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Abstract—We present an innovative hybrid control strat-
egy for contact detection and force regulation of robotic
manipulators. This hybrid architecture controls the robotic
manipulator during the following stages of interaction with the
work environment: the free motion, the transition phase, and
the constrained motion. The proposed control strategy is to
switch between a position and a force controller with hysteresis
relying only on contact force measurements. We implement this
strategy in a hybrid controller and provide a design procedure
which depends on the viscoelastic parameters of the work
environment. Our controller guarantees contact detection and
force regulation without bounce-off effects between the robat
manipulator and the work environment from compact sets of
initial conditions. Additionally, the resulting closed-loop system
is robust to measurement noise. We include simulations that
show how the proposed hybrid control strategy guarantees
good performance in the cases of stiff and compliant work
environments, and in the presence of measurement noise.

I. INTRODUCTION

Several complex robotic systems, such as grasping and
locomotion devices, involve the interaction between a ticbo

manipulator and its work environment. The control issue

such type of tasks is the regulation of the transition phiaise,

In most cases, the contact/non-contact detection between
the manipulator and the work environment is done on a
surface which depends on position and velocity measure-
ments. In the presence of measurement noise, such strategy
can fail to detect the state of contact and, potentiallyseau
“chattering” in the controller. To avoid these issues, we
propose a hybrid control strategy that switches between a
position and a force controller with hysteresis. The poaiti
controller steers the manipulator to a target point in the
workspace and the force controller regulates the force to a
desired set-point. The detection of contact is accomplishe
with force information only. The proposed hybrid controlle
ensures regulation and stability of the force set-pointraite
igates bouncing-off effects by limiting the impact velgcit
Moreover, our control strategy confers a margin of robustne
with respect to measurement noise in the position and force.

I[l. GENERAL MODEL
In this section, we present a dynamical model of a generic

q?:anipulator and a model of the reaction forces due to the

teraction between the manipulator and the environment.

which the dynamic of the system is switching from the free ta\ " General Robotic Manipulator Model

the constrained motion. In particular, the crucial pointho#
control is in the detection of contact/non-contact staieses

when the manipulator gets in contact with the environment,
large impulsive forces can cause the manipulator to bounce

off and to become unstable.

The dynamic of the robotic manipulator in joint space is:
M(0)0+C(0,0)0 + N0,0) =7 —JO)Tf., ()

where M (0) € R™*™ is the manipulator inertia matrix,

In the literature, the control of the dynamical behavior o@((g’g') e R™" js the Coriolis matrix,N(e,é) c R"

the manipulator in interaction tasks has been a researah toghcludes gravity terms and other forces that act at the gpint
for many years and several control synthesis schemes, batk: R" is the vector of the actuators torquekp) € R™*"

continuous and discontinuous, have been proposed. In tRethe Jacobian matrix relating the joint space velocityhie t
continuous case, the impedance control scheme is usedverkspace velocity, and.. € R™ is the vector of the contact
establish a desired dynamic relationship between the i@botorces due to the interaction between the manipulator amd th
manipulator position and the force it applies on the worlenvironment. Since we are interested in the interactioms, w
environment [6], [7]. In the discontinuous case, the cdntrgewrite the dynamic equation (1) in workspace coordinates
scheme consists of a SWitChing law in which a pOSitiOl}k after a coordinate transformation frofnto =

controller is applied during non-contact motion while aipos
tion/force controller is applied during the transition paand
the contact stage [11], [8], [15], [10], [2]. Control algibnins - , )
that combine continuous and discontinuous features haydereM, C, N derive fromM,C, N, andF is the vector of
been also proposed in the literature; in [13] an impedand@rces/torques applied at the end-effector of the mantpula

control is used jointly with a hybrid system for the detentio

M(0)i+C(0,0)i + N(0,0) = F — f.,

of the contact.
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B. Compliant Contact Force Model

