
Autonomous Waypoint Transitioning and Loitering for Unmanned
Aerial Vehicles via Hybrid Control

Dean W. Smith III∗ and Ricardo G. Sanfelice†

We consider the problem of autonomously controlling a fixed-wing aerial vehicle to visit a neighborhood
of a pre-defined waypoint, and when nearby it, loiter around it. To solve this problem, we propose a hybrid
feedback control strategy that unites two state-feedback controllers: a global controller capable of steering or
transitioning the vehicle to nearby the waypoint and a local controller capable of steering the vehicle about a
loitering radius. The aerial vehicle is modeled on a level flight plane with system performance characterized
in terms of the aerodynamic, propulsion, and mass properties. Thrust and bank angle are the control inputs.
Asymptotic stability properties of the individual control algorithms, which are designed using backstepping, as
well as of the closed-loop system, which includes a hybrid algorithm uniting the two controllers, are established.
In particular, for this application of hybrid feedback control, Lyapunov functions and hybrid systems theory
are employed to establish stability properties of the set of points defining loitering. The analytical results are
confirmed numerically by simulations.

Nomenclature

|x| Euclidean norm of x
A Set to be stabilized
c level set, constant
C Hybrid system flow set
CD Drag coefficient
CD0 Zero lift drag coefficient
CL Lift coefficient
D Hybrid system jump set
D Drag, N
e Error function
f Hybrid system flow map
G Hybrid system jump map
g Gravity, m/s2

h Altitude, m
H Hybrid system
k Controller gain
K Drag Polar Coefficient
K∞ Family of continuous functions that

are zero at zero, strictly increasing,
and unbounded

L Lift, N
p Local switching variable
q Controller index
r Turn radius, m

R Magnitude of position vector, m
R Real numbers
s dummy variable
Sref Wing reference area m2

T Thrust, N
U Domain of hybrid system
v Airspeed, m/s
V Lyapunov function
W Weight, N
x x position, m
y y position, m
z State vector of hybrid system
α class κ∞ function
κ Controller
ρ Air density, kg/m3

µ Local controller rotation hysteresis
Ψ Heading, deg
Φ Bank angle

Subscripts
0 Initial Condition
b Body Frame
C Commanded

I. Introduction

Autonomous navigation of unmanned aerial vehicles (UAVs) require algorithms that are capable of accurately
controlling the motion of the vehicle with only limited control authority. Recent results in the literature demonstrate
that feedback control algorithms can be designed to steer UAVs along different paths by “reshaping” the vector fields
that describe the motion of the vehicle under the effect of a guidance law defined by a particular set of differential
equations1,2. Paths defined by a closed curve are of most interest as they require the control algorithms to maintain
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the vehicle aloft along a recurrent path (not necessarily circular nor periodic), which is a key building block in almost
every UAV mission as it can be efficiently employed as an intermediate “fly stage” to transition to a new location,
perhaps by following a pre-planned straight or curved path3.

An alternative to the vector field shaping technique mentioned above is to rely on multiple controllers, each of
them designed to accomplish a different task, and appropriately switch among them. In such approach, a supervisory
control algorithm monitors the state of the vehicle and, based on the given mission, determines which controller should
be applied at each instant. The switching logic should be capable of “piecing together” the individual controllers to
achieve the desired vehicle motion. While the approach allows independent design of the individual controllers, the
emergence of discrete (or discontinuous) dynamics is unavoidable, which may make the analysis more involved (e.g.,
see the example in4, which shows that two controllers – a local and a global continuous-time controller – cannot
be united using a continuous-time supervisor). Fortunately, recent advances in the literature of hybrid systems have
made systematic design of control algorithms piecing together individual controllers possible5. Interestingly, the
design of such systems can be performed to yield a closed-loop system that is robust with respect to measurement
noise, actuator errors, and external disturbances; see, e.g.,6. Due to these unique capabilities, the said hybrid systems
approach to the combination of multiple controllers has been succesfully employed in different applications, such as
the stabilization of an inverted pendulum5 and of the position and orientation of a mobile robot7. Furthermore, the
technique has been extended in8 to allow for the combination of multi-objective controllers, including state-feedback
laws as well as open-loop control laws. In the context of performance, a trajectory-based approach was also employed
in9 to generate dwell-time and hysteresis-based control strategies that guarantee an input-output stability property
characterizing closed-loop system performance.

In this paper, we employ the switching/hybrid approach outlined above to provide a solution to the problem of
autonomously controlling a fixed wing aerial vehicle to visit a neighborhood of a pre-defined waypoint, and when
nearby it, loiter around it. More precisely, we propose a hybrid feedback control strategy that unites two state-feedback
controllers: a global controller capable of steering or transitioning the vehicle to nearby the waypoint and a local
controller capable of steering the vehicle about a loitering radius. Following10, the aerial vehicle is modeled on a level
flight plane with system performance characterized in terms of the aerodynamic, propulsion, and mass properties. The
resulting model is nonlinear and with thrust and bank angle being its control inputs. This nonlinear UAV bank-to-
turn model partially resembles a ship course controller model11, where heading is controlled indirectly through the
heading rate. For this vehicle model and employing Lyapunov stability theory, we established the asymptotic stability
properties of the individual control algorithms designed. Both the local and global controllers are designed using the
backstepping control design technique12,13.

