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Abstract

The comparison between time-varying hybrid trajectories is crucial for tracking, observer design and synchronisation problems
for hybrid systems with state-triggered jumps. In this paper, a generic distance function is designed that can be used for
this purpose. The so-called “peaking phenomenon”, which occurs when using the Euclidean distance to compare two hybrid
trajectories, is circumvented by taking the hybrid nature of the system explicitly into account. Based on the proposed distance
function, we define the stability of a trajectory and present sufficient Lyapunov-type conditions for hybrid system with state-
triggered jumps. A constructive Lyapunov function design is presented for hybrid systems with affine flow and jump maps
and a jump set that is a hyperplane. The stability conditions can then be verified using linear matrix conditions. Finally, for
this class of systems, we present a tracking controller that asymptotically stabilises a given hybrid reference trajectory and we
illustrate our results with an example.
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1 Introduction

Hybrid system models have proven valuable to capture
the dynamics of complex systems arising in engineer-
ing, biological, and economical systems as these mod-
els combine continuous-time dynamics with discrete
events or jumps [11, 12]. While the stability of isolated
points or closed sets of hybrid systems is relatively well-
understood [11, 12], the stability of time-varying tra-
jectories received significantly less attention and many
issues are presently unsolved. Given the importance
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of stability of trajectories in tracking control, observer
design and synchronisation problems, it is important to
address these open issues.
One of the main complications to study the stability
of hybrid trajectories is the “peaking phenomenon” of
the Euclidean distance between two trajectories, that
can be observed when jump times do not coincide, and
the states of two hybrid trajectories are compared at
the same continuous-time instant, cf. [4, 15, 18, 22]. Fo-
cussing on mechanical systems with unilateral position
constraints, the ‘peaking phenomenon’ has motivated
the Zhuravlev-Ivanov method, cf. [6] and related method
of [9], in which tracking control and observer problems
are defined by requiring the asymptotic stability of a set
that consists of the real system and ‘mirrored’ images.
For impacting mechanical systems, in [10, 18, 19], the
standard Euclidean state error is employed away from
the impacts times, while near impacts, only the position
error, and no velocity error is considered. Alternat-
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ively, measures on complete trajectories are presented
in [7, 11].
To effectively address stability problems for a large class
of hybrid systems, we aim to express stability in terms
of a distance function evaluated along trajectories.
In [4], this is facilitated by a distance function that takes
the jumping nature of the hybrid system into account,
therewith avoiding the “peaking phenomenon”. For this
purpose, a distance function between two states is used
which is zero if either both states are equal, or they can
become identical after imminent jumps. We note that
this implies that the functions considered do not satisfy
the conditions to be a metric. However, no constructive
design for this distance function was presented in [4].
Focussing on a class of constrained mechanical systems,
a similar distance function was employed in [23] to
study continuity of trajectories with respect to initial
conditions. In both works, ad-hoc techniques were used
to design the distance function.
As a first contribution in the current paper, we present
a constructive and general design for the distance func-
tion. We show that when (global) asymptotic stability is
defined with respect to the new distance function, then
the proposed distance function provides an intuitively
correct comparison between two hybrid trajectories.
Subsequently, sufficient conditions for asymptotic sta-
bility are presented that rely on Lyapunov functions
that may increase during either flow or jump, as long
as the Lyapunov function eventually decreases along
solutions. For this purpose, maximal or minimal aver-
age dwell-time arguments are employed, as proposed in
the context of impulsive systems in [13]. The final con-
tribution consists of the application of the developed
stability theory to tracking control problems for a class
of hybrid systems where the jump map is an affine
function of the state, the jump set is a hyperplane, and
the continuous-time dynamics can be influenced by a
bounded control input. A piecewise affine tracking con-
trol law is designed that achieves asymptotic tracking
in the proposed distance measure. Finally, the results of
this paper are illustrated with an example. Preliminary
results have been advertised in [3].
This paper is outlined as follows. We present the class of
hybrid systems considered in Section 2. By presenting
the constructive distance function design, in Section 3,
stability of trajectories is defined and a Lyapunov the-
orem is formulated. A constructive piecewise quadratic
Lyapunov function is designed in Section 4 for a class
of hybrid systems with affine jump maps and the jump
set contained in a hyperplane. These results are applied
to tracking control problems in Section 5. Finally, an
example is given in Section 6, followed by conclusions
in Section 7.
Notation: Let N and N>0 denote the set of nonnegative
and positive integers, respectively. For a setX ⊂ Rn, ∂X
denotes its boundary and for each y ∈ Rn, the distance
between y andX is dist(y,X) := infx∈X ‖x−y‖. The set
B ⊂ Rn is the closed unit ball. Given x ∈ Rn, y ∈ Rm,
let (x, y) denote (xT , yT )T . Given a (possibly set-valued)

