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Abstract— Motivated by the design of distributed observers
with good performance and robustness to measurement and
communication noise, the problem of obtaining a global es-
timate, over a graph, of a common process is considered.
We propose a global consensus algorithm that satisfies a pre-
specified rate of convergence and has optimized robustness to
both communication and measurement noise. The convergence
rate and the robustness to communication and measurement
noise of the proposed consensus algorithm are characterized
in terms of (nonlinear and linear) optimization problems. The
stability and robustness properties of the proposed algorithm
are shown analytically and validated numerically.

I. INTRODUCTION

The problem of estimating the state x ∈ R
n of the linear

time-invariant system

ẋ = Ax (1)

in a distributed fashion through output measurements of the

form y = Cx have lead to enlightening results in distributed

estimation and consensus. Distributed Kalman filtering is

employed to achieve spatially-distributed estimation tasks

in [1] and for sensor networks in [2], [3], [4], [5]. In [6],

switching topologies are used to design distributed observers

for a leader-follower problem in multi-agent systems. In [7],

a synthesis method for distributed estimation that guarantees

H∞-performance of the estimates with respect to model and

measurement disturbances is presented.

Along with distributed estimation, consensus for dis-

tributed systems has also been extensively studied in the

literature. Static consensus, which corresponds to the agree-

ment on the initial conditions of the agents, modeled via a

directed graph, are reported in [8], [9], [10]. For dynamic av-

erage consensus, [11] proposes a decentralized algorithm that

guarantees asymptotic agreement of a signal over strongly

connected and weight-balanced graphs. In [12], a dynamic

consensus algorithm that is robust to communication time

delay is proposed. In [13], an observer-type of consensus

algorithm is designed for linear systems without noise. In

[14], the stability and convergence properties of integral and

propotional-integral consensus is thoroughly studied. On the

other hand, the literature on consensus design with robustness

to measurement and communication noise is not as rich.

In [15], the effect of additive noise with zero mean on the

variables of a consensus algorithm is discussed, while in [16],

a performance region-based approach is used for the design

of distributed H∞-based consensus. In [17], Kalman filter

based consensus is shown to be robust to state and input
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noise. In [18], the author studies consensus under random

topologies with noise and link failures.

In this paper, we propose a decentralized consensus

algorithm for distributed state observers with robustness

guarantees. In [19], interconnected Luenberger observers

for linear time-invariant systems are proposed to guarantee

performance specifications and minimizing the effect of

measurement noise. However, the setting in [19] does not in-

clude noise in the signals communicated between the agents.

Moreover, it does not provide a way to design a consensus al-

gorithm for the generation of a global state estimate, even for

the nominal case. Unfortunately, in distributed state estima-

tion, communication and measurement noise are two factors

that cannot be ignored for many practical applications. In

fact, algorithms for distributed estimation should be capable

of generating local and global estimates that are robust

and have good performance. Motivated by the lack of such

algorithms, we propose a consensus algorithm to generate

a global estimate from the (time-varying) local estimates

generated by the distributed state observer in [19], under

communication and measurement noise. The performance

and robustness of the proposed algorithms can be specified

at the design stage. To accomplish that, we propose tools

to synthesize the distributed observer and the consensus

algorithm using H∞ theory and optimization techniques.

The designs using these tools guarantee that the agents

agree on the average of all local (time-varying) estimates,

asymptotically and robustly with respect to communication

and measurement noise.

The remainder of this paper is organized as follows.

After a motivational example in Section II, the problem of

interested is formulated in Section III-B. Section III intro-

duces the proposed consensus algorithm. Design methods

are presented in Section IV-A and Section IV-B. Examples

illustrate the results established throughout the paper. Proofs

will be published elsewhere due to space constraints.

II. MOTIVATIONAL EXAMPLE

Consider the scalar plant

ẋ = ax, y = x, (2)

where a < 0. It is shown in [19] that a distributed state

observer can be designed to satisfy a pre-specified rate of

convergence constraint and have an optimized H∞ gain from

measurement noise to estimation error. Suppose there are two

connected agents such that agent 1 can transmit information

to agent 2, but agent 2 cannot send data to agent 1, as shown

in Figure 1(a). Following [19], a distributed state observer
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Fig. 1. Two agents connected via a direct graph.