Let s : R™ — R be a continuous function such théit=
{z € R™ | s(x) = 0} defines the surface of the environment

without external interactions ardi = {x € R™ | s(z) < 0}

defines the environment. Note thgtr) < 0 if z is a point
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We consider the linear contact model of Kelvin-Voigt to

C?haracterize the relationship between the bodies’ paimira

and the reaction force [3]. In this model, the viscoelastic
material of the environment is described as the mechanical



parallel of a linear spring and a damper which are repre- 1ll. M AIN IDEA: HYSTERESISCONTROL BASED ON

sented, respectively, by a stiffness matfix € R™*™ and FORCEMEASUREMENT
a damper matrixB. € R™>™, The contact force is given b . . .
P o 9 y As discussed in the Introduction, the problem of contact
£ = Kex + Bei if s(z) <0 ) detection and force regulation for robotic manipulators ha
¢ 0 it s(z)>0. previously been addressed in the literature. Perhaps the

Figure 1 depicts this scenario and illustrates the compliagimplest strategy to accomplish the task described above
interaction between the robotic manipulator and the worl$ (Whether contact/non-contact has been detected between

environment. Due to the compliance there is compressigi€ Manipulator and the environment) to switch between a

of the bodies when the manipulator comes in contact witROSition controller, which steers the manipulator closéht®
the environment. As in [8], [9], [10], [3], the compliance is €nvironment, and a force controller, which regulates theefo
modeled as part of the work environment, but our resulf® @ desired value. For example, when the position of the

are also applicable to scenarios with both compliance in t{8anipulator isz; < 0, the strategy is to use the position
work environment and robotic manipulator. controller to steer the manipulator to a point in the interio

of W and, when the position of the manipulator reaches
S, the strategy is to use the force controller to regulate the
contact force.

Figure 2 depicts a typical trajectory resulting from this
switching logic. Note that several bounces and switches
between the two controllers are present before the manipula
tor reaches the desired position/contact force configurati
Clearly, there exists a compact set of initial conditions fo
which there is no bounce-off effect (in Figure 2, such a
compact set is a subset of a small enough neighborhood of
Fig. 1. The compliant contact force model is described by thehangical ~ the origin). However, in practice, this set is usually rietly
parallel of a linear spring<. and a dampei3.. S is the uncompressed gmg|| as we will illustrate in Section VII. Moreover, with
work environment surface. ! . . L !

. such control strategy, arbitrarily fast switching betwebe
C. Model Reduction controllers can arise in the presence of measurement noise

With the knowledge of some of the parameters and staténce, when the manipulator is in a neighborhood of the
of the manipulator, it is possible to design an inner feellbacontact surface, even small measurement noise can indicate
loop that stabilizes some of the internal and external ®rcey false contact/non-contact condition.
of the manipulator. Such technique is commonly used in
robotic manipulator control literature, see e.g. [7], [1].
Proceeding in this way, let be the input control force in
the workspace coordinates and let the inner feedback law

F=u+C(0,0)i+N(,0) .

This feedback law is basically a state feedback lineadmati
law that reduces the dynamics of the manipulator to 8

M(0)i = u — fe. ®)

As further described in [15], it is possible to distin-
guish between constrained and unconstrained direction of
the motion of a manipulator interacting with an environment B
Following [15], without loss of generality, we consider the o 0 04 0z ¢
case in which the interaction between the manipulator and 1
its environment occurs along a normal direction. In thisig. 2. switching strategy based on position: the manipulasablishes
way, the manipulator consists simply of a mass with motioand loses the contact i and B, respectively. Several bounces (and
constrained 10 a straight fine. The interaction with the kvor 2Shes beteen the postion and force conralers) esat icfore e
environment occurs at some point on that line. We furthahitial condition.
assume that the mass is unitary. Then, the dynamic of the
manipulator gets reduced to the second-order system
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We propose a control strategy that minimizes such issues.