With the region of attraction induced by each controller being characterized, the closed-loop system incorporating
a hybrid algorithm uniting the individual controllers is shown to be asymptotically stable using stability tools for
hybrid systems. Finally, numerical results confirm the analytical findings.

The remainder of the paper is organized as follows. Section 2 presents a short description of the framework used
for analysis including nomenclature for the hybrid system. The main result follows in Section 3. This section starts
by introducing the problem to be solved, the proposed formulation of a solution, and the required assumptions. In
addition to presenting a design procedure for the united control law, it establishes a robust stability property of the
closed-loop system. In Section 4, the proposed control law is demonstrated in several simulations.

II. Problem Formulation

We consider the problem of stabilizing an aerial vehicle to a loiter around a given waypoint with specified velocity.
Figure 1 depicts the scenario of problem to be solved, where v is the airspeed of the vehicle, (x, y) ∈ R2, 2s describe
its position, and Ψ its heading angle. In this way, the vehicles velocity and heading angle are related by

v =
√
ẋ2 + ẏ2, Ψ = ∠

([
ẋ
ẏ

])
, (1)

where
∠ : R2, 2s \ {0}⇒ [−π, π] (2)

defines the angle, positive in a clockwise direction, between the vector input and the positive vertical axis (x). Without
loss of generality, the waypoint is assumed to be at the origin of the position coordinates (x, y) and the desired radius
for loitering is RC . Note that ∠ is undefined when x and y are 0. The forces on the UAV are described in the body
frame (xb, yb) and can be transformed into the plane of the absolute frame (x, y) using the heading angle Ψ, via[

cos Ψ − sin Ψ
sin Ψ cos Ψ

]
(3)

Several assumptions are made in order to focus the analysis for the scope of this paper. These assumptions are
listed below:
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• UAV modeled as a point mass;

• Level flight in the (x, y) plane;

• Gravitational acceleration is constant;

• Aerodynamic properties modeled as a simple drag polar with a maximum lift coefficient;

• Propulsion performance is limited by a maximum thrust;

• Mass is constant (no fuel burn);

• Vehicle ”banks” to turn and the bank angle Φ satisfies Φ ∈
(
−π2 ,

π
2

)
.

These assumptions are typical in the conceptual design phase of an aircraft where system level aerodynamic and
propulsion performance are balanced to achieve mission objectives.

Figure 1. Waypoint Geometry.

A. Free Body Diagram

The equations of motion for the UAV are determined by using first principles. The free body diagram for the aircraft
is shown in Fig. 2.

Figure 2. Level Flight Free Body Diagram.
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Summing the forces in the body axes shown in Fig. 2 gives the equations∑
Fxb

= T −D, (4)∑
Fyb = L sin Φ, (5)∑

Fh = W − L cos Φ, (6)

where T is thrust, D is drag, L is lift, W is weight, and Φ is bank angle. Since the problem is simplified to only
consider motion in the plane, the sum of forces in the vertical direction in Eq. (6) are assumed to be equal to zero,
which defines the lift required for the UAV to maintain altitude and is given by∑

Fh = 0 ⇒ L =
W

cos Φ
. (7)

B. Aerodynamic Model

Aerodynamic forces such as lift and drag are given by

L(v,Φ) = CL(v,Φ)Sref
ρv2

2
, D(v,Φ) = CD(v,Φ)Sref

ρv2

2
, (8)

where lift and drag are expressed as coefficients (as defined in the nomenclature) and depend explicitly on the values
of v and Φ. Substituting Eq. (8) into Eq. (7) allows one to solve for the required lift coefficient to balance the weight
of the UAV, which is given by

CL(v,Φ) =
2W

Srefρv2 cos Φ
. (9)

The drag coefficient (CD) can be expanded into a zero lift drag component (CD0) and an induced drag component as
follows:

CD(v,Φ) = CD0 +KCL(v,Φ)
2
. (10)

Eq. (10) is known as a drag polar.14

C. State and Control Boundaries

The minimum speed and maximum bank angle of the UAV are limited by the maximum lift coefficientCLmax. Explicit
expressions for the minimum speed and maximum bank angle of a UAV obtained from Eq. (10) are given as follows:

vmin (Φ) =

√
2W

SrefρCLmax cos Φ
∈

[√
2W

SrefρCLmax
,∞

)
(11)

Φmax = cos−1

(
2W

Srefρv2CLmax

)
(12)

The maximum speed of the UAV is defined by the speed at which drag equals the maximum thrust (Tmax) of the UAV.
Starting by setting the max thrust Tmax equal to drag and substituting in the expressions for drag given in Eq. (10) and
the expression for required lift given in Eq. (9) gives an algebraic expression involving velocity. Solving for velocity
gives the maximum velocity

vmax =

√
Tmax +

√
Tmax

2 − 16CD0W 2K

ρCD0
, (13)

which occurs at a bank angle of zero.

