the output sampling events. Then, building on this model, we
provide a general result to guarantee global exponential sta-
bility of a set of points in which the estimation error is equal
to zero. As a second step, our condition guaranteeing global
exponential stability is exploited to derive three efficient
design algorithms, based on the solution of linear matrix
inequalities, for the proposed observer. The first one gives
rise to a computationally tractable design for the scheme
proposed in [13]. The second one yields an alternative design
algorithm, though for the case of linear systems, for the zero
order sample-and-hold scheme proposed in [21]. The third
design procedure provides a completely novel scheme. The
contribution of this paper is twofold. On the one hand, we
provide a unified approach to analyze the observer scheme
proposed by [13], [21]. On the other hand, for the first time,
we propose a design procedure for the observer proposed in
[13], as well as a completely novel observer scheme.

The remainder of the paper is organized as follows.
Section II presents the system under consideration, the state
estimation problem we solve, and the hybrid modeling of
the proposed observer. Section III is dedicated to the main
results. Section IV is devoted to design procedures for the
proposed observer. Finally, in two numerical examples, Sec-
tion V shows the effectiveness of the results presented. Due



to space limitations, proofs of the results will be published
elsewhere.

Notation: The set Ny is the set of positive integers including
zero, the set N is the set of strictly positive integers, and Rx>q
represents the set of nonnegative real scalars. The identity matrix
is denoted by I, whereas the null matrix is denoted by 0. For a
matrix A € R™*™, A’ denotes the transpose of A, ||A|| denotes
the induced 2-norm, and He(A) = A + A’. For two symmetric
matrices, A and B, A > B means that A— B is positive definite. In
partitioned symmetric matrices, the symbol e stands for symmetric
blocks. The matrix diag{A:, Aa,..., A} is the block-diagonal
matrix having A, As,..., A, as diagonal blocks. For a vector
xz € R", ||z|| denotes the Euclidean norm. Given two vectors z, y,
we denote (z,y) = [’ y']’. Given a vector z € R™ and a closed set
A, the distance of z from A is defined as |x|4 = infyeca ||z — |
For any function z : R — R™, we denote z(t") := lim,_,,+ z(s).

II. PROBLEM STATEMENT
A. System description

We consider continuous-time linear time-invariant systems
of the form
2= Az

)1 (1

where z € R” and y € R? are, respectively, the state and
the measured output of the system, while A and M are
constant matrices of appropriate dimensions. Assume that
the initial time ¢y = 0, our goal is to design an observer
providing an asymptotic estimate Z of the state z with
sporadic measurements of y. Namely, we assume that the
whole output y is available only at some time instances tj,
k € N, not known a priori. We assume that the sequence
{tx }3°1s strictly increasing and unbounded, and that for such
a sequence there exist two positive real scalars 77 < 75 such
that
0<t <T>

)
Ty <tggr—te <1

Vk € N

As also pointed out in [9], the lower bound in condition (2)
prevents the existence of accumulation points in the sequence
{tr}? and, hence, avoids the existence of Zeno behavior,
which is typically undesired in practice. In fact, 77 defines
a strictly positive minimum time in between consecutive
transmissions. Furthermore, 75 defines the maximum time
in between consecutive transmissions. For this reason, in the
sequel we will refer to 75 as the maximum transmission
interval.

Since measurements of the output y are available in
an impulsive fashion, assuming that the arrival of a new
measurement can be instantaneously detected, to solve the
considered estimation problem, building from [13], [18],
[21], we propose the following observer with jumps

A5(t) + Lo(t) } whent ¢ {t;}3°

0(t) = HO(®)
Ath) = (1) o0
o) = ylt) — MA(H) } whent € {t}$

3)
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Fig. 1: The proposed observer scheme. The dashed arrows
denote impulsive data streams, while the solid arrows denote
continuous data streams.

where L and H are real matrices of appropriate dimensions
to be designed.

The operating principle of the observer in (3) is as
follows. The arrival of a new measurement triggers an
instantaneous jump in the observer state. Specifically, at each
jump, the measured output estimation error, i.e., y — M2, is
instantaneously stored in 6. Then, in between consecutive
measurements, 6 is continuously updated according to linear
continuous-time dynamics, and its value is continuously
used as an intersample injection to feed a continuous-time
observer; see Figure 1.