takes the form1

˙̂x1 = ax̂1 −K11(ŷ1 − y1),

˙̂x2 = ax̂2 −K22(ŷ2 − y2)−K21(x̂
σ
1 − yσ1 ),

ŷ1 = x̂1, ŷ2 = x̂2, y1 = x+m1, y2 = x+m2,

x̂σ
1 = x̂1 + σ11, yσ1 = y1 + σ12,

x̄1 = x̂1, x̄2 =
1

2
(x̂1 + x̂2),

(3)

where, for each i ∈ {1, 2}, x̂i is a state associated to agent i,
ŷi is the output of agent i, x̂σ

1 is the corrupted version of x̂1

due to communication noise that is received at agent 2, mi is

the measurement noise when agent i takes measurements of

the plant’s state x, and σ11, σ12 are the communication noises

that affect x̂1 and y1, respectively, as shown in Figure 1(b).

Variables x̄1, x̄2 provide local estimates at agent 1 and 2,

respectively. The gains K11,K21,K22 are to be determined.

Note that mi’s are assumed to be independent. As agent 1
sends information of x̂1, y1 to agent 2, the information is also

influenced by communication noise, namely, agent 2 receives

the corrupted version of x̂1 and y1, given by x̂σ
1 = x̂1 + σ11

and yσ1 = y1 + σ12, respectively.

By defining ei = x̂i − x, ẽi = x̄i −x, for each i ∈ {1, 2},

m = (m1,m2), ẽ = (ẽ1, ẽ2) and e = (e1, e2), we can rewrite

system (3) in the form

ė = Aee+B1m+B2

[

σ11

σ12

]

, ẽ = Cee, (4)

where

Ae =

[

a−K11 0
−K21 a−K22

]

, Ce =

[

1 0
1/2 1/2

]

,

B1 =

[

K11 0
K21 K22

]

, B2 =

[

0 0
−K21 K21

]

.

The quantity 1
2 (x̂1 + x̂2) provides a global estimate of x,

namely, the average of the estimate at each agent. However,

not every agent in the network can compute this quantity. In

the particular example considered, agent 1 is not capable of

computing it since it does not receive x̂2.

In this paper, we propose a decentralized consensus al-

gorithm to guarantee a pre-specified rate of convergence

constraint as well as robustness to measurement and com-

munication noise. For the particular distributed state observer

1In (3), the terms ax̂i − Kii(ŷi − yi) follow from the definitions
of injection terms for Luenberger observers. The term −K21(x̂σ

1 − yσ1 )
is an innovative injection term that utilizes information of agent 1 and
dynamically couples the first and second equation in (3).

leading to (4), our consensus algorithm is given by

ξ̇1= ˙̂x1−α1(ξ1−x̂1), (5a)

ξ̇2= ˙̂x2−α2(ξ2−x̂2)−ω21(ξ2−ξσ1 )−θ21(x̂2−x̂σ
1 ), (5b)

ξσ1 =ξ1 + σ13, (5c)

where ξ1 and ξ2 are consensus variables attached to agent 1
and agent 2, respectively, and α1, α2, ω21, θ21 are parameters

to be designed. The transmission of information ξ1 is also

corrupted by communication noise which is denoted by σ13,

i.e., the signal ξσ1 shown in Figure 1(b). By defining δi =
ξi − 1

2 (x̂1 + x̂2) for each i ∈ {1, 2}, we can rewrite (5) as

δ̇1 = −α1δ1 +
1

2
α1(e1 − e2) +

1

2
(ė1 − ė2),

δ̇2 = −(α2 + ω21)δ2 + ω21δ1+

(

1

2
α2−θ21

)

(e2 − e1)

+
1

2
(ė2 − ė1) + ω21σ13 + θ21σ11.

(6)

Let δ = (δ1, δ2) and σ = (σ11, σ12, σ13). To see the effect

of noises m and σ, assume m and σ are constant, i.e., m1 ≡
m2 ≡ m⋆ and σ11 = σ12 = σ13 ≡ σ⋆. Then, the steady

state of (4) and (6) is given by

δ⋆ =





0
ω21 + θ21
α2 + ω21



σ⋆ +

[

c̄1
c̄2

]

m⋆, (7)

e⋆ = −







K11

a−K11
K21a+K22(a−K11)

(a−K11)(a−K22)






m⋆, (8)

where

c̄1 =
a(K21 +K22 −K11)

2(K11 − a)(K22 − a)
, (9)

c̄2 =
a(α2 − ω21 − 2θ21)(K11 −K21 −K22)