D. Hybrid System Model

As outlined in Section I, our solution to the nonlinear control problem stated above consists of a hybrid feedback
control strategy that unites two state-feedback controllers: a global controller capable of steering or transitioning the
vehicle to nearby the waypoint and a local controller capable of steering the vehicle about a loitering radius. In this
way, the closed-loop system resulting when applying our proposed hybrid control algorithm is a hybrid dynamical
system. The state, which we denote by z, of the proposed aerial vehicle controlled by a hybrid control algorithm is
given by

z = [x y v Ψ q]> ∈ U := R× R× [vmin, vmax]× [−π, π]× {1, 2} (14)
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where q is a switching variable that describes which controller is being utilized. A value q = 2 corresponds to the
global (transit) controller and q = 1 corresponds to the local (loiter) controller being in the loop. The global controller
will be designed to guide the vehicle at speed vC2

to nearby the waypoint while the local controller will be designed to
maneuver at a desired speed vC1

about the loiter circle of radius RC centered around the waypoint; see Figure 1. The
parameter RC defines the desired loiter circle radius used in the feedback law. The velocity is limited by the minimum
and maximum steady level speed of the UAV (vmin and vmax). For each q ∈ {1, 2}, the UAV’s thrust (Tq) and bank
angle (Φq) define the control inputs of the UAV and are constrained as follows:

(Tq,Φq) ∈ [Tmin, Tmax]× [−Φmax,Φmax]. (15)

The switching between two controllers allows the dynamics of the UAV to be modeled as a hybrid system. The switch
of controllers is a discrete event, while the motion of the UAV is a continuous flow of real time. The hybrid framework
we employ in this work is presented in5, where a generic hybrid system,H, is given by four objects (C,f,D,G) defining
its data:

• Flow map: a single-valued map f defining the flows (or continuous evolution) ofH;

• Flow set: a set C specifying the points where flows are possible;

• Jump map: a set valued map G defining the jumps (or discrete evolution) ofH;

• Jump set: a set D specifying the points where flows are possible.

Then, for the control problem in this paper, a hybrid system H = (C, f,D, G) representing the closed-loop system
from controlling the UAV using the transit and loiter controllers has state space U and can be written in the compact
form

H : z ∈ U
{
ż = f(z, κ(z)) z ∈ C
z+ = G(z) z ∈ D , (16)

where κ is the feedback law applied to the control input of the UAV, which is given by

κ(z) = κq(z) =

{
κ1(x, y, v,Ψ) if q = 1 (local/loiter)
κ2(x, y, v,Ψ) if q = 2 (global/transit). (17)

The flow and jump map for the UAV hybrid system are given by

f(z, (Tq,Φq)) =


v cos Ψ
v sin Ψ

Tq−D(v,Φq)
m

g
v tan Φq

0

 (18)

G(z) =


x
y
v
Ψ

3− q

 (19)

The flow map defines a differential equation that corresponds to the equations of motion for the UAV in the plane under
the effect of the feedback law, as discussed previously, and the jump map toggles which controller is commanding
thrust and bank angle. The events triggering jumps are determined by the following choice of the flow and jump sets:

C1 := {z ∈ U : q = 1, |R(x, y)−RC | ≤ d,R(x, y) 6= 0}

C2 :=

{
z ∈ U : q = 2,

1

2

(
(R(x, y)−RC)2 + (v − vC1)2 + (Ψ−ΨC1(x, y))2

)
≥ c,R(x, y) 6= 0

}
D1 := {z ∈ U : q = 1, |R(x, y)−RC | ≥ d,R(x, y) 6= 0}

D2 :=

{
z ∈ U : q = 2,

1

2

(
(R(x, y)−RC)2 + (v − vC1)2 + (Ψ−ΨC1(x, y))2

)
≤ c,R(x, y) 6= 0

}
(20)

where R(x, y) =
√
x2 + y2 and ‡

c >
1

2

(
π2 + (vmax − vmin)2

)
(21)

d >
√

2c. (22)

‡The flow and jump sets can be either a disk (c ≥ RC) or a donut (c < RC) depending on the values selected for c and d.
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The flow and jump sets were selected to ensure stability of the hybrid controller. This was done by ensuring that
the boundary for the global jump set (D1) is contained in a sub-level set of the basin of attraction induced by the
local controller. The details of this selection are discussed in the uniting global and local controller section, which is
Section III.C. For the special case of R = 0, the hybrid system is undefined. However, solutions cannot remain at
R = 0 because of the lower bound on velocity given in Eq. (25).

III. Design of Hybrid Controller for Transit and Loitering

The transit and loiter control laws for the UAV have different objectives. The transit control law will command a
thrust to approach the loiter circle at transit velocity, while commanding a heading to point the UAV’s velocity vector
towards the loiter circle. In contrast, the loiter control law will command thrust (less than the maximum) to achieve
the desired loiter velocity, while gradually commanding a heading to make the velocity vector of the UAV tangent to
the desired loiter circle. Fig. 3 shows a block diagram of the closed-loop system where a hybrid controller performs
the selection of transit and loiter mode.

Figure 3. Control System Block Diagram.