map F with domain of definition dom F ⊆ Rn and a
set S ⊆ dom F , F (S) = {y | y ∈ F (x), with x ∈ S}
denotes its image; F (y) = ∅ for y 6∈ dom F , F k(x),
with x ∈ Rn, k ∈ N>0, denotes F (F k−1(x)) and for
all x ∈ Rn, F 0(x) = {x}. We denote the pre-image
as F−1(S) = {x |F (x) ∩ S 6= ∅}. A set-valued map
F : S ⊂ Rn ⇒ Rn is outer semicontinuous if its graph
{(x, y) ∈ Rn × Rn |x ∈ S, y ∈ F (x)} is closed, and

locally bounded if, for each compact set S̃ ⊆ S, F (S̃)
is bounded. For n,m ∈ N>0, let In and Omn denote
the identity matrix and the matrix of zeros of dimen-
sion n × n and m × n, respectively. Given matrices
A,B ∈ Rn×n, A ≺ 0 and A � 0 denote that A is sym-
metric and negative definite or negative semidefinite,
respectively.

2 Hybrid system model

Consider the hybrid system

ẋ ∈ F (t, x) x ∈ C, (1a)

x+ ∈ G(x) x ∈ D, (1b)

with F : [t0,∞) × C ⇒ Rn and G : D ⇒ Rn, where
C ⊆ Rn and D ⊆ Rn. We emphasize that the jump map
G is independent of the time t, which, in the following,
will be exploited in the design of the distance function.
In contrast to embedding an extra variable with dynam-
ics ṫ = 1, we prefer to use explicit time-dependency of
the flow map F , as this allows to study the perturbation
of initial conditions without perturbing the initial time.
The class of hybrid systems in the form (1) is quite gen-
eral and permits to model systems arising in many rel-
evant applications, including mechanical systems with
impacts [11] and event-triggered control systems, see
e.g. [20]. We consider systems (1) that satisfy the fol-
lowing “hybrid basic conditions” (adapted to allow for
non-automomous flow maps).

Assumption 1 The data of the hybrid system satisfies

• C,D are closed subsets of Rn with C ∪D 6= ∅;
• the set-valued mapping F (t, x) is non-empty for all

(t, x) ∈ [t0,∞)×C, measurable, and for each bounded
closed set S ⊂ [t0,∞) × C, there exists an almost
everywhere finite function m(t) such that ‖f‖ ≤ m(t)
holds for all f ∈ F (t, x) and for almost all (t, x) ∈ S;

• G : D ⇒ Rn is nonempty, outer semicontinuous and
locally bounded.

We consider solutions ϕ to (1) defined on a hybrid time
domain dom ϕ ⊂ [t0,∞)×N as given in [11]. The func-
tion ϕ : dom ϕ 7→ Rn is a solution of (1) when jumps
satisfy (1b) and, for fixed j ∈ N, the function t 7→ ϕ(t, j)
is locally absolutely continuous in t and a Krasovskii
solution to (1a). This means ϕ(t, j) ∈ D and ϕ(t, j +
1) ∈ G(ϕ(t, j)) for all (t, j) ∈ dom ϕ such that (t, j +
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1) ∈ dom ϕ and ϕ(t, j) ∈ C, d
dtϕ(t, j) ∈ F̄ (t, ϕ(t, j))

for almost all t ∈ Ij := {t | (t, j) ∈ dom ϕ} and all j
such that Ij has nonempty interior. Herein, F̄ (t, x) =⋂
δ≥0 co{F (t, (x + δB) ∩ C)} and co denotes the closed

convex hull operation. We note that this convexifica-
tion renders F̄ (t, x), when restricted to a bounded closed
set S, convex, outer semi-continuous and measurable in
t, such that solutions to the differential equation can
be defined, cf. [8, Theorem 6, p. 86]. The solution ϕ is
said to be maximal if it cannot be extended, complete
if dom ϕ is unbounded, and dom ϕ is called unbounded
in t-direction when for each T ≥ t0 there exist a j such
that (T, j) ∈ dom ϕ.

3 Design of distance function and stability no-
tion

We restrict our attention to hybrid systems satisfying
the following assumption.

Assumption 2 The data of the hybrid system (1) is
such that G is a proper function (cf. Definition 1.4.11
in [2]), there is a k > 0 for which Gk(D) ∩ D = ∅ and
every maximal solution of (1) has a hybrid time domain
that is unbounded in t-direction.