2(α2 + ω21)(K11 − a)(K22 − a)
. (10)

Suppose K11 and K22 are fixed in order to satisfy a rate of

convergence constraint2, i.e., K11 = K22. Then, by choosing

K21 = (K11−a)K22

a
, we have e⋆2 = 0. To make the steady

state error (δ⋆, e⋆) corresponding to measurement noise m⋆

zero, we pick

α2 − ω21 − 2θ21 = 0. (11)

A simulation of this scenario is shown in Figure 2(a),

where the effect of measurement noise is shown. On the

other hand, to make the steady-state error corresponding to

communication noise σ⋆ zero, we pick

ω21 + θ21 = 0. (12)

A simulation of this scenario is shown in Figure 2(b), where

the effect of measurement noise is depicted. However, note

that if equalities (11) and (12) are simultaneously satisfied,

then α2 = −ω21. In this case, the system in (6) has an

eigenvalue at zero, which does not lead to an exponentially

convergent (to zero) state δ. In fact, this dilemma is generic

and similar to the typical tradeoff between convergence rate

and robustness to measurement noise for an observer, see,

e.g., [20], [21], [22].
The idea behind the proposed consensus algorithm illus-

2Note that since Ae is a lower triangular matrix, the eigenvalues of Ae

are given by a−K11 and a−K22.
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(a) Parameters are such that α2 −

ω21 − 2θ21 = 0, in particular,
α1 = α2 = 2.5, ω21 = 1.5,
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(b) Parameters are such that ω21 +
θ21 = 0, in particular, α1 = α2 =
2.5, ω21 = 1.5, θ21 = −1.5.

Fig. 2. Comparison of steady state error according to different design
strategies. Parameters are a = −0.5, K11 = K22 = 2, K21 =
(K11−a)K22

a
, m1 = m2 = σ11 = σ12 = σ13 = 0.5.

trated in the example above generalizes to the case where

N agents can measure the plant’s output over a graph. The

purpose of the next two sections is making this precise.

III. A DYNAMIC CONSENSUS ALGORITHM FOR

DISTRIBUTED STATE OBSERVERS

A. Notation

Given two vectors u, v ∈ R
n, |u| :=

√
u⊤u and the

notation [u⊤ v⊤]⊤ is equivalent to (u, v). Given a function

m : R≥0 → R
n, |m|∞ := supt≥0 |m(t)|. The set of complex

numbers is denoted by C0. The set N denotes the set of

natural numbers, i.e., N := {1, 2, 3, . . .}. For a transfer

function C0 ∋ s 7→ T (s) ∈ Cn×m
0 , the H∞ norm is

defined as ||T ||∞ = supω∈R
σ̄(T (jω)), where σ̄(T (jω)) =:

max{|λ| 12 : λ ∈ eig(T (jω)HT (jω))} with T (jω)H being

the conjugate transpose of T (jω). Given matrices A,B with

proper dimensions, we define the operator He(A,B) :=
A⊤B+B⊤A; A⊗B defines the Kronecker product; and A∗B
defines the Khatri-Rao product. Given N ∈ N, IN ∈ R

N×N

defines the identity matrix, 1N is the vector of N ones, and

ΠN := IN − 1
N
1N1⊤N . Denote A = {aij}M×N ∈ R

M×N

with the (i, j)-th entry being aij . A directed graph (digraph)

is defined as Γ = (V , E , G). The set of nodes of the digraph

are indexed by the elements of V = {1, 2, . . . , N}, and

the edges are the pairs in the set E ⊂ V × V . Each edge

directly links two nodes, i.e., an edge from i to j, denoted

by (i, j), implies that agent i can send information to agent

j. The adjacency matrix of the digraph Γ is denoted by

G = (gij) ∈ R
N×N , where gij = 1 if (i, j) ∈ E , and

gij = 0 otherwise. The in-degree of agent i are defined by

din(i) =
∑N

j=1 gji. The in-degree matrix D is the diagonal

matrix with entries Dii = din(i), for all i ∈ V . The

Laplacian matrix of the graph Γ, denoted by L, is defined

as L = D − G⊤. The set of indices corresponding to the

neighbors that can send information to the i-th agent is

denoted by I(i) := {j ∈ V : (j, i) ∈ E}.

B. Problem Statement

Our goal is to design a consensus algorithm such that

each agent achieves consensus on the average of all local

estimates provided by a distributed state observer under

communication and measurement noise. For this purpose,

we adapt the distributed state observer from [19], for the

plant in (1) and over a network of N agents connected via

a digraph Γ, in which each agent has a local state observer

that uses measurements of the plant and of its neighbors.