The supervisory logic within the hybrid controller switches between the controllers to steer the UAV to the loiter
circle and then loiter about it. The objective of the hybrid controller in loiter mode is to stabilize the UAV into a loiter
pattern defined by a constant radius RC and a constant velocity vC , which implicitly defines a desired heading ΨC .
The target set of points for the state components of the UAV (x, y, v,Ψ) and of the controller (q) is given by

A = {(x, y, v,Ψ, q) ∈ U : R(x, y) = RC , v = vCq
,Ψ = ΨCq

, q = 1}. (23)

Namely, the goal is to steerR toRC at speed vCq
with q = 1. For both the local and global controller, an error quantity

for position, velocity, and heading angle will be defined. For each q ∈ {1, 2} the error is given by

eq =

 e1,q

e2,q

e3,q

 :=

 R(x, y)−RC
v − vCq

Ψ−ΨCq

 . (24)

Asymptotic stability of the set A will be proven using the backstepping method13 by first showing that the system
can be stabilized by controlling Ψ directly. Section A covers the proof of stability for the loiter and transit controllers
individually through Ψ actuation. Section B applies the backstepping method to the results from Section A to show that
both the loiter and transit controllers can be stabilized individually with actuation through Φ. Section C combines the
transit and loiter controllers from Section B to create a united hybrid controller that maintains the stability properties
of the individual controllers.

A. Control design for the case of actuation through (T,Ψ)

In this case, the state of interest becomes

z̃ = [x y v q]> ∈ Ũ := R× R× [vmin, vmax]× {1, 2} (25)

and the error system is defined as

ẽq =

[
ẽ1,q

ẽ2,q

]
:=

[
R(x, y)−RC
v − vCq

]
. (26)
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The state error equation has continuous dynamics given by

˙̃eq =

[
x

R(x,y)v cos Ψq + y
R(x,y)v sin Ψq

Tq−D(v)
m

]
(27)

where the control input is defined as (Tq,Ψq). Note that in this case, drag is only a function of velocity (i.e.,D(v))
instead of velocity and bank angle. A candidate Lyapunov function is given by

Vq(ẽq) =
1

2
ẽ>q ẽq. (28)

Note that the target set of points from ẽq to stabilize is given by

Ã = {(x, y, v) : R(x, y) = RC , v = vCq
, q = 1}, (29)

and the flow and jump sets are defined as

C̃1 :=
{
z̃ ∈ Ũ : q = 1, |R(x, y)−RC | ≤ d̃, R 6= 0

}
C̃2 :=

{
z̃ ∈ Ũ : q = 2,

1

2

(
(R(x, y)−RC)2 + (v − vC1)2

)
≥ c̃, R 6= 0

}
D̃1 :=

{
z̃ ∈ Ũ : q = 1, |R(x, y)−RC | ≥ d̃, R 6= 0

}
D̃2 :=

{
z̃ ∈ Ũ : q = 2,

1

2

(
(R(x, y)−RC)2 + (v − vC1)2

)
≤ c̃, R 6= 0

}
, (30)

where

c̃ > (vmax − vmin)2 (31)

d̃ >
√

2c̃. (32)

The Lyapunov function given in Eq. (28) is lower and upper bounded by K∞ functions defined as

α1(s) = α2(s) =
1

2
s2 for each s ≥ 0. (33)

Using Eq. (27), the variation of Vq with time can be expressed as〈
∇Vq(ẽq),

[
x

R(x,y)v cos Ψq + y
R(x,y)v sin Ψq

Tq−D(v)
m

]〉
= Ṙ(R(x, y)−RC) +

Tq −D(v)

m
(v − vCq ). (34)

where Ṙ is the first entry of Eq. (27). The thrust control input affects the second term in Eq. (34). To ensure that this
term is negative, a simple control law is one that guarantees that the thrust is larger than the drag if the current speed is
smaller than the commanded speed, that is, v− vCq

< 0, or smaller than the drag if the current speed is larger than the
current commanded speed, that is, v − vCq

> 0. When the desired speed is achieved, that is, v = vCq
, the thrust can

be set to be equal to the drag to maintain this speed. These properties are satisfied by proportional control law, that is,

Tq = D(v)− kTq
(v − vCq

), (35)

where kTq
> 0. It should be noted that though Eq. (35) applies to both the global and local regions, each region may

have a different target velocity (vCq), effectively creating two different controllers. Plugging the expression for the
commanded thrust in Eq. (35) into Eq. (34) leads to〈

∇Vq(ẽq),

[
x

R(x,y)v cos Ψq + y
R(x,y)v sin Ψq

Tq−D(v)
m

]〉
= Ṙ(R(x, y)−RC)−

kTq
(v − vCq

)2

m
. (36)

1. Global/Transit Controller (q=2)

The objective of the transit (global) controller (q = 2) is to steer the UAV from every point in C̃2 to a point in (D̃2)
in finite time, so as to switch to the loiter (local) controller. In terms of the state variables, this means pointing the
velocity vector of the UAV towards the loiter radius. The value of the commanded heading in the global region (C̃2) is
defined by the set-valued control law defined as

ΨC2(x, y) = ∠

([
x̄
ȳ

])
∀(x, y) ∈ R2 such that z̃ ∈ C̃2 (37)
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Figure 4. Quiver Plot of Global Controller Commanded Heading

where§

x̄ = sign(RC −R(x, y))x

ȳ = sign(RC −R(x, y))y

Note that the global heading controller is not defined on the loiter circle. This is because the local controller will
be used in that region. Fig. 4 shows a quiver plot of the global controller heading with respect to a generic loiter
circle. The direction of the arrows in the plot indicate the heading. The global controller commands a heading that is
orthogonal and pointing towards the loiter circle.

