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Abstract

This paper introduces incremental stability notions for a class of hybrid dy-
namical systems given in terms of differential equations and difference equa-
tions with state constraints. The specific class of hybrid systems considered
are those that do not have consecutive jumps nor Zeno behavior. The notion
of incremental asymptotic stability is used to describe the behavior of the
distance between every pair of solutions to the system having stable behav-
ior (incremental stability) and approaching zero asymptotically (incremental
attractivity). A version of this notion that is uniform (in hybrid time) with
respect to initial conditions is also introduced. These notions prioritize flow
time and are illustrated in examples. Basic properties of the class of sys-
tems are considered and those implied by the new notions are revealed. An
equivalence characterization of the uniform notion is provided in terms of
a KL-function. Moreover, sufficient and necessary conditions under which
asymptotic stability implies the new incremental notions are provided. We
consider the case when the original hybrid system has an asymptotically sta-
ble compact set and also the case when an auxiliary hybrid system, which
has twice the dimension of the original system, has a diagonal-like set asymp-
totically stable.
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1. Introduction

1.1. Background

Incremental stability is the notion that the distance between any two so-
lutions to the system has stable behavior and converges to zero. Specifically,
in its uniform using a uniform version of such notion2, a continuous-time
system ẋ = f(x) is said to be incrementally stable if there exists a class-KL
function β (a formal definition is provided in Section 1.3) such that every
pair of solutions t 7→ φ1(t) and t 7→ φ2(t) to ẋ = f(x) satisfies

|φ1(t)− φ2(t)| ≤ β(|φ1(0)− φ2(0)|, t) (1)

for each t in the domain of definition of φ1 and φ2; see, e.g., [1, 2, 3]. The
bound (1) states that, over their domain of definition, the distance between
two solutions is upper bounded by a function of the difference between their
initial conditions and also decreases as t gets arbitrarily large (when the do-
main of definition of the solutions is unbounded to the right). More general
forms of this notion in terms of Riemannian distances have been studied in
the context of contraction theory; see, e.g., the study of contracting and non-
expansive flows in [4, 5, 6], the local arguments in [7], and the regional results
in [8] in the context of observer design. Due to often being misinterpreted
as a property of convergent systems [9], the authors in [10] provide a rigor-
ous comparison between incremental stability and the property of convergent
systems, and conclude that, general, neither implies the other without ex-
tra conditions (uniform convergent systems on positively invariant sets are
shown in [10, Theorem 8] to imply incremental stability as defined therein).
Of particular interest are the necessary and sufficient conditions in terms of
Lyapunov functions reported in [2] for a notion of incremental stability that
requires the bound (1) to hold for every pair of solutions.

In recent years, incremental stability has received growing attention due
to its use in a wide range of applications and its suitability to study prob-
lems in which pairs of trajectories have to converge to each other. Incremen-
tal stability-like properties have been used in the study of synchronization
[11, 12, 13], observer design [8, 14], control design [3], symbolic models for
nonlinear time-delay systems [15], model reduction [16], as well as the study

2Though not made explicitly in the literature, the notion in (1) is uniform with respect
to initial conditions by virtue of the properties of KL-functions.
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of convergent systems [17]. Unfortunately, the incremental stability notions
and associated results available in the literature do not apply to systems with
variables that can change continuously and, at times, jump discretely (see
details in Section 2). These systems, known as hybrid systems, are capable
of modeling a wide range of complex dynamical systems, including robotic,
automotive, and power systems as well as natural processes. The availability
of an incremental stability notion for this class of systems would enable the
study of similar properties for them as the current notion for continuous-time
systems allows. To the best of our knowledge, the notion of incremental sta-
bility and its properties for hybrid systems have not been thoroughly studied
before, only discussed briefly in [18] for a class of transition systems in the
context of bisimulations.

1.2. Contributions

This paper considers the hybrid systems framework presented in [19],
where the continuous dynamics (or flows) are modeled using differential equa-
tions, while the discrete dynamics (or jumps) are captured by difference equa-
tions. Specifically, a hybrid system is denoted by H, has data (C, f,D, g),
and is defined by the hybrid equations given by

ż = f(z) z ∈ C,

z+ = g(z) z ∈ D,
(2)

where z ∈ R
n is the state, f defines the flow map capturing the continuous

dynamics, and C defines the flow set on which f is effective. The map g

defines the jump map and models the discrete behavior, while D defines the
jump set, which is the set of points from where jumps are allowed. While set-
valued flow and jump maps could certainly be considered in (2), which would
lead to hybrid inclusions, there is no loss of generality in considering single-
valued maps since, as it will be shown in Section 3, uniqueness of solutions
(of their x component) is a necessary condition for incremental stability; see
Lemma 3.2. It should be noted that a robust stability theory for hybrid
systems modeled as hybrid inclusions was developed in [19].

Motivated by the broad application of incremental stability and the recent
advancements in the theory of hybrid systems given as in (2), incremental
stability notions are introduced, and many of their basic properties, charac-
terizations, and equivalences are presented. As will be discussed in Section 2,
the jumps imposed by the difference equations make it inherently difficult to
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define incremental stability for hybrid systems. We address this issue by
prioritizing flow time in the definition of incremental stability. More pre-
cisely, for a class of hybrid systems, the contributions of this paper include
the following:

1) Notions of incremental stability: Non-uniform and uniform incremental
(global) asymptotic stability notions with respect to full or partial state
in terms of stability and attractivity are given.

2) Equivalent characterization of incremental stability: An equivalent char-
acterization of incremental uniform (global) asymptotic stability in
terms of a KL bound on the distance between every two maximal so-
lutions3 is provided.

3) Equivalent auxiliary system for the study of incremental stability through
asymptotic stability of the diagonal-like set: An auxiliary hybrid sys-
tem with twice the dimension of the original system is defined and the
asymptotic stability properties of the diagonal-like set for the auxiliary
system are related to incremental stability of the original system.

4) Relationships between incremental asymptotic stability and asymptotic
stability properties: Links between properties involved in the defini-
tion of incremental asymptotic stability and of asymptotic stability of
a system are revealed. In particular, it is shown that uniform global
attractivity of a singleton set implies incremental uniform attractiv-
ity, and that strong forward invariance of a compact set plus uniform
incremental stability of a system leads to uniform global asymptotic
stability of the said set for a hybrid system with regular enough data.

This article contains new incremental stability results for the hybrid
framework in [19]. A preliminary version of these results is shown in [20]. We

3A solution φ to H is parametrized by (t, j) ∈ R≥0 × N, where t denotes ordinary
time and j denotes jump time. The domain of a solution dom φ ⊂ R≥0 × N is a hybrid
time domain if for every (T, J) ∈ dom φ, the set dom φ ∩ ([0, T ] × {0, 1, . . . , J}) can be
written as the union of sets ∪J

j=0(Ij × {j}), where Ij := [tj , tj+1] for some time sequence
0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ+1. The tj ’s with j > 0 define the time instants when the state
of the hybrid system jumps and j counts the number of jumps. A solution to H is called
maximal if it cannot be extended, i.e., it is not a truncated version of another solution. It
is called complete if its domain is unbounded.
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are not aware of any other previous results on incremental stability for hybrid
systems (other than the discussions in [18] we mentioned in Section 1.1).

1.3. Organization and Notation

The remainder of this paper is organized as follows. In Section 2, the
incremental stability notions are introduced for a class of hybrid systems.
The auxiliary hybrid system is also introduced in Section 2. In Section 3,
the main results are presented, namely, items 2)-4) listed in Section 1.2.