After adding communication noise, which is particular to

the problem studied in this paper, for each i ∈ V , the agent

i runs a local state observer given by3

˙̂xi = Ax̂i −Kii(ŷi − yi)−
∑

j 6=i,j∈V

gjiKij(Cj x̂
σ
j − yσj ), (13a)

x̂σ
i = x̂i + σi1, yσi = yi + σi2, (13b)

x̄i =
1

din(i)

N
∑

j=1

gjix̂j , ŷi = Cix̂i (13c)

where x̂i denotes the state variable of the observer, x̄i de-

notes the local estimate of x at agent i, Kij’s are estimation

gains to be designed, yi denotes the measurement of y in (1)

taken by the i-th agent with measurement noise mi, that is,

yi = Cix+mi ∈ R
pi ,

where pi is the dimension of the measurement taken at the

i-th agent. The information that the i-th agent obtains from

its neighbors is given by x̂σ
j and yσj for each j ∈ I(i),

which correspond to the values of x̂j and yj corrupted

by communication noise σi1 and σi2, respectively. The

collection of local state observers in (13) connected via the

digraph Γ defines a distributed state observer [19].
While convergence of the local estimates was charac-

terized in [19], the algorithm therein does not provide a

mechanism to obtain a globally agreed quantity of the

estimate of x (neither for the nominal case nor when noise

in the measurements are present). Unless the graph is all-to-

all connected, not every agent can compute
1

N

N
∑

j=1

x̂j(t). To

make the quantity
1

N

N
∑

j=1

x̂j(t) accessible to each agent, a

possible solution is to use a dynamic consensus algorithm:

obtain information from neighbors and make an internal state

of each agent approach the quantity
1

N

N
∑

j=1

x̂j(t) asymptoti-

cally. Note that this quantity converges to zero when A is

Hurwitz, the observers are convergent, and noise signals are

zero.

C. Distributed consensus algorithm

In this paper, we propose a distributed consensus algo-

rithm for the local estimates x̂i. Following the idea in [11],

the algorithm is given by

ξ̇i = ˙̂xi − αi(ξi − x̂i)−
∑

j 6=i,j∈V

gjiωij(ξi − ξσj ) (14a)

−
∑

j 6=i,j∈V

gjiθij(x̂i − x̂σ
j ),

ξσi = ξi + σi3, (14b)

where, for each i ∈ V , ξi ∈ R
n is the consensus variable

attached to agent i; αi, ωij , θij are constant gains; and ξσi

3Within this work, it is assumed that Γ has gii = 1 for all i ∈ V due to
that each agent has access to the measurement yi of the plant’s state x.



is the communication noise (σi3) corrupted value of ξi.
Note that the algorithm uses information of ˙̂xi, ξi as well

as information received from its neighbors, i.e., ξσj , x̂σ
j for

each j ∈ I(i). In particular, ξσj is defined in (13), and the

transmissions of ξi are corrupted by communication noise

σi3, where x̂i’s are the estimates generated by agent i using

the local observer in (13a). For each i, j ∈ V , the gains

αi, ωij , θij ∈ R are design parameters.

To analyze the interconnection between (13) and (14), for

each i ∈ V , define ei := x̂i − x and the associated vector

e := (e1, . . . , eN ), and ẽi := x̄i−x and the associated vector

ẽ := (ẽ1, . . . , ẽN). Furthermore, define δi = ξi −
1

N

N
∑

j=1

x̂j

and δ = (δ1, · · · , δN ), the measurement noise vector m :=
(m1, . . . ,mN ), and the communication noise vector σ =
(σ11, . . . , σN1, σ12, . . . , σN2, σ13, . . . , σN3). Then, it follows

that

ėi = Aei −
∑

j∈V

gjiKijCjej +
∑

j∈V

gjiKijmj (15a)

−
∑

j 6=i,j∈V

gjiKijCjσj1 +
∑

j 6=i,j∈V

gjiKijσj2,

δ̇i = −αiδi −
∑

j∈V

gjiwij(δi − δj) (15b)

+
1

N

∑

j∈V

(ėi − ėj + αi(ei − ej))−
∑

j∈V

gjiθij(ei − ej)