Proposition 1 For every function D, constant m > 0, velocity set-point vC2 ∈ [vmin, vmax], loiter radius RC > 0,
there exists γ2 ∈ K∞ such that the closed-loop system resulting from controlling the error system

˙̃e2 =

[
x

R(x,y)v cos Ψ2 + y
R(x,y)v sin Ψ2

T2−D(v)
m

]
,

with the controller [
T2

Ψ2

]
= κ̃2(x, y, v) :=

[
D(v)− kT2(v − vC2)
ΨC2(x, y)

]
, (38)

where kT2 > 0 and ΨC2 is given in Eq. (37), is such that

1.
〈
∇V2(ẽ2), ˙̃e2

〉
≤ −γ2(|ẽ2|) for all ẽ2 ∈ R2 such that [x y v 2]> ∈ C̃2.

2. |Ṙ(x, y)| = v for all [x y v 2]> ∈ C̃2.

In particular, an appropriate choice for γ2 is

γ2(s) = min

{
kT2s

2

2m
,
vmins√

2

}
∀s ≥ 0.

2. Local Controller

The objective of the local controller (q = 1) is to steer the state of the UAV to the desired loiter circle at the desired
velocity. For the local controller, the set point velocity (vC2) used in Eq. (35) to determine the thrust input is the
desired loiter speed. The expression for the local controller commanded heading shown in Eq. (40) is inspired by the
control law in1. We incorporate a discrete dynamic parameter p ∈ {−1, 1} designating the direction of rotation about

§The sign function returns +1 if the input is positive, -1 if the input is negative, and 0 if the input is 0.
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the loiter circle. ¶ Then, the control law is defined by

ΨC1
(x, y) =∠

([
y(RC

2 −R(x, y)2) + p2xR(x, y)RC
x(RC

2 −R(x, y)2)− p2yR(x, y)RC

])
∀(x, y) ∈ R2

such that z̃ ∈ C̃1 (40)

which is well-defined and single valued on C̃1. The local controller commands a heading that gradually approaches

Figure 5. Quiver plot of local controller commanded heading (CW for p=1 and CCW for p=-1).

tangency with the loiter circle and settles on an equilibrium that can rotate clockwise or counter-clockwise depending
on p. Selecting p = −1 gives a counter-clockwise rotation, and selecting p = 1 gives a clockwise rotation. Fig. 5
shows a quiver plot of the local controller heading with respect to a generic loiter circle. The direction of the arrows
in the plot indicate the heading.

Proposition 2 For every constant m > 0, velocity set-point vC1
∈ [vmin, vmax], loiter radius RC > 0, and parameter

p ∈ {−1, 1}, there exists γ1 ∈ K∞ such that the closed-loop system resulting from controlling the error system

˙̃e1 =

[
x

R(x,y)v cos Ψ1 + y
R(x,y)v sin Ψ1

T1−D(v)
m

]
,

with the controller [
T1

Ψ1

]
= κ̃1(x, y, v) :=

[
D(v)− kT1

(v − vC1
)

ΨC1
(x, y)

]
, (41)

where kT1
> 0 and ΨC1

is given in Eq. (40), satisfies〈
∇V1(ẽ1), ˙̃e1

〉
≤ −γ1(|ẽ1|) for all ẽ1 ∈ R2 such that [x y v 1]> ∈ C̃1.

In particular, an appropriate choice for γ1 is

γ1(s) = min

{
vminRC

(RC + d̃)2 +R2
C

,
kT1

m

}
s2 ∀ s ≥ 0,

Then, the origin of the local error coordinates (ẽ1) for the closed-loop system implementing the local controller on
the flow set (C̃1) is asymptotically stable. Since the origin of ẽ1 corresponds to the points (x, y) in the loiter circle and
loiter velocity equal to vCq

, this also implies that the heading of the UAV on the loiter circle is tangent to the loiter
circle as illustrated in Fig. 5.