Along the lines of [22], we formulate the state estimation
problem as a set stabilization problem. Namely, our goal is
to design the matrices L and H such that the set wherein
the plant state z and its estimate Z coincide is globally
exponentially stable for the plant (1) interconnected with the
observer in (3). At this stage, we define the following change
of variables

z—2Z

M(z—2)—10

)
I

0:

which defines, respectively, the estimation error and the
difference between the output estimation error and 6. Hence,
the two error dynamics are given by the following dynamical
system with jumps:

O] _ e .
é(t)] =F |:9~(t):| } whent ¢ {tk}1
i “)
e(t™) (t) c0
) =9[i) § et et
where
[ A-LM L 10
F=ma—MLM - HM ML+H]’g: {0 o}
)

Notice that, in view of the linearity of the plant (1), the error
dynamics are decoupled from the plant dynamics. Then, for
the purpose of estimation, one can effectively only consider
system (4).

B. Hybrid modeling

The fact that the observer experiences jumps when a
new measurement is available and evolves according to a
differential equation in between updates suggests that the



updating process of the error dynamics can be described via
a hybrid system. Due to this, we represent the whole system
composed by the plant (1), the observer (3), and the logic
triggering jumps as a hybrid system. The proposed hybrid
systems approach requires to model the hidden time-driven
mechanism triggering the jumps of the observer.

To this end, in this work, and in a similar manner as in
[5], we augment the state of the system with an auxiliary
timer variable 7 that keeps track of the duration of flows and
triggers a jump whenever a certain condition is verified. This
additional state allows to describe the time-driven triggering
mechanism as a state-driven triggering mechanism, which
leads to a model that can be efficiently represented by relying
on the framework for hybrid systems proposed in [7]. More
precisely, we make 7 to decrease as ordinary time ¢ increases
and, whenever 7 = 0, reset it to any point in [T}, T3], so as
to enforce (2). After each jump, we require the system to
flow again. The whole system composed by the error states
€ and 6, and the timer variable 7 can be represented by the
following hybrid system, which we denote H:

g ]
5] = f[é} (.61 eC
o= -1

H (6a)
m) =l 1
ot 0 (e,0,7) € D
T+ € [Tl,TQ]

where the flow set and the jump set are defined as

C=R" x[0,Th], D=R"x{0}. (6b)

The set-valued jump map allows to capture all possible
transmission events occurring within 77 or 75 units of time
from each other. Specifically, the hybrid model in (6) is able
to characterize not only the behavior of the analyzed system
for a given sequence {¢j}3°, but also for any sequence
satisfying (2). We denote the state of H by

z=(,0,7)

and by f and G, respectively, the flow map and the jump
map, i.e.,

Ve e C (7a)

Vz € D. (7b)

(T1, T3]

We consider the following notions for a general hybrid
system # in R’.

Definition 1: (Maximal solutions [7, Definition 2.7]) A
solution ¢ to H is maximal if there does not exist another
solution v to H such that dom ¢ is a proper subset of dom ¢
and ¢(t,j) = ¢(t,7) for all (¢,j) € dom ¢.

Definition 2: (Global exponential stability [23]) Let A C
R be closed. The set A is said to be globally exponentially
stable (GES) for the hybrid system H if every maximal

solution to H is complete, i.e., its domain is unbounded and
there exist strictly positive real numbers A, w such that every
solution ¢ to H satisfies for all (¢,j) € dom ¢

|6(t, )4 < we X HD|6(0,0)|4. 8)
Then, by introducing the set!
A= {0} x {0} x [0, T3] )

the problem to solve is formulated as follows:

Problem 1: Given the matrices A and M of appropriate
dimensions, and two positive scalars 77 < T5, design the
matrices L € R"*? and H € R%*7 such that the set .4
defined in (9) is GES for the hybrid system (6).

Concerning the existence of solutions to system (6), by
relying on the concept of solution proposed in [7, Definition
2.6], it is straightforward to check that, for every initial
condition ¢(0,0) € C'U D, every maximal solution to (6)
is complete. In addition, we can characterize the domain of
these solutions. Indeed, as in [5], for every initial condition
#(0,0) € C'U D, the domain of every maximal solution ¢
to (6) can be written as follows:

dom¢ = | ([t;,t;11]) x {4} (10)
Jj€No
with T 7 v N
<tiy1—t; < | €
1 > bj+1 3 =42 J (11)

0<t; <Ts

where dom ¢ is the domain of the solution ¢, which is a
hybrid time domain; see [7] for more details about solutions
to hybrid systems. Furthermore, the structure of the above
hybrid time domain implies that for each (¢, j) € dom ¢, we
have

t=>Tyj -1 12)

Such a relation will exploited later to assess GES of the set
A in (9) for H.