+
∑

j 6=i,j∈V

gji(ωijσj3 + θijσj1),

which can be rewritten in the compact form

ė = Aee+B1m+B2σ, (16a)

δ̇ = Aδδ +Ace+B3m+B4σ, (16b)

ẽ = Cee, (16c)

where

Ae = IN⊗A−(K∗G⊤)Cg , Ce = (D−1 ∗G⊤)⊗ In,

B1 = K∗G⊤, Ḡ = G− IN , Π̄N = ΠN ⊗ In,

B2 =
[

−(K∗Ḡ⊤)Cg K∗Ḡ⊤ 0nN×nN

]

,

Aδ = −(diag(α)+Lω)⊗In,

Ac = Π̄N (Ae+diag(α)⊗In)− Lθ ⊗In,

B3 = Π̄NB1, Ḡθ = Ḡ⊤∗Θ, Ḡω = Ḡ⊤∗Ω,
B4 = Π̄NB2+

[

Ḡθ ⊗ In 0nN×nN Ḡω ⊗ In
]

,

Lω = diag(Ḡω1N )−Ḡω, Lθ = diag(Ḡθ1N)−Ḡθ,

Cg = diag(C1, C2, · · · , CN ),

and gains

K={Kij}N×N , Ω={ωij}N×N , Θ={θij}N×N ,

where G is the adjacency matrix, D is the in-degree matrix,

the Khatri-Rao product K ∗G⊤ is such that K is treated as

N ×N block matrices with Kij’s as blocks. By defining

A :=

[

Ae 0
Ac Aδ

]

, B1 :=

[

B1

B3

]

, B2 :=

[

B2

B4

]

, (17)

and the total error ē = (e, δ), the interconnection in (16) can

be written as

˙̄e = Aē+ B1m+ B2σ. (18)

Remark 3.1: IN⊗A defines a block diagonal matrix with

matrix A in each of the N blocks (of dimension n×n).

The matrix K ∗ G⊤ defines the gain matrix for the graph,

while Ce = (D−1∗G⊤)⊗In generates the estimation matrix

for each agent by averaging the local estimates obtained

from its neighbors. When the estimation algorithm in (15)

is properly designed, Ae is Hurwitz and e converges to zero

asymptotically. It further implies that, due to the property of

Aδ , the steady state of δ in (16b) depends on the supremum

of “inputs” e, σ and m.

IV. DESIGN USING OPTIMIZATION FORMULATION

A. Decoupled Design

The design of the closed-loop system in (18) can be

decomposed into two steps. The distributed state observer

in (13) can be designed first, while the distributed consensus

algorithm in (14) is designed after. In this section, we discuss

several particular optimization problems for such decoupled

design procedure.

For the distributed consensus in (14), the design specifica-

tions of interest are the rate of convergence and the H∞ gain

from communication noise σ and from measurement noise m
to the consensus error δ. In particular, to guarantee a particu-

lar rate of convergence of system (16), the eigenvalues of the

error system (16) will be assigned to the left of the vertical

line at −h in the s-plane, where h > 0 is the convergence rate

specification. Following [23], the eigenvalues of the matrix

Aδ are located in the region R := {s ∈ C0 : Re(s) < −h}
if and only if there exists a matrix PS = P⊤

S > 0 such that

A⊤
δ PS + PSAδ + 2hPS < 0. (19)

Recall from the motivational example in Section II that

there is a tradeoff when choosing parameters to reduce

the effect of measurement noise and communication noise

simultaneously. To determine the performance of our dis-

tributed consensus algorithm (14), we introduce the criterion

of global H∞ gain from noise vector (m,σ) to consensus

error vector δ. Recall that finding the H∞ gain of a transfer

function T (s) = C(sI − A)B + D is equivalent to the

feasibility of a certain matrix inequality. Then, we can

establish the following optimization problem for the design

of the distributed consensus algorithm according to a pre-

specified global H∞ gain from (m,σ) to δ.

Proposition 4.1: Given a plant as in (1) and a digraph Γ,

the global H∞ gain of the transfer function from (m,σ) to δ
in (18) is less than or equal to γ if and only if the following

inequality is feasible for some PH = P⊤
H > 0:





He(A, PH) PHB C⊤

B⊤PH −γI 0
C 0 −γI



 < 0, (20)

where B := [B1 B2], and C := [0 1]⊗ InN .