E=u-—f. (4) Let0 <y <92,
wherez := [z, 3] € R?, z; being the position and, the 1) with the manipulator starting away from the environ-
velocity of the manipulator, and, is the contact force ment, apply a position controller until the contact force

reaches a specified thresholg;

f.= { kewy + bty !f z1 20 (5) 2) with the manipulator in contact with the environment,
’ 0 it 2 <0, maintain the force controller until the contact force is
where k.,b, € (0,40c) are the elastic and the viscous below a certain thresholg;

parameters of the contact. Note that in the one-dimensidrhis mechanism introduces hysteresis in the switches be-
case considered, the work environment gets reducéd te  tween the two controllers and, for this reason, it corregigon
{z1 € R |z > 0} with surfaceS = {z; € R | 21 = 0}. to a hybrid strategy.



The basic idea is illustrated in Figure 3. With the contac€. Control Strategy

model (5), the contact forcg. is a linear combination of the  The main idea of the control strategy for contact detection
two state variables, z,. Then, the conditiong. > v, and  gytlined in Section Ill is to switch from position to force

fe < m for switching between the controllers corresponggntroller (and vice versa) relying only on information of
to half planes in the phase diagram. In particular these haffeasurements of the contact force. We consider the simple
planes have the lines,, : {(z1,22) | z2 = —3==1 + 3*}  controllers in IV-A, IV-B, but the strategy is applicable to
andly, : {(z1,22) | 2 = —’;—le + $2} as their boundaries. more sophisticated controllers. The key feature of thiatstr

(Note that these lines have fixed slope given-b§=.) The €gy is that the controller selection depends on the memory of
sample trajectory in Figure 3 shows that the decision whieth&e controller; hence, it is a (logic-based) hybrid coriérl

to apply the position controller is not on a single boundary We implement the control strategy in a hybrid controller
line as in Figure 2, but on boundary linés, 7, that do not Which we denote by-.. The state of the controller is given
overlap. This separation between the switching lines mak&y the logic variableg € @ := {0,1}. Let the constants

the decision robust to small perturbations. threshold levelsy;, v, € R be parameters oft.. _
As depicted in Figure 4, the update law for the logic

variable ¢ is so that it switches betwedhand 1 based on
the value off. with hysteresis levels defined by, 2. Two
different transitions are possible:

e g=0—1(path:0 - A — B — C): The logic
variableq can only be mapped tb when the measured
contact force reaches the thresheld(when f. > 75).

e gq=1— 0 (path:C — B — D — 0): The logic
L | variableq can only be mapped t when the measured
L force contact force is below the threshoijg (when f, < 7).
position . control
4 control .\ +—~ 1 q A
gj’n\\ \‘ £y,
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Fig. 3. Example of switching strategy based on hysterésis.and ¢,
define the sets for the switches based on fozceis the initial condition. Y

IV. HYBRID CONTROLLER

appl
FORROBUST CONTACT DETECTION 0 PPy P
. . . > < A ! >
Now, we present the hybrid control strategy outlined in ! ! ) -
Section Ill. We follow the framework for hybrid systems in " Y2 fe fe

4], [5] where solutions are given brid time domaing.
(4], 5] 9 my Fig. 4. Contact detection strategy with hysteresis. Cartsta , y2 define
A. Position Controller the thresholds for change from moge= 0 to modeg = 1 (and vice versa).

We consider a position controller for set-point stabilizat . )
of the positionz; of the manipulator in (4) that relies on The dynamics of the hybrid controllét. are as follows.
position and velocity measurements of the manipulator and JUMPS

is given by the proportional/derivative control law e Fromg =0tog =1 (i.e. ¢* = 1): wheng = 0 and
fe > 72, the logic variabley is mapped tal.

kp(z,2) = —kp(z1 — 2f) — kawa (6) e Fromg=1toq =0 (i.e. ¢t = 0): wheng = 1 and
wherez¢ > 0 is the position set-point angl,, k; € R are Jfe < 71, the logic variable; is mapped td.
constants to be designed. Proportional/derivative ctatso F'QWS
have been previously used in the literature for set-point ® ¢ = 0: wheng = 0 and f. < ~2, or wheng = 1 and

stabilization of manipulators, e.g. [7], [8], [15]. fe = m, the logic variable remains constant.
The output of the controller is given by
B. Force Controller