The following result establishes that, for each q ∈ {1, 2}, the constraint [Tmin, Tmax] is forward invariant under
the feedback laws in (38) and (41) assigning T .
¶This parameter could become a state variable with discrete dynamics

p+ = −p when


p = 1 and 1

R(x,y)

[
x
y

]
×
[

cos Ψ
sin Ψ

]
≤ −µ

p = −1 and 1
R(x,y)

[
x
y

]
×
[

cos Ψ
sin Ψ

]
≥ µ

(39)

and continuous dynamics ṗ = 0 where µ ∈ [0, 1] is a constant parameter that defines hysteresis for switching the value of p. The local controller
is hybrid because of the switching of p. Switching is based on the cross product of unit position and velocity vectors as shown in Eq. (39). The
selection of rotation direction in Eq. (39) utilizes the pre-existing rotation of the UAV around the loiter point based on the cross-product of the
UAV’s initial position and velocity vectors.
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Lemma 1 Under the effect of (35), ẽ2,q evolves according to

˙̃e2,q = −
kTq

m
ẽ2,q

and, since
kTq

m > 0, we have that ẽ2,q = 0 is globally asymptotically stable. Furthermore, every solution to this
subsystem with Tq(0) ∈ [Tmin, Tmax] is such that

Tq(t) ∈ [Tmin, Tmax] ∀t ≥ 0. (42)

Remark The stability property of the origin (for ẽ2,q) follows directly from the resulting dynamics of ẽ2,q , which are
obtained by plugging (35) into ˙̃e2,q . In fact, under such feedback,

ẽ2,q(t) = ẽ2,q(0)e−
kTq
m t ∀t ≥ 0 (43)

for any initial condition ẽ2,q(0). The property in (42) is a consequence of the resulting form of T in (35), since the
substitution of (43) into (35) gives

T = D(v)− ẽ2,q(0)e−
kTq
m t (44)

where if Tq(0) ∈ [Tmin, Tmax], then Tq(t) ∈ [Tmin, Tmax] ∀t ≥ 0.

B. Control design for the case of actuation through (T,Φ) via backstepping

The results in the previous section establish properties of the UAV when Ψ is a control input. However, for the hybrid
system with flow map given in Eq. (18), Ψ is a function of the control input Φ. Using the method of backstepping,
asymptotic stability will be proved for the hybrid system with Φ as a control input. Recall the error system given in
Eq. (27) and add and subtract the desired heading ΨCq from the heading state Ψ

ėq =

[
x

R(x,y)v cos
(
Ψ−ΨCq + ΨCq

)
+ y

R(x,y)v sin
(
Ψ−ΨCq + ΨCq

)
Tq−D(v,Φ)

m

]
.

Now recall e3,q from Eq. (24) as the difference between the current heading Ψ and the commanded heading ΨCq and
evaluate its derivative, that is,

e3,q = Ψ−ΨCq

ė3,q = Ψ̇−
〈
∇zΨCq

(z), f(z, κ(z))
〉
,

where, according to Eq. (18),
Ψ̇ =

g

v
tan Φq.

The dynamics of eq are then

ėq =

 x
R(x,y)v cos

(
e3,q + ΨCq

)
+ y

R(x,y)v sin
(
e3,q + ΨCq

)
Tq−D(v,Φ)

m
g
v tan Φq −

〈
∇zΨCq (z), f(z, κ(z))

〉
 . (45)

Using

Vq(eq) = Vq(ẽq) +
1

2
e3,q

2

for a Lyapunov function candidate, the derivative can be expressed as

〈∇Vq(eq), ėq〉 =
( x
R
v cos

(
e3,q + ΨCq

)
+
y

R
v sin

(
e3,q + ΨCq

))
(R−RC)−

kTq
(v − vCq

)2

m

+ e3,q

(g
v

tan Φq −
〈
∇zΨCq (z), f(z, κ(z))

〉)
〈∇Vq(eq), ėq〉 =

(
x

R(x, y)
v
(
cos e3,q cos ΨCq

− sin e3,q sin ΨCq

)
+

y

R(x, y)
v
(
sin e3,q cos ΨCq

+ cos e3,q sin ΨCq

))
× (R(x, y)−RC)−

kTq (v − vCq )2

m
+ e3,q

(g
v

tan Φq −
〈
∇zΨCq

(z), f(z, κ(z))
〉)

(46)

From here, the control input Φq can be formulated for the specific global and local controllers to make the origin
asymptotically stable for the system in Eq. (45) on the set U \ {z : R(x, y) = 0}.
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1. Global Controller Backstepping

The global controller is designed to make the origin of the error system eq asymptotically stable. This is achieved by
inverting the tangent function containing Φ2, the control input, and compensating for positive terms that come when
differentiating the Lyapunov function. This results in the controller

ΦC2
(x, y, v,Ψ, e3,2)

= tan−1

(
−kΦ2(x, y, v, e3,2)ve3,2

g
+
v

g
〈∇zΨC2(z), f(z, κ2(x, y, v,Ψ))〉

)
= tan−1

(
−kΦ2

(x, y, v, e3,2)ve3,2

g
− yv2

gR(x, y)2
cos Ψ +

xv2

gR(x, y)2
sin Ψ

)
, (47)

where the function kΦ2
is of the form

kΦ2
(x, y, v, e3,2) = ν + ξ(e3,2)v|R(x, y)−RC |, (48)

ν > 0, and s 7→ ξ(s) such that for each s ∈ R

ξ(s) >
1

2
if |s| ≥ π

2
and ξ(s) ≥ 0 if |s| < π

2
. (49)

With the proposed definition of the function ξ we have that there exists β ∈ (0, 1) s.t. cos s + ξs2 ≥ β. Making the
gain kΦ2 a function of the system state allows for additional compensation for terms that arise when differentiating
the Lyapunov function. Different values of ν and ξ can be selected, still satisfying the constraints in Eq. (49), as e3,2

approaches zero, to prevent chattering of the controller commands.