Remark 4.2: The global H∞ gain from (m,σ) to δ de-

termines the overall effect of the total noise (m,σ) on the

distributed consensus of local estimates provided by (14). To

determine the effect of the noise (m,σ) on the local estimate

δi, the H∞ gain from (m,σ) to δi can also be characterized

in (20) by replacing C with Ci, where Ci is the sub-matrix

of C from the (in−n+N+1)-th row to the (in+N)-th row.



Then, by combining the rate of convergence constraint in

(19) and the H∞ constraint in (20), we can perform the

synthesis of the distributed consensus algorithm of global

estimates in (14) using the following result.

Theorem 4.3: For the plant in (1) with distributed state

observer (13) and distributed consensus algorithm (14),

given a digraph Γ, and a gain K such that A is Hurwitz, the

rate of convergence of (16) is larger than or equal to h > 0
and the H∞ gain from (m,σ) to δ in (16) is minimized if

and only if there exist matrices α, Θ, Ω, PS , and PH such

that the following optimization problem is feasible:

min γ (21a)

s.t. He(Aδ, PS) + 2hPS < 0, (21b)




He(A, PH) PHB C⊤

B⊤PH −γI 0
C 0 −γI



 < 0, (21c)

PS = P⊤
S > 0, PH = P⊤

H > 0. (21d)

Remark 4.4: The problem in (21) can be solved offline

by using, e.g., [24], and the resulting observers along with

the consensus algorithm are decentralized. Note that the two

constraints in (21b) and (21c) are nonlinear due to the fact

that Ω in Aδ is multiplied by PS and PH in the operation

of He(Aδ, PS) and He(A, PH), respectively. Moreover, if

the local H∞ gain from noise (m,σ) to δi at agent i is

of interest, then, the matrix C in (21c) can be replaced by

Ci. When the effect of communication noise (measurement

noise, respectively) is of major concern, the matrix B in (21)

can be replaced by B2 (B1, respectively).

Next, we provide an example to illustrate the results above.

Example 4.5: Consider the plant in (2) with a = −0.5,

and the motivational example with two agents connected as

in Figure 1(a). Suppose that the distributed state observers in

(4) is designed to satisfy a rate of convergence equal to 2.5
with parameters K11 = K22 = 2, K12 = 0 and K21 = −4.7.

Then, we can design the distributed consensus algorithm of

local estimates by solving (21). The resulting gains are

α = (7.14, 14.24), Ω =

[

0 0
0.52 0

]

, Θ =

[

0 0
−3.6 0

]

.

The resulting H∞ gain from (m,σ) to δ is approximately

3.17. If instead, these two agents are all-to-all connected,

then, by solving (21), the resulting gains are

α = (3.5, 2.5), Ω =

[

0 −0.88
0.28 0

]

, Θ=

[

0 0.79
0.06 0

]

,

and the resulting H∞ gain from (m,σ) to δ is approximately

1.65.

B. Joint Observer-Consensus Design

As shown in Example 4.5, when K11,K21,K22 for the

distributed state observer are fixed, the effect of measurement

and communication noise on the estimation error e are fixed.

In such a case, we can only tune the performance of the

distributed consensus algorithm. On the other hand, we can

simultaneously design the consensus algorithm in (14) and

the estimation algorithm in (13). In particular, for a fixed

graph Γ, we can design K, α, Θ, Ω simultaneously. For such

a design, note that A is a lower block triangular matrix,

so its eigenvalues consist of the eigenvalues of Ae and of

Aδ . Imposing a rate of convergence on A is equivalent

to imposing it on both Aδ and Ae. In other words, the

eigenvalues of a matrix A are located in the region D :=
{s ∈ C0 : Re(s) < −h} if and only if there exist matrices

P1 = P⊤
1 > 0 and P2 = P⊤

2 > 0 such that

He(Aδ, P1) + 2hP1 < 0, (22a)

He(Ae, P2) + 2hP2 < 0. (22b)

Then, we can establish the following result for a joint

observer-consensus design.