This assumption implies that neither Zeno behaviour
nor finite-time escape of solutions are possible.

Definition 1 Consider the hybrid system (1) satisfying
Assumption 1 and let k̄ > 0 denote the minimum integer
for which Assumption 2 holds. Let the distance function
d : (C ∪D)2 7→ R≥0 be defined by

d(x, y) = inf
z∈A
‖(x, y)− z‖ (2)

with

A :=
{

(zx, zy) ∈ (C ∪D)2
∣∣ ∃k1, k2 ∈ {0, 1, . . . , k̄},
Gk1(zx) ∩Gk2(zy) 6= ∅

}
. (3)

The following theorem summarises particular properties
of the distance function d.

Theorem 1 Consider the hybrid system (1) satisfying
Assumption 1 and let k̄ denote the minimum integer for
which Assumption 2 holds. The setA in (3) is closed and
the function d in Definition 1 is continuous and satisfies

1) d(x, y) = 0 if and only if there exist k1, k2 ∈
{0, 1, . . . , k̄} such that Gk1(x) ∩Gk2(y) 6= ∅,

2) {y ∈ C∪D | d(x, y) < β} is bounded for all x ∈ C∪D,
and all β > 0, and

3) d(x, y) = d(y, x), for all x, y ∈ C ∪D.

PROOF. In order to prove 1), we prove that the in-
fimum in (2) is always attained. First, we observe from
Assumption 1 thatG is outer semicontinuous, which dir-
ectly implies that G−1 is outer semicontinuous. In addi-
tion, as G is proper according to Assumption 2, we ob-
serve that G−1 is locally bounded, cf. [2].
Since the composition M1 ◦M2 of set-valued mappings
M1 andM2 is outer semicontinuous and locally bounded
when M1 and M2 are outer semicontinuous and locally
bounded, we observe that Gk2 is outer semicontinuous
and locally bounded for all k2 ∈ {0, 1, . . . , k̄}. In addi-
tion, reusing this argument, G−k1Gk2 is outer semicon-
tinuous and locally bounded for all k1, k2 ∈ {0, 1, . . . , k̄}.
Note that A = ∪k1,k2∈{0,1,...,k̄}Ak1k2 , with Ak1k2 :=

{(x, y) ∈ (C ∪D)2 | y ∈ G−k1Gk2(x)}, cf. (3). As, for all
k1, k2 ∈ {0, 1, . . . , k̄}, G−k1Gk2 is outer semicontinuous
and locally bounded, and (C ∪ D)2 is closed, we con-
clude that each setAk1k2 is closed. Consequently, we find
that the functions dk1k2(x, y) := dist((x, y), Ak1k2), for
each k1, k2 ∈ {0, 1, . . . , k̄}, are either continuous func-
tions, or, when Ak1k2 = ∅, identical to infinity. Since A00

is nonempty, we observe that d00(x, y) is a continuous
and locally bounded function in C ∪ D. We may write
d(x, y) = mink1,k2∈{0,1,...,k̄} dk1k2(x, y), proving that d is
continuous. As each set Ak1k2 is closed, A is closed, such
that d(x, y) = 0 if and only if (x, y) ∈ A, proving 1).
We now prove 2) by showing that, for every x ∈ C ∪D,

Y∞(x) := {y ∈ C ∪D | ∃(zx, zy) ∈ A,
‖x− zx‖ ≤ β, ‖y − zy‖ ≤ β} (4)

is bounded for β > 0. For any x, the set X0
β :=

{wx | ‖wx − x‖ ≤ β} is compact. Since we have shown
above that G−k1Gk2 is outer semicontinuous and locally
bounded for all k1, k2 ∈ {0, 1, . . . , k̄}, we find that the set
G−k1Gk2(X0

β) is compact for all k1, k2 ∈ {0, 1, . . . , k̄}.
As zy in (4) has to satisfy zy ∈ G−k2Gk1(X0

β) for some

k1, k2 ∈ {0, 1, . . . , k̄}, we have shown that zy is con-
tained in a bounded set. Hence, we observe that Y∞(x) is
bounded, which implies 2). Property 3) directly follows
from symmetry of (3), which completes the proof. 2

Remark 1 Note that the function d in (2) is not a met-
ric, as it does not satisfy the triangle inequality. Namely,
if G is set-valued and, for some x, G(x) contains two
distinct points y and z, then d(x, y) = 0 and d(x, z) = 0
by Definition 1, while d(y, z) 6= 0 may still hold in many
cases.