Proposition 3 For every constant m > 0, velocity set-point vC2
∈ [vmin, vmax], and loiter radius RC > 0, there

exists γ2 ∈ K∞ such that the closed-loop system resulting from controlling the error system

ė2 =

 x
R(x,y)v cos (e3,2 + ΨC2

) + y
R(x,y)v sin (e3,2 + ΨC2

)
T2−D(v,Φ)

m
g
v tan Φ2 − 〈∇zΨC2(z), f(z, κ2(z))〉

 , (50)

with the controller [
T2

Φ2

]
= κ2(x, y, v,Ψ,ΨC2

) :=

[
D(v,Φ)− kT2

(v − vC2
)

ΦC2
(x, y, v,Ψ, e3,2)

]
, (51)

where kT2
> 0, ΨC2

is given in Eq. (37), and ΦC2
is given in Eq. (47), satisfies

1. 〈∇V2(e2), ė2〉 ≤ −γ2(|e2|) for all e2 ∈ R3 such that [x y v Ψ]> ∈ C2
In particular, an appropriate choice of γ2 is

γ2(s) = min

{
vminβs√

3
,
kT2

s2

3m
,
νs2

3

}
∀s ≥ 0.

2. Local Controller Backstepping

Similar to the global controller, the local controller is designed to make the origin of the error system asymptotically
stable. This is achieved by inverting the tangent function containing Φ1, the control input, and compensating for
positive terms that come when differentiating the Lyapunov function. In this way the proposed controller is given by

ΦC1
(x, y,Ψ,ΨC1

) = tan−1

[
−kΦ1

(x, y, v,Ψ,ΨC1
)ve3,1

g
+
v

g
〈∇zΨC1

(z), f(z, κ1(z))〉
]

= tan−1

[
−kΦ1

(x, y, v,Ψ,ΨC1
)ve3,1

g
− yv2

gR(x, y)2
cos Ψ +

xv2

gR(x, y)2
sin Ψ

]
(52)

where kΦ1
is given by

kΦ1(x, y, v,Ψ,ΨC1) = χ+ γ(e3,1)v
(RC +R(x, y))(R(x, y)−RC)2

R2
C +R(x, y)2

+
| sin e3,1|

ζ2
v2R(x, y)RC |p|

|R(x, y)−RC |
R2
C +R(x, y)2

(53)
where χ > 0, ζ ∈ (0, π2 ) and s 7→ γ(s) is a smooth function such that

γ(s) >
1

2
if |s| ≥ π

2
, and γ(s) ≥ 0 if |s| < π

2
. (54)

With the proposed definition of the function γ we have that there exists β ∈ (0, 1) s.t. cos s + γ(s)s2 ≥ β ∀s ≥ 0.
Note that making the ”gain” kΦ1

a function of the system’s state allows for additional compensation of terms that arise
when differentiating the Lyapunov function.
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Proposition 4 For every constant m > 0, velocity set-point vC1 ∈ [vmin, vmax], loiter radius RC > 0, there exists
γ1 ∈ K∞ such that the closed-loop system resulting from controlling the error system

ė1 =

 x
R(x,y)v cos (e3,1 + ΨC1

) + y
R(x,y)v sin (e3,1 + ΨC1

)
T1−D(v,Φ1)

m
g
v tan Φ1 − 〈∇zΨC1

(z), f(z, κ1(z))〉

 ,
with the controller [

T1

Φ1

]
= κ1(x, y, v,Ψ,ΨC1

) :=

[
D(v,Φ1)− kT1

(v − vC1
)

ΦC1
(x, y,Ψ,ΨC1

)

]
, (55)

where kT1
> 0 and ΨC1 is given in Eq. (40) and ΦC1 is given in Eq. (52), satisfies, for each ε > 0,

1. 〈∇V1(e1), ė1〉 ≤ −γ1(|e1|) + ε for all e1 ∈ R3 such that [x y v Ψ]> ∈ C1

where ζ is chosen such that
vmaxd

RC
2(RC + d)| sin ζ| < ε (56)

In particular, an appropriate choice of γ1 is

γ1(s) = min

{
vminβRC

(R2
C + (RC + d)2)

,
kT1

m
,χ

}
s2 ∀s ≥ 0

C. Uniting Global and Local Controller

The process of uniting the global and local controllers into a hybrid controller is the process of defining the flow and
jump sets for the hybrid controller. Following the framework in Sanfelice5 and the construction in Example 3.23
therein, we design the parameters d and c determining the sets C1, C2,D1, and D2 in Eq. (20). So that

D2 ⊂ LV1(c) (57)

Since C2 is the closed complement of D2 for q = 2, we have that solutions from C2 approach D2 in finite time. In
fact, D2 is given by the c-sublevel of e2 7→ V (e2), which as established by Proposition 3, is globally attractive. From
points z inD2, which due to Eq. (57) are also in LV1

(c), we have that R−Rc ≤
√

2c. Hence, after a jump from q = 2
to q = 1, such points will be in C1 if

d >
√

2c

which is the constraint given in Eq. (22). Hence, we have

D2 ⊂ C1.