III. MAIN RESULTS
A. Conditions for GES

The following result provides conditions for GES of the
set A defined in (9) for system (6).

Theorem 1: Let T, be a given positive real scalar. If
there exist two symmetric positive definite matrices P; €
R™ " P, € R9%9, a positive real scalar o, and two matrices
L e R" 4, H € R?%9, such that

My < O,MQ <0 (14)

where M; and M are symmetric matrices defined in (13)
(at the top of the next page), then the set A in (9) is GES
for the hybrid system (6). J
Sketch of the proof: Inspired by [6, Example 27], consider
the following Lyapunov function candidate for the hybrid

system (6) defined for every z € R"t4 x Rx:
V(x) = &' Pie + €770 Pyf), (15)

By the definition of system (6) and of the set A, for every x € C' U
DUGD), |z|a = lI(s, ).



He(Py (A — LM))

He(Py (A — LM))

e

oe|

where o is a positive real scalar. Now, let ¢ be a maximal
solution to (6), it can be shown that the satisfaction of (14)
implies that there exist two positive real scalars 3, as such
that for every (¢,j) € dom ¢

V(6(t, 7)) < e~V (6(0,0)).

Finally by exploiting (12), via standard arguments, one can
show that the set A defined in (9) is GES for system (6).

Remark 1: Notice that, for them to be feasible, the con-
ditions in (14) require a detectable pair (A, M) (though this
condition is in general only necessary). It is worthwhile to
remark that, differently from [5], [20], a priori, we do not
require the detectability of the pair (e4”, Me4?) for each
v belonging to [T7, 5], which would be a more restrictive
condition.

(16)

IV. OBSERVER DESIGN

In the previous section, a condition to guarantee GES of
the set A for system (6) was provided. However, due to
its form, such a condition is in general not computation-
ally tractable to provide a viable solution to Problem 1.
Indeed, condition (14) is nonlinear in the design variables
Py, Py,0,H and L, so further work is needed to derive a
design procedure for the proposed observer. Specifically, the
nonlinearities present in (14) are due to both the bilinear
terms involving the matrices P;, P>, L, H, and the scalar
o, as well as the fact that o also appears in a nonlinear
fashion via the exponential function. Nevertheless, from a
numerical standpoint, the nonlinearities involving the scalar
o are easily manageable. Indeed, o can be treated as a tuning
parameter or being selected via an iterative search. Thus, the
main issue to tackle concerns with the other nonlinearities
present in (14). To address these, in the sequel, we provide
three constructive sufficient conditions to solve Problem 1
via the solution of sets of linear matrix inequalities.

A. Intersample predictor observer scheme

Proposition 1: Let T, be a given positive real scalar. If
there exist two symmetric positive definite matrices P; €
R™ " P, € RY%9, a positive real scalar o, and a matrix
J € R™*4 such that

|:H6(P1A - JM) J + AIM/P2:|
<0
[ ] —0’P2
T A1y (17)
He(PLA—JM) J+e2AM' P,
T <0
. —e7 20 P,

then L = Pl_lJ,H =—ML, P, P, and o satisfy (14). O

Remark 2: Tt is worthwhile to notice that the proposed
choice for the gain H leads to the predictor-based observer
scheme proposed in [13], though written in different co-
ordinates. Indeed, whenever H = —M L, by rewriting (3)

P.L+ (MA—MLM — HM)'P,

He(Py(ML + H)) — o P,
PL+e"T2(MA— MLM — HM)'P,
. e“T2 (He(Po(ML + H)) — o Py)

13)

via the following invertible change of variables (2,w) =
(2,0 + M 2), yields the same observer in [13].

In the next sections, we present two other design proce-
dures, whose derivation is based on an equivalent condition
to Theorem 1, that is formulated introducing slack variables
via the use of the projection lemma; see [17].

B. Slack variables-based design

The following result provides an equivalent condition to
condition (14) in Theorem 1, in which the term M LM no
longer appears.