Let f¢, 0 < f¢ < f., be the desired set-point for wim k(z, fu, 2% 12 q) :_{ Hp(x,:cﬁg if ¢=0
the contact force wherg, is the maximum allowed force. kr(fe, fo) if g=1.
We consider a force controller that only relies on mea-

surements of the contact force and that is given by th%;gfngrrkngilt:ghssvilg:%'cﬂ\é?;'iglgq gg;%i[egom?gﬁ[;?r IttOIS
proportional/feedforward control law p ul

the force controllek . The switches between position/force
kr(fe, f4) = f. +kf(fg — fe) (7) controllers occur when bounces off the work environment
re not possible: when a certain level of contact force has
een achieved, switching from the position controller te th
force controller is enabled. Note that the hybrid controlle
Lin this framework, a solution: to a hybrid system on a hybrid time 7. switches fromxp to xp if the logic variableq makes
domaindom is parameterized by a continuous variablevhich keeps 3 transition0 — 1. This is possible only if the position
track of the continuous dynamics and a discrete varigbighich keepst controller is able to generate a contact force that is Iarger

track of the discrete dynamics. Therit, j) is the value of the solution a g : -
time (t, j) € dom z. For more details, see [4], [5]. than~s and if the measurement ¢f experiences an increase

wherek; € R is a constant to be designed. Similar force{;1
control strategies have been considered in [8], [9].



of at leasty, —y; > 0. Vice versa, the hybrid controllék,
switches fromkyr to kp if the logic variableq makes a

transition1 — 0. This is possible only if the measurement

of f. experiences a decrease of at least- v; > 0. |

D. Closed-loop System

The closed-loop system, denoted By, and depicted
in Figure 5, resulting of controlling (4) with the hybrid
controllerH., has continuous dynamics given by

ZI.Jl = T2
552 :’i(xvfcvx%fcdv(n_fc (xaQ)EC
qg =0

whereC := Cy U C; C R? x @ defines the flow set, where:

Co {(z,9) eR*xQ|¢=0 and f. <o}
Gy {(z,q) eR?xQ|g=1 and f. >}

The closed-loop systerf{.; has jump dynamics given by

'Ii‘r:x17 I;ZIEQa q+: 9 (x7q)€D0
xik:xh .1';:3?2, q+:0) <x7q)€D1

Do :={(z,q) ER*x Q| ¢=0 and f. >}
Dy :={(r,q) ER?xQ|g=1 and f. <}

and the jump set i := Dy U D; C R? x Q.

kp ka ky
_ d L
Position/Force Z Controller | & Rotzjot c
Generator |-X1 Kp,KF Sg?]sor z
Fig. 5. Hybrld control scheme. A position/force block genesathe set-

pomtsfd anda: The controller has as input the position of the manipulator

z in the Workspace coordinates and the measured contact ferce

V. CONTROLLERDESIGN

We now design the hybrid controller, for given parameters

k., b. of the work environment and desired contact foﬁﬁe
The parameters to design for dte, k,, kq, 1, 72 and xl

We state the following results that are used in the design.

Lemma 5.1: For every given parametétsb. € (0, +o00)
of the work environment and desired contact foice f¢ <

f., there existk; € R, Py, Qs € R>*2, P; = PfT > 0,
Qy = Q7} >0, such that

(VVp(2), f(2)) = —2TQsz VzeR?, (8)

[1/ke —1/b.]" € eig Py}, €)

whereVi(2) = 2T P;~ and

f(z) =

Z2
—kgke (214 4 ) = yboza + kffg] '

Furthermore, Py, Qf, and k; are given by

I%Z{Z§}=R%‘mbf (10)
Sckoky by + cbo)k s —
Qr = [ (sz Fcbo)ks —a ;(bbckfc,)c)f “ } 1)