From points z in C1 we have that, according to Proposition 4, solutions are such that the error e1 satisfies

V1(e1(t)) ≤ exp(−ᾱ(t− t0))V1(e1(t0)) + (1− exp(−ᾱ(t− t0)))ε

over each interval of flow with q = 1, where ᾱ = 2 min
{

vminβRC

(R2
C+(RC+d)2)

,
kT1

m , χ
}

. Hence, V1(e1(t)) = 1
2 |e1(t)|2

converges to [0, ε], and we have that
lim
t→∞

|e1(t)| ≤
√

2ε

as long as the solution stays in C1. To ensure this property, we pick
√

2ε < d

which guarantees that |e1| ≤
√

2ε implies |R − Rc| < d, and hence the state z is in C1. The construction above
provides the following properties when the parameters satisfy the conditions given earlier: we summarize as d >

√
2c,√

2ε < d, c > 1
2

(
π2 + (vmax − vmin)2

)
, ν > 0, ξ(s) > 1

2 if |s| ≥ π
2 and ξ(s) ≥ 0 if |s| < π

2 , γ(s) > 1
2 if |s| ≥

π
2 , and γ(s) ≥ 0 if |s| < π

2 , µ ∈ [0, 1], kTq
> 0, χ > 0, and ζ ∈ (0, π2 ) such that vmaxd

RC
2(RC + d)| sin ζ| < ε.

• For every point in C2 solutions approach D2, converge to it in finite time, and a switch to the local controller
occurs.

• For every point in C1 solutions stay in C1 and the error e1 approaches the set {e1 : |e1| ≤
√

2ε} ⊂ C1.

• For every point in D1 or D2 away from C1 or C2 respectively, a jump switching q occurs.
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Table 1. Simulation Parameters

UAV Parameter Value Units Scenario Parameter Value Units Gain Value
W 24525 N µ 0.1 - ξ see Eq. (58)
CLmax 0.85 - VC1

160 m
s kT1

1000
CD0 0.002 - VC2

200 m
s kT2

1000
K 59 - ρ 1.112 kg

m3 ζ 0.1745
Sref 35.15 m2 g 9.81 m

s2 γ see Eq. (59)
T [min max] [50 9000] N χ 10

ν 10

IV. Numerical Analysis

The hybrid system for the UAV transition between transit and loiter was implemented in a Simulink model15 to
further explore and verify the analytical results presented. A well designed hybrid control system will switch between
the transit and loiter modes in such a way that minimizes transit time without overshooting the loiter area. The inputs
and gains used for the presented simulation results are listed below in Table 1.

Several of the gain parameters listed in the table vary as a function of the vehicle’s flight conditions while still
satisfying the constraints established in the control law analysis. The criteria for varying the gains is listed below.

ξ =
3

2π
|∆2|. (58)

γ =
3

2π
|∆1|. (59)

The local/global switching criteria for the simulation were set as

c =
1

2
(π2 + (vmax − vmin)2) + 1 (60)

d =
√

2c+ 200 (61)

where Eq. (60) and Eq. (61) were selected to satisfy Eq. (21) and Eq. (22) respectively. Simulation results are shown
to demonstrate performance of the algorithm.

A. Outside the Loiter Circle (Disk)

For the scenario starting outside the loiter circle a loiter radius (RC) of 350 m was used. Figure 6 shows a performance
time history for the trajectory. The vehicle is initially headed in the wrong direction, but the global controller reverses
heading to fly towards the center of the loiter circle. The hysteresis between C1 and C2 prevents chatter between the
local and global controllers. The vehicle switches from the global controller to the local controller at a point inside
the local controller flow set and follows a trajectory that approaches the loiter circle on a tangent and ultimately tracks
the loiter circle. The switch from the global controller to the local controller occurs at approximately 7 seconds. In

Figure 6. Simulation results starting outside the loiter circle

the global control region, the vehicle attempts to accelerate to the commanded global controller velocity. For the first
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two seconds the vehicle does not accelerate quickly because of the high drag while turning. Once the vehicle has
completed its turn it accelerates more quickly to the global commanded velocity until the switch to the local controller.
In the local control region, the thrust is commanded to its minimum while the vehicle decelerates to the commanded
loiter velocity. The simulation results confirm that the controller design provides the desired performance within each
of the local and global modes. Also, the design of the local and global sets prevents chatter between the two modes.

V. Conclusion

A hybrid control system for UAV waypoint loitering was analyzed and demonstrated. Asymptotic stability was
established, and verified by simulation, for the UAV system modeled in a plane with thrust and bank angle as control
inputs. There are several opportunities for future work. One could be to expand the control algorithm to be three
dimensions by including altitude and account for time varying mass. Another possibility could be to expand the
algorithm to use other modes such as changing altitude. Though this paper focused on a UAV as the system being
controlled, the algorithm could be applied to other systems such as boats or wheeled vehicles.
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