The notation used throughout the paper is as follows. Given a set S ⊂ R
n,

the closure of S is denoted by S, and the interior of S is denoted by int S.
The set of real and natural numbers are R≥0 := [0,∞) and N := {0, 1, . . . },
respectively. Given vectors ν ∈ R

n, w ∈ R
m, |ν| defines the Euclidean

vector norm |ν| =
√
ν⊤ν, and [ν⊤ w⊤]⊤ is equivalent to (ν, w). Given a

function f : Rm → R
n, its domain of definition is denoted by dom f , i.e.,

dom f := {x ∈ R
m : f(x) is defined}. The range of f is denoted by rge

f , i.e., rge f := {f(x) : x ∈ dom f}. The right limit of the function f is
defined as f+(x) := limν→0+ f(x + ν) if it exists. Given a point y ∈ R

n and
a closed set A ⊂ R

n, |y|A := infx∈A |x − y|. A function α : R≥0 → R≥0 is
a class-K∞ function, also written α ∈ K∞, if α is zero at zero, continuous,
strictly increasing, and unbounded. A function β : R≥0 × R≥0 → R≥0 is
a class-KL function, also written β ∈ KL, if it is nondecreasing in its first
argument, nonincreasing in its second argument, limr→0+ β(r, s) = 0 for each
s ∈ R≥0, and lims→∞ β(r, s) = 0 for each r ∈ R≥0.

2. Incremental stability notions

In this paper, for hybrid systems H as in (2), we are interested in char-
acterizing the incremental stability property, namely, the notion that the
distance between every pair of maximal solutions to the system has stable
behavior and approaches zero asymptotically. To highlight the intricacies of
this property in the hybrid setting, consider the so-called bouncing ball sys-
tem. This is a canonical example of hybrid systems to which every maximal
solution is Zeno4 and converges to the origin; see [19, Example 1.1 and 2.12]
for more details. Consider two solutions to this system, given by φ1 and φ2,
from initial conditions φ1(0, 0) = (1, 0) (ball initialized close to the ground

4A solution is Zeno if it is complete and its domain is bounded in the t direction. See
[19] for more details.
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which exhibits peaking phenomenon.

Figure 1: Two solutions φ1 and φ2 to the bouncing ball system. Note that while both so-
lutions converge to zero, the pointwise Euclidean distance between them does not decrease
monotonically.

with zero initial velocity) and φ2(0, 0) = (5, 0) (ball initialized at a larger
height). Figure 1(a) shows the position (first) component (φ1

i for i ∈ {1, 2})
of these two solutions. The Zeno behavior of the solutions makes it extremely
difficult to analyze incremental stability. In fact, since incremental stability
requires comparing the distance between two solutions, if one solution (φ1)
reaches the Zeno time sooner than the second solution (φ2), then the Eu-
clidean distance between these two solutions cannot be evaluated after one
of the solutions has approached the Zeno time. This situation is shown in
Figure 1(a), where φ1 approaches Zeno at about t = 8.5sec while φ2 is still
describing the motion of the ball bouncing. Even if the solutions start from
nearby initial conditions, the point-wise distance between them is not mono-
tonically decreasing before the Zeno time. Figure 1(b) shows two solutions
to the bouncing ball system with nearby initial conditions, but the offset on
impact times creates a peaking behavior in the velocity error. In a more
extreme situation, if solutions φ1 and φ2 are initialized at φ1(0, 0) = (0, 0)
and φ2(0, 0) = (1, 0), respectively, then φ1 is a solution that only jumps and
never evolves in the t direction, while φ2 evolves in both directions (t and j)
until it reaches a Zeno solution. This extreme difference in the domains of
the solutions makes it difficult (if not impossible) to compare φ1 and φ2.

To avoid such issues, we consider the class of hybrid systems satisfying
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the following assumption.

Assumption 2.1. The hybrid system H = (C, f,D, g) is such that

1) each maximal solution to H has a hybrid time domain that is unbounded
in the t direction;

2) each solution to H does not have two consecutive jumps without flow
in between.

Note that the solutions to a hybrid system H are parameterized by both t

and j, but we will consider incremental stability notions with bounds on the
distance between solutions (like in (1)) that only depend on t. While such
bounds might be conservative as they do not involve j, due to the general
issue illustrated in the bouncing ball system, at this time it is not obvious
how to define a notion of incremental stability for generic hybrid systems.
The notions of incremental stability we consider in this paper are given as
follows.

Definition 2.2. Consider a hybrid system H with state z ∈ R
n satisfying

Assumption 2.1. Let z = (x, ν), where x ∈ R
r, ν ∈ R

n−r, and r, n are
integers such that 1 ≤ r ≤ n. The hybrid system H is said to be

• incrementally stable (δS) with respect to x if for every ε > 0 there
exists δ > 0 such that, for any two maximal solutions5 φ1 = (φx

1, φ
ν
1)

and φ2 = (φx
2 , φ

ν
2) to H,

|φ1(0, 0)− φ2(0, 0)| ≤ δ (3)

implies6

|φx
1(t, j1(t))− φx

2(t, j2(t))| ≤ ε (4)

for all (t, ji(t)) ∈ domφi, i ∈ {1, 2};

• incrementally globally attractive (δGA) with respect to x if any two
maximal solutions φ1 = (φx

1 , φ
ν
1) and φ2 = (φx

2, φ
ν
2) to H satisfy

lim
t→∞

(t,j1(t))∈dom φ1

(t,j2(t))∈dom φ2

|φx
1(t, j1(t))− φx

2(t, j2(t))| = 0;

5Given a solution φ toH, we partition it as φ = (φx, φν), where φx ∈ R
r and φν ∈ R

n−r.
6For each t ∈ R≥0, t 7→ ji(t) := min(t,j)∈domφi

j for each i ∈ {1, 2}.
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• incrementally globally asymptotically stable (δGAS) with respect to x

if it is both δS and δGA with respect to x.

Remark 2.3. If r = n, then the notion in Definition 2.2 can be considered
as a full-state incremental stability notion, while if r < n, it can be considered
to be a partial state incremental stability notion. Note that δS with respect
to x requires φ1 and φ2 to start close, while only the components φx

1 and φx
2

remain close over their domain of definition. Similarly, δGA with respect to
x only requires the distance between φx

1 and φx
2 to approach zero, while the

other components are left unconstrained.

Remark 2.4. Note that from the definition of δS, for each i ∈ {1, 2}, the
function t 7→ ji(t) picks the minimum value j for each t such that (t, j) ∈
domφi. Then, the resulting function t 7→ φi(t, ji(t)) is single valued and left
continuous.

The following examples illustrate the incremental stability notions in Def-
inition 2.2.

Example 2.5. (system with a logic variable) Consider a hybrid system with
state z = (x, q) ∈ [−1, 1]× {−1, 1} and with n = 2, r = 1, and data:

f(z) := (q, 0) ∀ z ∈ C := [−1, 1]× {−1, 1},
g(z) := (x,−q) ∀ z ∈ D := ({−1} × {−1}) ∪ ({1} × {1}).