Corollary 1: Let T» be a given positive real scalar. The
symmetric positive matrices Pj, P, the matrices H, L, and
the scalar o satisfy (14) if and only if there exist matrices
X1,Y1,X3,Y3 € Rnxn’ X9, Y, € Rnxq7 X4,Ys, X6, Ys €
RI*™ Xz, Ys € R?%? such that

He(S¥) S + P <0
[ N1+HQ(S§) (18)
He(SY) Sy + Pr, <0
° N2 + He(S}j)
where
P= diag{Pl, P2} PTQ = diag{Pla P2€UT2} 19)

Ny = diag{0, -0 Py} N, = diag{0, —0e”"2P,}

where
gX _ X1+ M'Xs —-Xo4+ MXs
L S ¢ —Xs
X _ X{(A—LM)—- X HM — X3+ M'Xe XiL+X,H
2= X4(A—LM) - XtHM — X XiL+ XLH
gX _ [(A—LM)X3—MHXs 0
5 L'X3 + H'Xg 0
qY — [—Yi + MYy —Yo+ M'Ys
e | -Yy -Ys
gy _ (Y/(A—LM)-Y/HM —-Ys+M'Ys Y/L+Y/H
27 YJ(A—LM)-Y{HM —Y;s YJL+Y{H
gy _ [(A—LM)Ys - M'HY; 0
3= L'Ys+ H'Ys ol"
(20)
O

The above result yields an equivalent condition to (14)
that can be exploited to derive an efficient design procedure
for the proposed observer. To this end, one needs to suitably
manipulate (18) to obtain conditions that are linear in the
decision variables. Specifically, the two results given in the
next sections provide two possible approaches to derive LMI-
based design procedures for the proposed observer.



B.1): Zero order sample-and-hold intersample scheme

Proposition 2: Let Ty be a given positive real scalar. If
there exist two symmetric positive definite matrices P; €
R™*" P, € R%9, a positive real scalar o, matrices X €
R™ " X, Yy, Xg,Ys € R X5,Y; € R1*9 J € R**4
such that

He(Ql) QZ + P < 0
i He(Q3) + Ny 21
He(Ri) Re+Pr, ] _
i He(Q3) + N2
where 1757 ]5T27N1, Ny are defined in (19) and
Q1 = - X +M'X, M'Xs R |[~X+MYe MY
e | —Xa —X5 | T =Y, -Y5
Qs = [~ X4+ MXe+X'A—JIM J
> —Xs 0
Ry — [~ X+ MYs +X'A—JM J
2 = I _Y'G 0
[AX —M'J 0
Q3 = J/ 0:|

then L = X’~1J and H = 0 are a solution to Problem 1. O]
It should be noticed that the above design procedure leads
to the well-known zero-order sample-and-hold scheme.
B.2): A novel observer scheme
Proposition 3: Let T be a given positive real scalar. If
there exist two symmetric positive definite matrices P; €
R™*" P, € R?%49, a positive real scalar o, matrices X €
R™*" U W € R?*4, J € R"*? such that

He(Z,) Zy+ P -0
o He(Z3) + Ny 22)
He(Zy)  Zs+ Pr, “0
[ ] He(Zg) —+ N2
where ]5, 15T2,N1, Ny are defined in (19) and
g [-X U], _[-X+XA-JM J
=10 Ul 2= —WM w
AX-MJ 0
Zs = { J’ 0]
then L = X'~'J and H = U'~'W are solution to Problem
1. O

Remark 3: The above result gives rise to a novel ob-
server scheme. Indeed, as a difference to Proposition 1 and
Proposition 2, Proposition 3 does not impose any structural
constraint on the gain H. This is a worthwhile novelty intro-
duced by our approach with respect to classical approaches
as [13], [21] and alike, where the choice of the gain H is a
priori constrained. Thus, in general, the use of Proposition 3
may lead to observation schemes that are not encompassed
either by Proposition 1 and Proposition 2 or by existing
approaches.

Remark 4: The derivation of Proposition 2 and Propo-
sition 3 consists of some particular choices of the slack
variables X and Y introduced in Corollary 1. Therefore,
when one is interested in enlarging as much as possible
the maximum allowable transmission interval 75, the use of

such results as a design tool may introduce conservatism.
To overcome this problem, one can envision a two-stage
procedure. Indeed, whenever L, H, o and T, are fixed,
condition (13) is linear in the decision variables. Thus, once
the observer has been designed via either Proposition 2 or
Proposition 3, by testing the feasibility of (13) with respect
to P1, P, over a selected grid for the variables o and 75, one
may enable to enlarge the maximum allowable transmission
interval T5.