An alternative distance function design is presented in
Appendix A, which has the advantage that, evaluated
along solutions, it yields a continuous function in time.
We prefer (2) due to its more simple formulation.
In order to enable the comparison of the states of two
trajectories in terms of the distance d, similar to [4], we
introduce the extended hybrid system with state q =
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(x, y) ∈ (C ∪D)2, flow map

q̇ ∈ Fe(t, q) := (F (t, x), F (t, y)), (5a)

for (x, y) ∈ Ce := C2 and jumps characterised by

q+ =Ge(q) :=


(G(x), y) if x ∈ D, y ∈ C \D
(x,G(y)) if x ∈ C \D, y ∈ D
{(G(x), y), (x,G(y))} if x, y ∈ D

for q∈De :=
{

(x, y) ∈ (C∪D)2 |x ∈ D ∨ y ∈ D
}

(5b)

and select the initial condition (ϕx(t0, 0), ϕy(t0, 0)) =
ϕq(t0, 0). We note that the set-valued function Ge above
motivated the design of the set A in (3), cf. [4]. Namely,
A represents the smallest set that contains all points
(x, y) with x = y that can be forward invariant under
(5).
Solutions of this extended system generate a com-
bined hybrid time domain. Introducing ϕ̄x(t, j) :=(
In Onn

)
ϕq(t, j), and ϕ̄y(t, j) :=

(
Onn In

)
ϕq(t, j),

hence allows to evaluate the distance d(ϕ̄x(t, j), ϕ̄y(t, j))
at every time instant (t, j) ∈ dom ϕq.
Given a trajectory ϕx of (1), we say that a trajectory
(ϕ̄x, ϕ̄y) of (5) represents ϕx in the first n states when
ϕ̄x is a reparameterisation of ϕx. Clearly, any traject-
ory to (5) represents ϕx in the first n states when both
ϕ̄x(t0, 0) = ϕx(t0, 0) holds and from this initial con-
dition system (1) has a unique solution, as considered
in [4].

Definition 2 Consider a hybrid system (1) satisfying
Assumption 2 and let d be given in (2). The trajectory
ϕx of (1) is called stable with respect to d if for all ε > 0
there exists a δ(ε) > 0 such that for every initial condition
ϕy(t0, 0) satisfying d(ϕx(t0, 0), ϕy(t0, 0)) ≤ δ(ε), it holds
that

d(ϕ̄x(t, j), ϕ̄y(t, j)) < ε for all (t, j) ∈ dom ϕq, (6)

with ϕq(t, j) = (ϕ̄x(t, j), ϕ̄y(t, j)) being any maximal
solution to (5) with initial condition (ϕx(t0, 0), ϕy(t0, 0))
that represents ϕx in the first n states, and is called
asymptotically stable with respect to d if δ can be selec-
ted such that, in addition,

lim
t+j→∞

d(ϕ̄x(t, j), ϕ̄y(t, j)) = 0. (7)

When the trajectory ϕx is asymptotically stable with re-
spect to d and (7) holds for all maximal solutions ϕq to
(5), then the trajectory ϕx is called globally asymptotic-
ally stable with respect to d.

Remark 2 This stability notion is more general than
stability of the set A in (3) for system (5), since ini-
tial conditions of ϕq in (5) are restricted to ϕ̄x(t0, 0) =
ϕx(t0, 0).

To analyse stability using Lyapunov functions that may
increase during flow and decrease during jumps, or vice
versa, minimal and maximal average inter-jump time are
considered as follows.

Definition 3 ([13]) A hybrid time domain E is said to
have minimal average inter-jump time τ > 0 if there ex-
ists N0 > 0 such that for all (t, j) ∈ E and all (T, J) ∈ E
where T + J ≥ t+ j, it holds that J − j ≤ N0 + T−t

τ .
A hybrid time domain E is said to have maximal average
inter-jump time τ > 0, if there exists N0 > 0 such that
for all (t, j) ∈ E and all (T, J) ∈ E where T +J ≥ t+ j,
it holds that J − j ≥ T−t

τ −N0.
We say that a hybrid trajectory ϕq has a minimal or max-
imal average inter-jump time if dom ϕq has a minimal
or maximal average inter-jump time, respectively.

The following theorem presents Lyapunov-based suffi-
cient conditions for the stability of a trajectory ϕx of
(1). As we are interested in stability for given ϕx, these
conditions are imposed only near this trajectory.