From the data of H, Assumption 2.1 is satisfied. In fact, every maximal
solution to H has a hybrid time domain that is unbounded in the t and j

directions. Furthermore, solutions do not have two consecutive jumps without
flow time in between since, in particular, D ∩ g(D) = ∅ and the data of H is
regular enough; see Lemma 3.1 for more details. Moreover, it can be verified
that the system is δS with respect to x; see Appendix B for details. △

Example 2.6. (system with a timer) Consider a hybrid system with state
z = (x, q, τ, k) ∈ X := R× [−M,M ]× R≥0 × N \ {0} for M > 0 with n = 4,
r = 1, and data:

f(z) = (−x+ q, 0, 1, 0) ∀ z ∈ C := {z ∈ X : τ ≤ k},
g(z) = (−x,−γq, 0, k + 1) ∀ z ∈ D := {z ∈ X : τ = k},

8



where the parameter γ ∈ (0, 1). From the data of H, Assumption 2.1 is
satisfied. In fact, every maximal solution to H has a hybrid time domain
that is unbounded in the t direction. Furthermore, solutions do not have
two consecutive jumps without flow time in between since, in particular, D∩
g(D) = ∅ and the data of H is regular enough; see Lemma 3.1. For a maximal
solution φ to the system from φ(0, 0) = (φx(0, 0), φq(0, 0), φτ(0, 0), φk(0, 0)),
the φx component of the solution before the first jump is given by φx(t, 0) =
exp(−t)φx(0, 0) + (1 − exp(−t))φq(0, 0) for all t ∈ [0, φk(0, 0) − φτ (0, 0)].
Moreover, generalizing this expression to each (t̄j , j) such that (t̄j, j + 1) ∈
domφ, we obtain φx(t, j + 1) = exp(−t + t̄j)φ

x(t̄j , j + 1) + (1 − exp(−t +
t̄j))φ

q(t̄j , j+1) for each t ∈ [t̄j , φ
k(t̄j , j+1)−φτ (t̄j , j+1)], where φ(t̄j, j+1) =

g(φ(t̄j, j)). Due to the form of the jump map for q, it follows that

lim
j→∞

(t̄j ,j+1)∈domφ

φq(t̄j, j + 1) = 0.

Since j → ∞ if and only if t̄j → ∞, we have

lim
t→∞

(t,j)∈dom φ

φx(t, j) = 0.

Furthermore, if we have two solutions φ1, φ2 to H where φi = (φx
i , φ

q
i , φ

τ
i , φ

k
i ),

i ∈ {1, 2} then

lim
t→∞

(t,j1)∈domφ1

(t,j2)∈domφ2

|φx
1(t, j1)− φx

2(t, j2)| ≤ lim
t→∞

(t,j1)∈dom φ1

(t,j2)∈dom φ2

(|φx
1(t, j1)|+ |φx

2(t, j2)|) = 0.

Therefore, the system is δGA with respect to x.
As we will show, this system is not δS with respect to x. To draw a contra-

diction, assume that it has such property. For a given ε > 0, no matter how
small δ > 0 is chosen, we always can pick two solutions φi = (φx

i , φ
q
i , φ

τ
i , φ

k
i )

from φi(0, 0) = (φx
i (0, 0), φ

q
i (0, 0), φ

τ
i (0, 0), φ

k
i (0, 0)) for i ∈ {1, 2}, respec-

tively, where φ
q
1(0, 0) = φ

q
2(0, 0) = 0, φk

1(0, 0) = φk
2(0, 0) > φτ

1(0, 0) >

φτ
2(0, 0) > 0 and φx

1(0, 0) = φx
2(0, 0) >

1
2
exp(t̄1)ε with t̄1 = φk

1(0, 0)−φτ
1(0, 0).

Moreover, φ1(0, 0) and φ2(0, 0) satisfy |φ1(0, 0) − φ2(0, 0)| ≤ δ. Then, we
have that for all 0 ≤ t ≤ t̄1 = φk

1(0, 0) − φτ
1(0, 0) and for each i ∈ {1, 2},

φx
i (t, 0) = exp(−t)φx

i (0, 0). Then, after the first jump (φ1 jumps first in this
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case), we have

|φx
1(t̄1, 1)− φx

2(t̄1, 0)| = exp(−t̄1)| − φx
1(0, 0)− φx

2(0, 0)|

> exp(−t̄1)

∣∣∣∣
1

2
exp(t̄1)ε+

1

2
exp(t̄1)ε

∣∣∣∣ > ε,

which is a contradiction. △

Example 2.7. Consider the hybrid system in Example 2.6, but define the
jump map as g(z) = (x,−γq, 0, k + 1) for each z ∈ D. In this way, we can
now show that this new system is δGAS with respect to x. The proofs can be
found in Appendix C. △

Remark 2.8. Due to the definition of incremental stability, different choices
of the component decompositions (x, ν) could lead to different conclusions
about δS and δGA. For instance, in Example 2.6, if the state component of
interest is q, it can be shown that the system is also δGA with respect to q,
but not δS with respect to q.

Building from Definition 2.2, a global and uniform notion of incremental
asymptotic stability is introduced next.

Definition 2.9. Consider a hybrid system H with state z ∈ R
n satisfying

Assumption 2.1. Let z = (x, ν), where x ∈ R
r, ν ∈ R

n−r and n, r are integers
such that 1 ≤ r ≤ n. The hybrid system H is said to be

• incrementally uniformly globally stable (δUGS) with respect to x if
there exists a function α ∈ K∞ such that any two maximal solutions
φ1 = (φx

1 , φ
ν
1) and φ2 = (φx

2, φ
ν
2) to H satisfy

|φx
1(t, j1(t))− φx

2(t, j2(t))| ≤ α(|φ1(0, 0)− φ2(0, 0)|) (5)

for all (t, j1(t)) ∈ dom φ1 and (t, j2(t)) ∈ dom φ2;

• incrementally uniformly globally attractive (δUGA) with respect to x

if for each ε > 0 and r̄ > 0 there exists T > 0 such that for any two
maximal solutions φ1 = (φx

1 , φ
ν
1) and φ2 = (φx

2, φ
ν
2) to H with

|φ1(0, 0)− φ2(0, 0)| ≤ r̄,

(t, ji(t)) ∈ domφi for each i ∈ {1, 2}, t ≥ T implies that

|φx
1(t, j1(t))− φx

2(t, j2(t))| ≤ ε;
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• incrementally uniformly globally asymptotically stable (δUGAS) with
respect to x if it is both δUGS and δUGA with respect to x.

Remark 2.10. When a hybrid system in (2) has a jump set D = ∅ and a
flow set C given by the entire state space, the resulting hybrid system reduces
to a continuous-time system. Moreover, if r = n, the notion of δUGAS in
Definition 2.9 reduces to the notion for continuous-time systems as in [2,
Definition 2.1].

Example 2.11. Consider a hybrid system H with data

f(z) : = −z ∀ z ∈ C :=
⋃

i∈{2k:k∈N}
[i, i+ 1]

g(z) : = z − 1 ∀ z ∈ D := {2k : k ∈ N \ {0}}.
(6)

Note that every maximal solution to H is complete, bounded and does not
have two consecutive jumps without flow time in between since, in particular,
D ∩ g(D) = ∅ and the data of H is regular enough; Given ε, r̄ > 0, consider
two maximal solutions φ1 and φ2 from φ1(0, 0) = ξ and φ2(0, 0) = η such
that |ξ − η| < r̄, it follows that these solutions are bounded by

|φi(t, ji)| ≤ e−t|φi(0, 0)|,

for all (t, ji(t)) ∈ dom φi and i ∈ {1, 2}. Then, there exists T > 0 such that
|φi(t, ji(t))| ≤ 1

2
ε for each i ∈ {1, 2} and each t ≥ T with (t, ji(t)) ∈ dom φi.