—2¢%k,. + abk, + ach,
k 0 12
pe (0.2t a2
. __|=sinB —cosp e
with R := [ cosB  —sin 5} and py, p2 > 0 satisfying
2 2
p1sin® B + pa cos ke,

— 13

P2 < P1; (p2 — p1)sinBcos B (13)
Let " .= kd Lemma 5.1 states that, given parameters

ke, b. of the Work environment and a desired contact force
0 < fd < fc, there exists a posmve definite matrik,
such thatVe(z) == a(z; — 28)% + b2 + 2c(xy — 282y
is a Lyapunov function for the system (4) controlled by
kr. We use this Lyapunov function to design the hysteresis
thresholdsy; and~.. Note thatPs is the clockwise rotation
of a positive definite diagonal matrix.

Figure 6 depicts these two lines and a level seti/pf
These lines are parallel and are parameterizegbgnd~,,
respectively. The design of;, v» andz{ is as follows.

a) v min value:yy,,, =0.
oF k2b—2ck b, +ab?

b) v1 max value:ry,, . = (k: — \/b)

d H . kp+ke
c) z¢ min value:z{ =zl £ ot
d) 42 min value:vy, .. = bcbxf
e) 2 max valuery, . = k. mm{k P ¢ al}
Then, by considering% € [mnu,,,%,m] Y2 €

(V2uin s V2ume) 24 € [24 +00), ks given by Lemma 5.1

and withk,, kg > 0, the deS|gn ofH. is completed.

LVF (Tmax)

Fig. 6. Design of the hybrid controlle¥.. Linest, , £+, £, , £, are
the upper/lower bound for the design 6f, and ¢, respectivelyxf =
k,ﬁk 4. (z¥,0), (=", 0) are the equilibrium points of the system with
the posmon and force controller, respectively,, (rmax) is the maximum
level set of Vp such that{z € R? : Vr(z) < rmax} C R>o.

Remark 5.2:The thresholdy; is designed so to guarantee
that the manipulator does not bounce off the surface of the
environment and so that the trajectory of the system remains
all contained in the right half plane, after the hit with the
environment. This means that the switch has to occur once
the trajectory of the system is already inside the basin of
attraction Ly, (rmayx)* Of the system controlled in force. In
order to grant that, at least, there is one switch between the
position and the force controllers, the trajectory has to hi
the threshold line,,, before reaching the equilibrium point

1LVF(me> is the maximum level set of the Lyapunov functib such
that {z € R? : Vp(z) < rmax} C R>o.



(xF,0), 27 = k’“ﬁxi‘. Moreover, the line/,, has also to above, it can be explicitly computed combining the Lyapunov
be on the right of the equilibrium poirtt:*, 0). functions in Lemma 6.1 and Lemma 6.2. The set of initial
For the design of the thresholg, the lower bound for conditionsk; can be estimated with the maximum level set
¢, is given by zero. Moreover, we design the lide, Of Vr thatis contained i, > 0, that is, Ly, (rmax)-
so that it does not intersect the level g&t, (rmax). The In the presence o_f measurement noise in bqth position and
second condition in (13) implies that_. < ~;.__. The force, the asymptotic stability property above is preseiive
parametersk,, k; > 0 are not constrained in principle, but & practical sense.
they determine the size of the region of attractiort-ff. B Theorem 6.4: There exis{$ € KL, for eache > 0 and
each compact set, K; C R? such that( Ky x {0})U(K7 x
VI. MAIN RESULTS {1}) is a subset of the basin of attraction Hf,;, there exists
The main stability and robustness properties of the closed= > 0, such that for each position and force measurement
loop systentH,; are stated below. The following two resultsnoisee : R>y, — §*B, solutions(z,q) to H. exist, are
guarantee that the position controliep steers the trajecto- complete, and for initial conditionée?, ¢") € (Ko x {0}) U
ries to a point in the interior of the work environment. (K1 x {1}) the z component of the solutions satisffes
Lemma 6.1: For every given parametésb. € (0, +oco . 0 . .
of the work environment, controller parameteks, kg, x{, [t )la < Bla"la b +5) +& ¥t j) € domlw,q) -