Theorem 4.6: For the plant in (1) with the distributed

state observer (13) and the distributed consensus algorithm

(14), given a digraph Γ, the rate of convergence of (18)

is larger than or equal to h and the H∞ gain from σ to

consensus error δ in (16) is minimized if and only if there

exist matrices K, α, Θ, Ω, P1, P2 and PH such that the

following optimization problem is feasible:

min γ

s.t. He(Aδ, P1) + 2hP1 < 0, (23a)

He(Ae, P2) + 2hP2 < 0, (23b)




He(A, PH) PHB2 ([0 1]⊗ InN )⊤

B⊤
2 PH −γI 0

[0 1]⊗ InN 0 −γI



 < 0, (23c)

P1 = P⊤
1 > 0, P2 = P⊤

2 > 0, PH = P⊤
H > 0. (23d)

Example 4.7: Consider Example 4.5 with a = −0.5 and

a rate of convergence constraint equal to 2.5. Now, we let K
be the gain to be chosen. By solving (23), we obtain

α = (2.50, 4.22), Ω =

[

0 0
1.35 0

]

,

Θ =

[

0 0
0.35 0

]

, K =

[

2 0
0.55 2

]

.

The resulting H∞ gain from (m,σ) to δ is approximately

0.82, which is a significant improvement over a gain equal to

3.17 obtained in Example 4.5. On the other hand, consider

the same plant with two agents that are all-to-all connected,

then, by solving (23), the resulting gains are

α = (10.98, 10.98), Ω =

[

0 1.32
1.32 0

]

,

Θ =

[

0 3.31
3.31 0

]

, K =

[

2.95 0.95
0.95 2.95

]

,

the resulting H∞ gain from (m,σ) to δ is approximately

0.32, and the resulting H∞ gain from m to ẽ is approxi-

mately 0.88. △
Recall from the motivational example that when measure-

ment noise is assumed to be zero, the optimal strategy to

reduce the effect of communication noise is to not com-

municate at all. However, such a strategy also eliminates

the possibility of reducing the effect of measurement noise,

which is a key capability of distributed state observers. The

following result provides one way to formulate a design with

a pre-specified H∞ gain from m to ẽ.



Theorem 4.8: For the plant in (1) with estimation system

in (13) and consensus algorithm in (14), given a digraph Γ,

the rate of convergence of (18) is larger than or equal to

h, the H∞ gain from m to estimation error ẽ in (16) is no

larger than γ⋆ and the H∞ gain from σ to consensus error

δ in (16) is minimized if and only if there exist matrices

K, α, Θ, Ω, P1, P2, PH , and Pe such that the following

optimization problem is feasible:

min γ

s.t. He(Aδ, P1) + 2hP1 < 0, (24a)

He(Ae, P2) + 2hP2 < 0, (24b)




He(A, PH) PHB2 ([0 1]⊗ InN )⊤

B⊤
2 PH −γI 0

[0 1]⊗ InN 0 −γI



 < 0, (24c)





He(Ae, Pe) PeB1 C⊤
e

B⊤
1 Pe −γ⋆I 0
Ce 0 −γ⋆I



 < 0, (24d)

P1 = P⊤
1 > 0, P2 = P⊤

2 > 0, (24e)

PH = P⊤
H > 0, Pe = P⊤

e > 0. (24f)

Remark 4.9: Note that the constraints defined in (24a) and

(24c) are nonlinear due to the fact that Ω in Aδ is multiplied

with P1, PH in the operation of He(Aδ, P1) and He(A, PH),
respectively. The constraints defined in (24b) and (24d) are

also nonlinear and not jointly convex due to the products

P2K and PeK. With the structure of the distributed state

observer in (13), the H∞ gain γ⋆ from m to estimation error

ẽ can be chosen much smaller than that of a Luenberger

observer as in [19].

Example 4.10: Consider the plant in (2) with a = −0.5,

and a distributed state observer with two agents connected

via an all-to-all connectivity graph. The specifications of

interest are convergence rate greater than or equal to 2.5 and

H∞ gain from m to ẽ no larger than 0.6 (which is smaller

than 0.88 obtained in Example 4.7). By solving (24), we

obtain

α = (13.75, 93.80), Ω =

[

0 8.52
0.34 0

]

,

Θ =

[

0 1.55
7.96 0

]

, K =

[

1.11 −5.77
0.14 2.90

]

.

The resulting H∞ gain from σ to δ is approximately 1.52,

and the resulting H∞ gain from (m,σ) to δ is approximately

2.34. △
V. CONCLUSION

The proposed distributed consensus algorithm for dis-

tributed state observers has the capability of attaining fast

rate of convergence without necessarily jeopardizing robust-

ness to measurement and communication noise in the H∞

sense. An optimization-based design method is proposed to

separately and jointly determine the parameters of distributed

state observer and the proposed distributed consensus al-

gorithm. Furthermore, the resulting distributed consensus

algorithm is exponentially stable and robust to measurement

and communication noise.
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