It follows that |φ1(t, j1(t)) − φ2(t, j2(t))| ≤ ε for each t ≥ T with (t, ji(t)) ∈
dom φi with i ∈ {1, 2}, which implies that this system is δUGA. △

Following the approach in [2] for continuous-time systems, we can recast
incremental stability as the problem of uniformly globally asymptotically
stabilizing an appropriately defined hybrid system to the diagonal-like set.
Towards that end, consider the set

Ã := {z̃∈R
n×R

n : z̃=(x̃1, ν̃1, x̃2, ν̃2), x̃1= x̃2, x̃1, x̃2 ∈ R
r, ν̃1, ν̃2∈R

n−r}
(7)
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for the auxiliary hybrid system H̃ with state z̃ = (z̃1, z̃2) ∈ R
n × R

n and
given by the following data:

˙̃z = f̃(z̃) z̃ ∈ C̃,

z̃+ = g̃(z̃) z̃ ∈ D̃,
(8)

where C̃ := C×C, D̃ := (D × (C ∪D))
⋃
((C ∪D)×D), f̃(z̃)=(f(z̃1), f(z̃2)),

and g̃(z̃) = (g̃1(z̃1), g̃2(z̃2)) with

g̃1(z̃1) =

{
g(z̃1) z̃1 ∈ D

z̃1 otherwise

g̃2(z̃2) =

{
g(z̃2) z̃2 ∈ D

z̃2 otherwise

(9)

The auxiliary system H̃ consists of two copies of the original system H.

Remark 2.12. Though the original hybrid system H may satisfy the so-
called hybrid basic conditions7 in [19, Assumption 6.5], the auxiliary system

H̃ may not. If the hybrid basic conditions were to be satisfied for H̃, the jump
map would be set valued and have another entry given by g̃i(z̃) = {g(z̃i), z̃i}
when z̃i is in the boundary of the jump set D. Including this entry in the jump
map would not be advantageous since it could introduce extra solutions to the
auxiliary system. In fact, it may introduce a Zeno solution: consider the case
where z̃1 and z̃2 are in the boundary of the jump set; then, both components
of the solution could jump to a point satisfying z̃ ∈ g̃(z̃), z̃ ∈ D × D and

remain there forever. To avoid this issue, we do not insist on H̃ satisfying
the hybrid basic conditions.

It is worth noting that, in general, the domain of two solutions φ1 and φ2

of H with φ1(0, 0) = ξ and φ2(0, 0) = η are different from the domain of

the associated solution φ̃ of H̃ with φ̃(0, 0) = (ξ, η). The following lemma
characterizes the relationship (not necessarily incrementally stable) between

solutions to H and solutions to H̃. Below, for a hybrid system H, the set SH
contains all maximal solutions to H, and the set SH(ξ) contains all maximal
solutions to H from ξ. The proof of this result is in Appendix A.

7A hybrid system H = (C, f,D, g) is said to satisfy the hybrid basic conditions if:
(A1) C and D are closed; (A2) f : Rn → R

n and g : Rn → R
n are continuous; see [19,

Assumption 6.5].
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Lemma 2.13. Suppose the hybrid system H satisfies Assumption 2.1. Then,
the following hold:

1) Given a solution φ̃ ∈ SH̃ with φ̃(0, 0) = (ξ, η), ξ, η ∈ R
n, there ex-

ist φ1, φ2 ∈ SH, φ1(0, 0) = ξ and φ2(0, 0) = η such that φ̃(t, j) =
(φ1(t, j1), φ2(t, j2)) for every (t, j) ∈ dom φ̃, where (t, j1) ∈ dom φ1 and
(t, j2) ∈ dom φ2 for some j1, j2 ∈ N;

2) Given solutions φ1, φ2 ∈ SH with φ1(0, 0) = ξ and φ2(0, 0) = η, ξ, η ∈
R

n, there exists φ̃ ∈ SH̃ with φ̃(0, 0) = (ξ, η) such that φ̃(t, j) =
(φ1(t, j1), φ2(t, j2)) for every (t, j1) ∈ dom φ1 and (t, j2) ∈ dom φ2,
where (t, j) ∈ dom φ̃ for some j ∈ N.

In the next section, we provide our main results on incremental stability
of H, the stability of Ã for H̃, and their relationships.

3. Main results

3.1. Basic properties and their implications

Due to the issues in defining incremental stability, the hybrid systems
considered in this paper have to satisfy Assumption 2.1, which can be checked
using Lemma 3.1 and [19, Proposition 6.10]. The following result from [21]
provides a sufficient condition for condition 2) of Assumption 2.1.

Lemma 3.1. [21, Lemma 2.7] Suppose that H satisfies the hybrid basic con-
ditions and g(D) ∩ D = ∅. Then, for any precompact solution8 φ ∈ SH
there exists γ > 0 such that t̄j+1 − t̄j ≥ γ for all j ≥ 1, where [t̄j, t̄j+1] =
domφ ∩ (R≥0 × {j}).

The following necessary condition for δS is immediate from its definition.
While not pointed out in [2], the same property is necessary for incrementally
stable continuous-time systems (where r = n).

Lemma 3.2. Suppose H satisfies Assumption 2.1 and is δS with respect to x.
Then, the projection of the x component in the t direction9 of every maximal
solution φ = (φx, φν) to H is unique.

8A solution is precompact if it is complete and bounded.
9The projection of the x component in the t direction is defined as t 7→ φx

t (t) :=
limhց0,(t+h,j)∈domφ φ(t+ h, j).
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Proof We proceed by contradiction. Assume H is δS with respect to x

and consider two maximal solutions φ1 = (φx
1, φ

ν
1) and φ2 = (φx

2, φ
ν
2) from

φ1(0, 0)=φ2(0, 0)=ξ∈R
n. Suppose that the projections of the x component

of these solutions in the t direction are not unique, namely, there exists t⋆ > 0
such that φx

t,1(t
⋆) 6= φx

t,2(t
⋆) and (t⋆, ji) ∈ domφi, i ∈ {1, 2}. Pick ε > 0 such

that ε < |φx
t,1(t

⋆) − φx
t,2(t

⋆)|. Then, using this ε in the δS property, no
matter how small δ > 0 is chosen, we have that the solutions from φ1(0, 0) =
φ2(0, 0) = ξ ∈ R

n, satisfy |φx
t,1(t)−φx

t,2(t)| > ε when t = t⋆, which contradicts
the definition of δS. �

Remark 3.3. Note that it is not necessary for the ν component of the so-
lution to be unique. In fact, the bound proposed in (4) does not impose
any restriction on the ν component. Lemma 3.2 implies that considering
single-valued flow and jump maps in (2), rather than set-valued maps, is not
restrictive. Furthermore, it precludes the possibility of solutions flowing from
points in C ∩D.

Lemma 3.4. Suppose H satisfies Assumption 2.1 and the hybrid basic con-
ditions. Then, H̃ does not have Zeno solutions.