~1, 72 given from the design in Section V, the equilibrium NOte that the constraint on impact velocity in our control
point (z¢,0) to algorithm implies that the compact set of initial conditon
?

guaranteed to exist by Theorem 6.4 is no larger than the one
T1 =x2, do=—kpx1—Fkqxot+kp x‘f (14) in Theorem 6.3. The proof of Theorem 6.4 follows by the
properties of the closed-loop systéerh,; and the results for
perturbed hybrid systems in [5]. Due to space limitations, w
do not discuss the concept/issues on existence of solutions
with measurement noise; see [12] for more details.

is globally asymptotically stable. Moreover, every saunti
to (14) starting fromz® € R? reaches the sefS; :=
{:z: ER? |z > O} in finite time. In particular, for every
initial condition z° € 5§ := (R*\Sy)N{z € R? | 22 >0},
every solution is such thatx(7) > 0, whereT > 0, is the VII. SIMULATIONS

time to reachS;. In this section, we provide simulation results of the clesed

. ; loop system in the nominal case and in the presence of noise
Lemma 6.2: For every given parametésb. € (0, +o00 . ; .
of the work environment, controller parametes, kg, ¢, in the measurements ¢f. We illustrate the design of the hy-

H d
1, 72 given from the design in Section V, the equilibriunrid controller for a set of parametexs, b., f:', and present
point ( kp d 0) o simulations for different materials of the environment.
1

Eptke Nominal case.Let the work environment be given by
W = {xz; € R | z; > 0} and be characterized by a soft
. . d
@1 =g, &2 = —(kp+ke) 21 = (ka+be) 22+ kp 7 (15)  material with stiffnesst. = 10 N/mm and damping coeffi-

is globally asymptotically stable. Moreover, every salnti Cientb. = 0.3 Ns/mm. Let the desired force bg =5 N.

to (15) starting fromz® € R? reaches the sef, := From;hesedparameters, we compute= arctan(—k./b.)

{2 €R2 | ko) + bews > 72,41 > 0} in finite time. In par- andzy = f¢/k. = 0.5 mm. By Lemma 5.1, we construct
ticular, for every initial conditionz® € S5 := (R2\ So) N £r = lac;cb] wherea = 2,5 = 0.01 and ¢ = 0.06

{z €R? | 2, >0}, every solution is such thaty(T) > 0, satisfying (10) and we choosg = 40 which satisfies (12).
whereT > 0, is the time to reacts, - Performing the computations in a)-e) in Section V we obtain;
— ' . Y. = 0N,7 = 0.71 N,z = 0.79 mm,~,
The proof of Lemmas 6.1 and 6.2 follow by simple Lya-; 35"\ + M i
punov and invariance arguments. In particular, it is easy t0°_ ' "og"N] andz? = 1.58 mm which satisfy the respective

find quadratic Lyapunov functions that show global asympge nqc ™ 7o complete the design, we follow Lemmas 6.1
totic stability of the origin in both lemmas. Combining tees _ 4 65 and choosé. — 2 and ks = 0.5. Figure 7
: p = = 0.5.

Lyapunov functions, the set of initial conditions for cortta HL

min

e = 2.64 N. Then, we picky; = 0.61 N,

. . ustrates a closed-loop trajectory. The position congteers
detection and contact force regulation can be compute brey Y b

| : " e manipulator to the work environment until the measured
The following result establishes that those sets are “dsbse ontact force is equal to the threshold line denofed

of the b%sm of attraction of the closed-loop system. Lek; yhis point, the hybrid controller switches to the force
A= {(21,0)}. controller and the contact force is regulated fg. To
Theorem 6.3: Given parametefs, b. € (0,+o00) of the accomplish this force level, the state of the manipulator is
work environment and desired contact foree< f¢ < f., regulated to(x{,0). Notice that no bounces off the work
there exist environment occur. This is accomplished by the controller
1) Compact setd(,, K; C R?, logic which is such that, as long as the impact velocity is no
2) Parametersiy, ky, ka, 71,72, v¢ of the hybrid controller larger thanzi = 4.4 mm/s, switqhes to the fo_rC(_e controller
such that4 x {1} is locally asymptotically stable with basin &€ enabled only when the manipulator state I8y (rmax)