Design  # scalar variables

Prop. 1 (n+1)/2n+nqg+q(qg+1)/2

Prop. 2 (n+1)/2n+q(q+1)/2 4+ n® 4 4qn + 2¢*> + nq
Prop.3 (n+1)/2n+q(q+1)/2+n+2¢> +nq

TABLE I: Number number of scalar variables entailed by
the different designs.

Remark 5: The proposed design procedures entail a differ-
ent number of scalar variables in the associated LMIs. Table I
reports such a number for each of the proposed designs. As
it appears from the table, the LMIs related to Proposition 2
and Proposition 3, due to the introduction of additional slack
variables, entail a greater number of scalar variables with
respect to the LMIs issued from Proposition 1. Hence, the
designs based on Proposition 2 and on Proposition 3 are in
general more complex from a numerical standpoint.

V. NUMERICAL EXAMPLES

Example 1: In this first example, we want to show the
improvement provided by our methodology with respect to
existing results. Specifically, concerning the predictor-based
scheme in Section I'V-A, consider the example in [12] (where
the same observer is considered), which is defined by the
following data: A = [ % §], M = [10],L' = [40]. We
want to exploit Theorem 1 to determine an estimate of the
maximum allowable transmission time 75 for the design
proposed in [12]. In particular, it turns out that the conditions
of Theorem 1 are feasible for 75 up to 0.31. This bound on
the maximum allowable transmission interval is about 3.48
times less conservative than the one in [12]. Furthermore,
via Proposition 1, one can also design a new gain Ly
to tentatively enlarge the maximum allowable transmission
interval. Specifically, by designing the observer gain via
Proposition 1, 75 can be increased up to 0.41. The observer
gain obtained for 7o = 0.41 is L) = [0.3648 —0.4655].

Example 2: Consider the model of the longitudinal dy-
namics of the F8 aircraft in [11], whose state-space model
is given by

—0.8 —0.006 —12 0
0 -0.014 —16.6 —32.2

1 —107% 15 o |
10 o o

y=[88 2 1]

T =
The two outputs are, respectively, the pitch angle and the
flight path angle.

In Table II, we report, for each design methodology, the
values of the maximum 7, for which conditions (13) are
feasible along with the corresponding value of o, and the
two designed gains L and H. Concerning the design based



on Proposition 2 and Proposition 3, as mentioned in Remark
4, to enlarge as much as possible the maximum transmission
interval T5 allowable, after a first design step, we performed a
further analysis stage via Theorem 1. Concerning the design

Design o Ty L H
0.24 0.33
Prop.1 05 5 [—&go 6?1222} -ML
24 1
—0.25 0.31
Prop.2 0.7 34 | o4 0252
0.1 0.15
—0.049 0.098 0293 0.001
Prop.3 0.7 5.6 {5%61'; 6'%7151} (G0 209

0.16  0.19

TABLE II: Values of 7, and ¢ and the designed observer
gains L and H for the three design procedures.

based on Proposition 2, it is worthwhile to notice that, the
design conditions for the same observer scheme given in [21]
(when they are specialized to the linear systems case) are
feasible for T5 up to 0.4. Namely, the proposed design, in this
specific case, enables to enlarge the maximum transmission
interval allowable 8.5 times with respect to [21]. Moreover,
it turns out that the design procedure 3, in this specific case,
provides the largest value for 75. Furthermore, it is interest-
ing to notice that, in this specific case, the designed matrix H
is Hurwitz. Therefore, in between consecutive transmissions
the last measured value of the output estimation error is
exponentially disregarded; in other words, H introduces a
forgetting effect.

VI. CONCLUSION

Building from the general ideas in [13], this paper pro-
posed a novel methodology to design, via linear matrix
inequalities, an observer with intersample injection to ex-
ponentially estimate the state of a continuous-time linear
system in the presence of sporadically available measure-
ments. Specifically, pursuing a unified approach, we provided
three design methodologies to design the observer, which are
computationally efficient, i.e., the design algorithm entails a
time of computation which is polynomial with respect to the
dimension of the data. Two of them lead back respectively
to the observer scheme proposed in [13] and to the zero
order sample-and-hold proposed in [21], while the remaining
leads to a completely novel scheme. Notice that, although
we recover some existing schemes, the design procedures
we propose are novel and, in some cases, outperform the
corresponding existing design techniques.

The results presented in this paper seem to be promising
and the framework adopted quite flexible to envision inter-
esting extensions of the results presented here. Among them,
we mention the extension to the case of multi-output systems
with asynchronous sampling, which is currently part of our
work.
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