Proof By Assumption 2.1 and [21, Lemma 2.7], for any solution to H, the
elapsed time between jumps is uniformly bounded below by a positive con-
stant (γ > 0). Thus, for any solution φ̃ to H̃, there exist at most two jumps
on each time interval [t, t + γ], for any t ∈ {t : (t, j) ∈ dom φ̃}. This can be
proved using a similar contradiction argument as in the proof of Lemma 3.1.
Then, it follows that there is no Zeno solution to H̃. �

Motivated by Example 2.11, the next two results establish attractivity
and stability properties of a set for H that are implied by δGAS of H with
respect to x. For a hybrid system H, a set M ⊂ R

n is weakly forward
invariant if for every ξ ∈ M there exists at least one complete solution
φ ∈ SH(ξ) with rge φ ⊂ M; see, e.g., [19, Definition 6.19]. The set M
is strongly forward invariant if for every complete solution φ ∈ SH(M),
rge φ ⊂ M; see, e.g., [19, Definition 6.25]. Following [19, Definition 3.6],
we consider the following definition of uniform global asymptotic stability
(UGAS).
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Definition 3.5. Consider a hybrid system H on R
n with every φ ∈ SH

complete. Let A ⊂ R
n be closed. The set A is said to be

• uniformly globally stable (UGS) for H if there exists a class K∞ func-
tion α such that any solution φ to H satisfies |φ(t, j)|A ≤ α(|φ(0, 0)|A)
for all (t, j) ∈ domφ;

• uniformly globally attractive (UGA) for H if for each ε > 0 and r > 0
there exists T > 0 such that, for any solution φ to H with |φ(0, 0)|A ≤ r,
(t, j) ∈ domφ and t+ j ≥ T imply |φ(t, j)|A ≤ ε;

• uniformly globally asymptotically stable (UGAS) for H if it is both
uniformly globally stable and uniformly globally attractive.

Remark 3.6. Note that for a hybrid system H with state z ∈ R
n satisfying

Assumption 2.1, every maximal solution to H is complete.

Theorem 3.7. Consider a hybrid system H on R
n with state z = (x, ν),

x ∈ R
r, ν ∈ R

n−r, where n, r are integers such that 1 ≤ r ≤ n, satisfying
Assumption 2.1. Suppose that H is δGA with respect to x. Then, a closed set
Ax × R

n−r ⊂ R
r × R

n−r that contains a nonempty weakly forward invariant
set for H is globally attractive for H.

Proof Assume H is δGA with respect to x. Due to the fact that Ax ×R
n−r

contains a nonempty weakly forward invariant set, for each φ0(0, 0) ∈ Ax ×
R

n−r, there exists a complete solution φ0 to H that satisfies φ0(t, j(t)) ∈
Ax × R

n−r for all (t, j(t)) ∈ dom φ0. Consider any maximal solution φ to
H. Since φ0 remains in Ax × R

n−r, the distance between φ and Ax × R
n−r

satisfies
|φ(t, j)|Ax×Rn−r ≤ |φx(t, j(t))− φx

0(t, j0(t))| (10)

for all (t, j(t)) ∈ domφ and (t, j0(t)) ∈ domφ0. Since H is incrementally
globally attractive, we have that φ satisfies

lim
t→∞

(t,j(t))∈dom φ

(t,j0(t))∈dom φ0

|φx(t, j(t))− φx
0(t, j0(t))| = 0

which, from (10), implies that lim
t→∞

(t,j(t))∈dom φ

|φ(t, j(t))|Ax×Rn−r = 0. Therefore,

Ax × R
n−r is globally attractive for H. �
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Theorem 3.8. Consider H with r = n satisfying Assumption 2.1 and is
δUGAS. If H satisfies the hybrid basic conditions and the compact set A ⊂ R

n

is strongly forward invariant, then A is UGAS for H.

Proof Theorem 3.7 states that δGA with a closed set containing a weakly
forward invariant set implies that the set is UGA for H. Then, since A ⊂ R

n

is compact and strongly forward invariant, A is UGA for H. Furthermore,
since H satisfies the hybrid basic conditions, [19, Proposition 7.5] implies
that A is stable. Hence, A is UGAS for H. �

Remark 3.9. For a hybrid system H on R
n with state z = (x, ν), x ∈ R

r,
ν ∈ R

n−r, where n, r are integers such that 1 ≤ r ≤ n, the UGAS property
guaranteed by Theorem 3.8 also holds when, instead of A being strongly for-
ward invariant, A = {x⋆} × R

n−r with x⋆ ∈ R
r, which is a singleton set on

the x component.

3.2. Equivalence properties

The following result establishes a KL characterization for δUGAS. This
notion is similar to that introduced in [2, Definition 2.1] for continuous-time
systems.

Theorem 3.10. Consider a hybrid system H satisfying Assumption 2.1.
Then, H is δUGAS with respect to x if and only if there exists a func-
tion β ∈ KL such that for any two maximal solutions φ1 = (φx

1, φ
ν
1) and

φ2 = (φx
2 , φ

ν
2) to H from φ1(0, 0) = ξ and φ2(0, 0) = η, respectively, where

x ∈ R
r, ν ∈ R

n−r and r, n are integers such that 1 ≤ r ≤ n,

|φx
1(t, j1(t))− φx

2(t, j2(t))| ≤ β(|ξ − η|, t), (11)

for all (t, ji(t)) ∈ dom φi, i ∈ {1, 2}. Furthermore, under the δUGAS as-
sumption for H, a continuous KL function β is guaranteed to exist.

Proof The sufficiency part follows immediately by the property of β. To
show necessity, assume H is δUGAS with respect to x. Define a function
β0 : R≥0 × R≥0 → [−∞,∞) by

β0(r, s) = sup{|φx
1(t, j1(t))− φx

2(t, j2(t))| :
φ1 ∈ SH(ξ), φ2 ∈ SH(η), |ξ − η| ≤ r, t ≥ s}. (12)
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Then, the bound

|φx
1(t, j1(t))− φx

2(t, j2(t))| ≤ β0(|ξ − η|, t) ∀(t, ji(t)) ∈ dom φi (13)

holds for each solution pairs φ1, φ2 to H. Moreover, for each s, r 7→ β0(r, s)
is nondecreasing and for each r, s 7→ β0(r, s), is nonincreasing. Moreover,
β0(r, s) ≤ α(r) for all r, s ≥ 0, where α comes from the uniform global
incremental stability property of H. Define β̃ : R≥0 × R≥0 → R≥0 by

β̃(r, s) = max{0, β0(r, s)}. (14)

Then, the function (r, s) 7→ β̃(r, s) is nondecreasing and, due to the properties
of α, continuous in r, nonincreasing in s, lim

r→0+
β̃(r, s) = 0 for each s ∈

R≥0 since β̃(r, s) ≤ α(r). Finally, uniform global asymptotic incremental
attractivity of H implies that lims→∞ β̃(r, s) = 0 for each r ≥ 0. Hence,
the inequality (11) is satisfied with β̃. Note that β̃ can be majorized by a
continuous function β ∈ KL. In fact, following [19, Lemma 3.41], for each
λ > 0 there exist class-K∞ functions α̃1, α̃2 such that, for all r, s ∈ R≥0,
β̃(r, s) ≤ α̃−1

1 (α̃2(r)e
−λs) =: β(r, s). Since α̃1, α̃2 ∈ K∞, the resulting class-

KL function β is continuous. �

3.3. From GAS to δGAS

Theorem 3.8 asserts that strong forward invariance of a compact set for
a hybrid system H that is δUGAS implies that the compact set is UGAS for
H. The observation in Remark 3.9 relaxes the forward invariance assumption
for the case of singleton set in the x component. In this section, we explore
the other direction of these implications, namely, from GAS of a set for H,
or of Ã for H̃, to δGAS of H.