of attraction containing Ko x {0})U (K x {1})N(CUD). with 7max = 0.18, contained in the right-half plane. _
The set of initial conditionsk, is such that, for ever In Figure 8, we _show closed—loo_p trajectories _resultlng
initial condition 20 € K. of tohe manipulatér and fo); from controllers designed for soft, stiff, and very stiff taa
0

. o X rials; i.e. for k. increasing. As summarized in Table I, note
given parameters of the position controller, the manigulat
reaches the surface of the work environment with a boundethgijyen 4 set/  R” and a pointz € R", |z]y = infyey |z — yl.
value of the impact velocity, denoted hy;. As mentioned Recall thatdom(z, ¢) denotes the domain of the solutig, q).



Fig. 7. Phase diagram of the switching strategy. The plotiatieghe
Lyapunov functions level sets of position/force contmlide ¢, and/,,
lines, and the trajectory of the system. The initial conniim(l) =—1mm,
29 = 0 mm/s, andg® = 0. Maximum impact velocity isc} = 4.4 mm/s.

Fig. 8. Phase diagram of the switching strategy: differeajettories
of the system for values of the environment material stiffnegsal to
5,10, 25,50 N/mm. The steady state point is changing sinée= f2/ke..

that to avoid bounces, as the stiffness of the environment is
increasing, the maximum allowed impact velocity decreases
The parameter¢ also decreases in order to satisfy the set- I
point f¢ = 5N. This shows that our algorithm guarantees of
performance by constraining the maximum velocity of im-

pact. Moreover, for fixed,, b., there is a trade-off between g’
the maximum admitted impact velocity and the gajrof the 2
force controller: in particular, in order to have a large aop o
velocity, a large gain is required. In addition, the datahie t J
last two columns are an indicator of the improvement of

our hybrid control strategy upon the discontinuous control o
law in Section Ill. By simulation, we compute the value

of 29 < 0 (given in millimeters) farthest away from the

work environment such that solutions ., from (z?,0),
29 given by column f{,;), and solutions to the closed-loop
system with the discontinuous law frof?,0), 29 given

Fig. 9. Phase diagram of the switching strategy in presehoeise in the
measurement of.. The plot depicts the Lyapunov functions level sets of the
position/force controllers, thé,, and/-, lines, the trajectory of the system
both without noise (dashed) and different values of noisat{inuous).

by column (disc.), do not bounce off. The controllers and
parameters used for the simulations are fixed for each row.
Measurement noise caserigure 9 depicts in dashed line [4]
the trajectory of the system without noise, and in contirsuou
the trajectories of the system with different values of aois [g]
in the measurement of.: we have added a Gaussian noise
with zero mean and variation af = 0.01,0.5,1,2. Note

. o : . 6
that the hybrid controller is still able to steer trajecésrito e
=¥ without bounces. -
TABLE |
CONTROLLER DESIGN PARAMETERS FOR VARIABLEk:, FIXED b.. [8]
ke(NImm) [ zf(mm) | zi(mm/s [ k; (Hea) | (disc)
T | 14.5581 16.1757 | 430 | —4.526 —0.6 [9]
5 | 4.1208 98115 | 80 | —4.13 —0.1
T0 | 1.5843 4.4007 | 16 | —2.44 | —0.08 [10]
20 | 0.4530 13727 | 20| —0.83 | —0.06
50 | 0.0736 0.2360 8 | —032 | —0.055
100 | 0.0182 0.0596 4| —0.11 | —0.051 [11]
200 | 0.0045 0.0149 2 | —0.05] —0.03
500 | 0.0007 0.0024 | 0.8 | —0.03 | —0.02
[12]
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