We begin with the case of a singleton set (in the x component) that is
uniformly globally attractive.

Lemma 3.11. Consider a hybrid system H on R
n with state z = (x, ν),

x ∈ R
r, ν ∈ R

n−r, where n, r are integers such that 1 ≤ r ≤ n, satisfying
Assumption 2.1. Suppose that a set A = {x⋆} × R

n−r is UGA for H, where
x⋆ ∈ R

r. Then, the system H is δUGA with respect to x.

Proof Consider any two maximal solutions φ1 = (φx
1 , φ

ν
1) and φ2 = (φx

2, φ
ν
2)

to H from φ1(0, 0) = ξ and φ2(0, 0) = η, where ξ, η ∈ R
n. Pick ε > 0. Since
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A is uniformly globally attractive for H, there exists T such that, for all
(t, ji) ∈ dom φi, if t+ ji ≥ T , then,

|φx
1(t, j1)− x⋆| ≤ 1

2
ε, |φx

2(t, j2)− x⋆| ≤ 1

2
ε. (15)

Choose j0 = min{ji : t + ji ≥ T, (t, ji) ∈ dom φi, i ∈ {1, 2}}. Then, we have
that for all t ≥ T − j0, (15) holds. Therefore, we have,

|φx
1(t, j1(t))− φx

2(t, j2(t))| ≤ ε ∀ t ≥ T − j0,

where (t, ji(t)) ∈ dom φi, namely, H is δUGA with respect to x. �

The incremental stability property can also be studied in terms of the
auxiliary hybrid system H̃ introduced in Section 2. The following result
establishes a relationship between GAS of a diagonal-like set for H̃ and δGAS
for H.

Theorem 3.12. Consider a hybrid system H on R
n with state z = (x, ν),

x ∈ R
r, ν ∈ R

n−r, where n, r are integers such that 1 ≤ r ≤ n, satisfying
Assumption 2.1. Then, for the set Ã in (7), the following hold:

i) H is δGAS with respect to x if Ã is GAS for the auxiliary hybrid system

H̃ = (C̃, f̃ , D̃, g̃);

ii) H with r = n is δUGA with respect to x if and only if Ã is UGA for

H̃;

iii) H with r = n is δGAS with respect to x (uniformly) if and only if Ã is

GAS (respectively, uniformly) for H̃.

Proof Let ξ, η ∈ R
n and φ̃ = (φ̃1, φ̃2) be a maximal solution to H̃ with

φ̃i = (φ̃x
i , φ̃

ν
i ) ∈ R

n and φ̃(0, 0) = (ξ, η). Furthermore, by Lemma 2.13, there
exists φi = (φx

i , φ
ν
i ) ∈ SH for i ∈ {1, 2} with φ1(0, 0) = ξ and φ2(0, 0) = η.

Inspired by the proof of [2, Lemma 2.3], we define a hybrid arc σ⋆ (not
necessarily a solution) such that for each (t, j(t)) ∈ dom φ̃, we have

σ⋆(t, j(t)) =
1

2

(
φ̃x
1(t, j(t)) + φ̃x

2(t, j(t)), φ̃
x
1(t, j(t)) + φ̃x

2(t, j(t))
)

18



Moreover, the solution φ̃ and the hybrid arc σ⋆ satisfy

|φ̃(t, j(t))|Ã = inf
σ∈{(x̃1,x̃2)∈Rr×Rr :x̃1=x̃2}

∣∣∣(φ̃x
1(t, j(t)), φ̃

x
2(t, j(t)))− σ

∣∣∣

=
∣∣∣(φ̃x

1(t, j(t)), φ̃
x
2(t, j(t)))− σ⋆

∣∣∣

=

√
2

2
|φx

1(t, j1(t))− φx
2(t, j2(t))|

(16)

for every t ∈ R≥0 and some j(t), j1(t), j2(t) such that (t, j(t)) ∈ dom φ̃ and
(t, ji(t)) ∈ domφi, i ∈ {1, 2}.

First, we show item i). Assume that Ã is stable to H̃. Then, given
ε > 0, pick δ > 0 such that |φ̃(0, 0)|Ã ≤ δ implies |φ̃(t, j(t))|Ã ≤ 1√

2
ε for all

(t, j(t)) ∈ dom φ̃ and |φ1(0, 0)− φ2(0, 0)| ≤ δ. Therefore, from (16) it follows
that

|φx
1(t, j1(t))− φx

2(t, j2(t))| =
√
2|φ̃(t, j(t))|Ã ≤ ε (17)

for all t ∈ R≥0 and some j(t), j1(t), j2(t) such that (t, ji(t)) ∈ domφi,
i ∈ {1, 2}, and hence H is δS with respect to x. Next, we show that H is

δGA with respect to x. Since Ã is globally attractive for H̃, then for any
solution φ̃ to H̃, it follows that

lim
t→∞

(t,j(t))∈dom φ̃

|φ̃(t, j(t))|Ã = 0.

From (16) and Lemma 2.13, it follows that

lim
t→∞

(t,ji(t))∈dom φi,i∈{1,2}
|φx

1(t, j1(t))−φx
2(t, j2(t))| = lim

t→∞
(t,j(t))∈dom φ̃

√
2|φ̃(t, j(t))|Ã = 0,

(18)
implying thatH is δGA with respect to x. Therefore, H is δGAS with respect
to x.

Now we show item ii). First, we show sufficiency. Assume that Ã is UGA

for H̃. Given ε > 0 and r̄ > 0, let |φ̃(0, 0)|Ã ≤ 1√
2
r̄ and |φ1(0, 0)−φ2(0, 0)| ≤ r̄

then there exists T > 0 such that for t ≥ T implies |φ̃(t, j(t))|Ã ≤ 1√
2
ε.

Therefore, from (16) with r = n, it follows that |φ1(t, j1(t))− φ2(t, j2(t))| =√
2|φ̃(t, j(t))|Ã ≤ ε for all t ≥ T and some j(t), j1(t), j2(t) such that

(t, ji(t)) ∈ domφi, i ∈ {1, 2}. Then, H is δUGA with respect to x. Us-

ing the fact that, r with r = n, (16) leads to |φ̃(t, j(t))|Ã =
√
2
2
|φ1(t, j1(t))−
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φ2(t, j2(t))| (full state equivalence) for all t ∈ R≥0 and some j(t), j1(t), j2(t)
such that (t, ji(t)) ∈ domφi, i ∈ {1, 2}, necessity follows similarly.

Lastly, we show item iii). Since Ã is UGAS for H̃, then by [19, Theorem
3.40] there exists β ∈ KL such that

|φ̃(t, j(t))|Ã ≤ β(|φ̃(0, 0)|Ã, t).

for every (t, j(t)) ∈ dom φ̃. From (16) with r = n, we have that

|φ1(t, j1(t))− φ2(t, j2(t))| =
√
2|φ̃(t, j(t))|Ã ≤

√
2β(|φ̃(0, 0)|Ã, t)

≤
√
2β

(√
2

2
|φ1(0, 0)− φ2(0, 0)|, t

)

for all t ∈ R≥0 and some j(t), j1(t), j2(t) such that (t, ji(t)) ∈ domφi,
i ∈ {1, 2} and (t, j(t)) ∈ dom φ̃. Therefore, by Theorem 3.10, H is δUGAS
with respect to x. To show the other direction, note that when r = n,
equation (16) becomes |φ̃(t, j(t))|Ã =

√
2
2
|φ1(t, j1(t))− φ2(t, j2(t))| (full state

equivalence). In particular, given that H is δUGAS with respect to x and
two maximal solutions φ1, φ2 to H, it follows from Theorem 3.10 that there
exists β̄ ∈ KL such that

|φ̃(t, j(t))|Ã =

√
2

2
|φ1(t, j1(t))− φ2(t, j2(t))| ≤

√
2

2
β̄ (|φ1(0, 0)− φ2(0, 0)|, t)

≤
√
2

2
β̄(
√
2|φ̃(0, 0)|Ã, t)

for all t ∈ R≥0 and some j(t), j1(t), j2(t) such that (t, ji(t)) ∈ domφi,

i ∈ {1, 2} and (t, j(t)) ∈ dom φ̃. Therefore, by [19, Theorem 3.40], H̃ is
UGAS. Note that the sufficiency of the non-uniform case is proved in item
i); the necessity follows from (16) with r = n, (17) and (18). �

The following result provides a Lyapunov condition that guarantees the
stability property of Ã for H̃.

Theorem 3.13. [19, Theorem 3.18] Consider a hybrid system H on R
n with

state z ∈ R
n satisfying Assumption 2.1. Suppose V is a Lyapunov function

candidate10 for H̃ = (C̃, f̃ , D̃, g̃) in (8), and there exist α1, α2 ∈ K∞ and a

10See [19, Theorem 3.16] for a definition.
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positive definite continuous function ρ such that

α1(|z̃|Ã) ≤ V (z̃) ≤ α2(|z̃|Ã) ∀ z̃ ∈ C̃ ∪ D̃ ∪ g̃(D̃), (19a)

〈∇V (z̃), f(z̃)〉 ≤ −ρ(|z̃|Ã) ∀ z̃ ∈ C̃, (19b)

V (g(z̃))− V (z̃) ≤ −ρ(|z̃|Ã) ∀ z̃ ∈ D̃. (19c)

Then, Ã defined in (7) is UGAS for H̃. Furthermore, H is δGAS.

Remark 3.14. Relaxed versions of Theorem 3.13 can be found in [19, Propo-
sitions 3.24, 3.27, and 3.29]. Note that the sufficient conditions in (19) re-
duce to those for continuous-time systems as in [2, Remark 2.4] when C = R

n

and D = ∅. Furthermore, the case when C = ∅ and D = R
n provides a ver-

sion for discrete-time systems, which we are not aware of existing in the
literature. The conditions in (19) are also illustrated in [20, Section VI] on
what they require for hybrid systems.

The next result considers the case when a subset of Ã is UGAS for H̃.
Its proof is inspired by the ideas in the proof of Theorem 3.12.

Corollary 3.15. Consider a hybrid system H on R
n with state z = (x, ν),

x ∈ R
r, ν ∈ R

n−r, and n, r are integers such that 1 ≤ r ≤ n, satisfying
Assumption 2.1. Then, H is δGA with respect to x if a nonempty closed set
As ⊂ Ã is GA for the auxiliary hybrid system H̃ = (C̃, f̃ , D̃, g̃).

Proof Consider two maximal solutions φi = (φx
i , φ

ν
i ) ∈ SH for i ∈ {1, 2} with

φ1(0, 0) = ξ and φ2(0, 0) = η. For each (t, ji) ∈ dom φi, by Lemma 2.13, there
exists φ̃ ∈ SH̃ with φ̃(0, 0) = (ξ, η) such that φ̃(t, j(t)) = (φ1(t, j1(t)), φ2(t, j2(t))).

Since As ⊂ Ã, then |φ̃(t, j)|Ã ≤ |φ̃(t, j(t))|As
. Furthermore, since H̃ has As

global attractive, |φx
1(t, j1(t))−φx

2(t, j2(t))| =
√
2|φ̃(t, j(t))|Ã ≤

√
2|φ̃(t, j(t))|As

for every t ∈ R≥0 and some j(t), j1(t), j2(t) such that (t, ji(t)) ∈ domφi, i ∈
{1, 2} and (t, j(t)) ∈ dom φ̃, following similar steps as in the proof of Theo-
rem 3.12, we have lim

t→∞
(t,ji(t))∈dom φi,i∈{1,2}

|φx
1(t, j1(t))− φx

2(t, j2(t))| = 0. Thus, H

is δGA with respect to x. �
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4. Conclusion

Several notions of incremental stability for hybrid systems were intro-
duced and studied. These notions prioritize the time parameter t due to
the disparity of the domain of the solutions to such systems. An equivalent
KL characterization of incremental stability as well as relationships between
a set being asymptotically stable and a system being incrementally stable
were also established. Existing results from the literature of hybrid systems,
including those using Lyapunov functions, can already be applied to the pro-
posed auxiliary hybrid system to certify incremental stability of the original
system. Current efforts are focused on constructive sufficient conditions for
incremental stability. We acknowledge that there are difficulties in relaxing
these conditions for hybrid systems, and such relaxations are part of our
current research.
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Appendix A. Proof of Lemma 2.13

Proof Pick a maximal solution φ̃ ∈ SH̃ with φ̃(0, 0) = (ξ, η), where ξ, η ∈ R
n.

For some sequence 0 = t0 ≤ t1 ≤ t2 ≤ . . ., let dom φ̃ :=
⋃∞

j=0([tj, tj+1], j) if

there are infinitely many jumps, otherwise let dom φ̃ :=
⋃J−1

j=0 ([tj , tj+1], j) ∪
([tJ ,∞), J). Then, by [19, Definition 2.6],

1) for each j ∈ N with Ij = [tj, tj+1], and possibly of the form IJ = [tJ ,∞)
for J = sup(t,j)∈dom φ̃ j, having a nonempty interior, φ̃(t, j) satisfies

φ̃(t, j) ∈ C × C for each t ∈ int Ij, and ˙̃
φ1(t, j) = f(φ̃1(t, j)) and

˙̃
φ2(t, j) = f(φ̃2(t, j)) for almost all t ∈ Ij ;

2) for all (t, j) ∈ dom φ̃ such that (t, j + 1) ∈ dom φ̃, we have

a) if φ̃(t, j) ∈ D × (C \ D), then φ̃1(t, j) ∈ D and φ̃1(t, j + 1) =
g(φ̃1(t, j)), φ̃2(t, j) ∈ C \D and φ̃2(t, j + 1) = φ̃2(t, j);

b) if φ̃(t, j) ∈ (C \D)×D, then φ̃1(t, j) ∈ C \D and φ̃1(t, j + 1) =
φ̃1(t, j), φ̃2(t, j) ∈ D and φ̃2(t, j + 1) = g(φ̃2(t, j));
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c) if φ̃(t, j) ∈ D×D, then φ̃1(t, j) ∈ D and φ̃1(t, j+1) = g(φ̃1(t, j)),
φ̃2(t, j) ∈ D and φ̃2(t, j + 1) = g(φ̃2(t, j)).

We use Algorithm 1 to define a hybrid arc φ1.

Algorithm 1 Equivalence for solutions.

Initialize φ1(0, 0) = φ̃1(0, 0); j = 0, j1 = 0;
while Ij × {j} belongs to dom φ̃1 do

for each t ∈ Ij do

Define φ1(t, j1) = φ̃1(t, j)
if φ̃(tj+1, j) ∈ D × (C \D) or φ̃(tj+1, j) ∈ D ×D then

Update j1 = j1 + 1; j = j + 1;
Define φ1(tj, j1) = φ̃1(tj , j)

else

Update j = j + 1
end if

end for

end while

Note that the resulting hybrid arc φ1 mimics the trajectory of φ̃1 but
eliminates the jumps in φ̃1 that are triggered by the condition b) above. From
this algorithm, for every (t, j) ∈ dom φ̃1, there exists (t, j1) ∈ dom φ1 such
that φ1(t, j1) = φ̃1(t, j). Moreover, by using the property of φ̃, φ1 satisfies

• for each j1 having a Ij1 with nonempty interior, φ1(t, j1) ∈ C for each
t ∈ int Ij1, and φ̇1(t, j1) = f(φ1(t, j1)) for almost all t ∈ Ij1,

• for all (t, j1) ∈ dom φ1 such that (t, j1+1) ∈ dom φ1, we have φ1(t, j1) ∈
D, φ1(t, j1 + 1) = g(φ1(t, j1)).

Thus, φ1 is a solution to H with φ1(0, 0) = ξ.
Such a strategy can be applied to φ̃2 to construct a hybrid arc φ2 such

that φ2 is a solution to H with φ2(0, 0) = η. Note that the same procedure
can be used to construct φ̃ from φ1 and φ2. �

Appendix B. Details of Example 2.5

The δS property with respect to x is verified as follows. Note that, for
the case of q(0, 0) = −1 and up until the second jump (i.e., (t2, 1)), a solution
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from φ(0, 0) = (φx(0, 0),−1) ∈ C is given by φx(t, 0) = −t + φx(0, 0) and
φq(t, 0) = −1 for all t ∈ [0, 1 + φx(0, 0)], and φx(t, 1) = t − φx(0, 0) − 2,
φq(t, 1) = 1 for all t ∈ [1 + φx(0, 0), 3 + φx(0, 0)]. Given ε > 0, consider any
two maximal solutions given by φ1 = (φx

1, φ
q
1) and φ2 = (φx

2, φ
q
2) to H from

φ1(0, 0) and φ2(0, 0), such that |φ1(0, 0)−φ2(0, 0)| ≤ δ, where δ ∈ (0, ε] and δ

is small enough to yield φ
q
1(0, 0) = φ

q
2(0, 0) = −1 (or φq

1(0, 0) = φ
q
2(0, 0) = 1,

which can be proved similarly). Without loss of generality, assume that
φx
1(0, 0) > φx

2(0, 0). Then

|φx
1(t, 0)− φx

2(t, 0)| = | − t + φx
1(0, 0)− (−t + φx

2(0, 0))|
= |φx

1(0, 0)− φx
2(0, 0)| ≤ δ ≤ ε

for t ∈ [0, 1 + φx
2(0, 0)]. Since φ2 jumps first, it follows that after the jump

φ
q
2(1 + φx

2(0, 0), 1) = 1 and for t ∈ [1 + φx
2(0, 0), 1 + φx

1(0, 0)] we have that

|φx
1(t, 0)− φx

2(t, 1)| = | − t+ φx
1(0, 0)− (t− φx

2(0, 0)− 2)|
≤ | − 2(1 + φx

2(0, 0)) + 2 + φx
1(0, 0) + φx

2(0, 0)|
≤ |φx

1(0, 0)− φx
2(0, 0)| ≤ δ ≤ ε.

Then, it follows that

|φx
1(t, 1)− φx

2(t, 1)| = |t− φx
1(0, 0)− 2− (t− φx

2(0, 0)− 2)|
= | − φx

1(0, 0) + φx
2(0, 0)| ≤ δ ≤ ε

for t ∈ [1 + φx
1(0, 0), 3 + φx

2(0, 0)]. Proceeding in the same way, we obtain
|φx

1(t, j1) − φx
2(t, j2)| ≤ ε for each t > 3 + φx

2(0, 0). Then, the system is δS
with respect to x.

Appendix C. Details of Example 2.7

The δGAS property of the example can be verified as follows. NoteH also
satisfies Assumption 2.1. The arguments for proving incremental attractivity
follow similarly to those of Example 2.6.

To prove the δS property, for a given ε > 0, pick two solutions φ1 =
(φx

1, φ
q
1, φ

τ
1, φ

k
1) and φ2 = (φx

2 , φ
q
2, φ

τ
2, φ

k
2) to the system from φ1(0, 0) and

φ2(0, 0) such that |φ1(0, 0)− φ2(0, 0)| < δ, where δ is chosen such that

1

1− γ
δ + (1− exp(−δ))

1 + γ

1− γ
M ≤ min{1, ε}.
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Note that δ < 1 guarantees that φk
1(0, 0) = φk

2(0, 0). For each j ∈ N\{0}, let
t̄j = max(t,j−1)∈dom φ1∩domφ2

t and t̄′j = min(t,j)∈dom φ1∩domφ2
t. Then, we have

that for each t ∈ [0, t̄1]

|φx
1(t, 0)− φx

2(t, 0)| ≤ exp(−t)|φx
1(0, 0)− φx

2(0, 0)|
+ (1− exp(−t))|φq

1(0, 0)− φ
q
2(0, 0)|

≤ exp(−t)δ + (1− exp(−t))δ ≤ δ ≤ ε,

(C.1)

where we used the property |φx
1(0, 0) − φx

2(0, 0)| ≤ |φ1(0, 0) − φ2(0, 0)| ≤ δ

and, likewise, |φq
1(0, 0)− φ

q
2(0, 0)| ≤ δ. For each t ∈ [t̄1, t̄

′
1],

|φx
1(t, 1)− φx

2(t, 0)| ≤ exp(−t + t̄1)|(φx
1(t1, 0)− φx

2(t̄1, 0))|
+ (1− exp(−t + t̄1))|γφq

1(0, 0) + φ
q
2(0, 0)|

≤ δ + (1− exp(−δ))(1 + γ)M ≤ ε,

(C.2)

where we used the fact that φq
1(0, 0), φ

q
2(0, 0) ∈ [−M,M ] and (C.1). In fact,

for each t ∈ [t̄′i−1, t̄i], where i ∈ N \ {0, 1},

|φx
1(t, i− 1)− φx

2(t, i− 1)| ≤ exp(−t + t̄′i−1)|(φx
1(t̄

′
i−1, i− 1)− φx

2(t̄
′
i−1, i− 1))|

+ (1− exp(−t+ t̄′i−1))γ
i−1|φq

1(0, 0)− φ
q
2(0, 0)|

≤
i−1∑

k=0

γkδ + (1− exp(−δ))
i−2∑

k=0

γk(1 + γ)M ≤ ε.

Moreover, for each t ∈ [t̄i, t̄
′
i], where i ∈ N \ {0, 1},

|φx
1(t, i)− φx

2(t, i− 1)| ≤ exp(−t + t̄i)|(φx
1(t̄i, i− 1)− φx

2(t̄i, i− 1))|
+ (1− exp(−t+ t̄i))γ

i−1|γφq
1(0, 0) + φ

q
2(0, 0)|

≤
i−1∑

k=0

γkδ + (1− exp(−δ))

i−1∑

k=0

γk(1 + γ)M ≤ ε.

Therefore, the system is δS with respect to x leading to the fact that H is
δGAS with respect to x.
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