Theorem 2 Consider a hybrid system (1) satisfying As-
sumptions 1 and 2. Let d be given in (2). The trajectory
ϕx of system (1) is asymptotically stable with respect to d
if there exist a continuous function V : Rn×Rn 7→ R≥0,
K∞-functions α1, α2, a scalar vL > 0 and scalars λc, λd
such that V is continuously differentiable on an open do-
main containing VL := V −1([0, vL]) and, for all (t, j) ∈
dom ϕx, it holds that

α1(d(ϕx(t, j), y)) ≤ V (ϕx(t, j), y) ≤ α2(d(ϕx(t, j), y)),

for all y such that (ϕx(t, j), y) ∈ Ce ∪De, (8)

V (g) ≤ eλdV (q), for all g ∈ Ge(q),
and all y such that q = (ϕx(t, j), y) ∈ De ∩ VL, (9)〈
∂V
∂q

∣∣∣
q
, f
〉
≤ λcV (ϕx(t, j), y) for all f ∈ F̄e(t, q)

and all y such that q = (ϕx(t, j), y) ∈ Ce ∩ VL, (10)

and at least one of the following conditions are satisfied:

1) λc < 0, λd ≤ 0;
2) all trajectories of (1) have minimal average inter-

jump time 2τ > 0, λc ≤ 0 and λd + λcτ < 0;
3) all trajectories of (1) have maximal average inter-

jump time 2τ > 0, λd ≤ 0 and λd + λcτ < 0.

When, in addition, (9) and (10) hold for all y such that
q = (ϕx(t, j), y) ∈ De and Ce, respectively, then ϕx is
globally asymptotically stable with respect to d.

PROOF. The proof is given in Appendix B. 2

Remark 3 The dependency of V on the traject-
ory ϕx(t, j) implies that V in Theorem 2 takes the
role of a (hybrid) time-dependent Lyapunov function
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v(t, j, y) = V (ϕx(t, j), y), with (t, j) ∈ dom ϕx. In this
manner, v(t, j, y) characterises the distance d(y, ϕx(t, j))
between ϕx at (t, j) and y.
The conditions (8)-(10) are closely related to the Lya-
punov conditions used for incremental stability, see
e.g. [1, 21] for ordinary differential equations and [16]
for hybrid systems where incremental stability is defined
with respect to the Euclidean distance, and [24] where
incremental stability with respect to non-Euclidean dis-
tance functions is investigated for ordinary differential
equations. In fact, if the conditions of Theorem 2 hold for
any solution ϕx(t, j) of (1), then they imply asymptotic
stability of the set A of system (5) and, equivalently,
an incremental stability property of (1) with respect
to the distance d. However, as mentioned above, those
conditions need to be satisfied for all ϕx, which makes
them stringent and our result relaxes this by requiring
(8)-(10) to hold for each point in the range of ϕx only.
Consequently, the conditions in Theorem 2 are less re-
strictive than the conditions for stability of the set A
obtained using the results of [11].
In fact, the stability of the trajectory ϕx considered in
Theorem 2 is less restrictive than stability of the setA for
the dynamics (5) (or, equivalently, incremental stability
of (1)), since the particular trajectory ϕx is known.

4 Constructive Lyapunov function design for
hybrid systems with affine jump map

In this section we present the design conditions for the
construction of a piecewise quadratic Lyapunov func-
tion that, locally, satisfies the requirements (8) and (9).
To be able to write the stability conditions in terms of
Linear Matrix Inequalities, we need to focus on a class
of “linear” hybrid systems: in particular, having single-
valued, affine and invertible jump maps and jump sets
characterised by a hyperplane as follows:

ẋ = f(t, x), x ∈ C, (11a)

x+ = Lx+H, x ∈ D (11b)

with the function f measurable in its first argument and
Lipschitz in its second argument, the matrix L ∈ Rn×n
being invertible, and H ∈ Rn. Furthermore, the sets C
and D are nonempty, closed and satisfy

C ⊆ {x ∈ Rn | Jx+K ≤ 0∧
(JL−1x+K − JL−1H)s ≤ 0}, (11c)

D := {x ∈ C | Jx+K = 0 ∧ z1x+ z2 ≤ 0}, (11d)

where the parameters JT , zT1 ∈ Rn \ {0}, K, z2 ∈ R
characterise the half hyperplane containing D, and s ∈
{−1, 1} is selected such that ngd := s(L−1)TJT is a
normal vector toG(D) pointing out of C. LetG(D) ⊂ C
and the following assumption hold.

D )D(G

C

TJ
TJT−sL

= 02z+x1z

3z=2z+x1z

4z−=K+Jx

= 0K+Jx

3z−=2z+x1z

J
5zsin

J
5zsin

Figure 1. Pictorial illustration of the phase space of (11)
when Assumption 3 is satisfied. The second and third bul-
let of this assumption imply that the intersection between
C and the domains depicted in dark gray and light gray,
respectively, is empty.

Assumption 3 The data of (11) is such that there exist
scalars z3, z4, z5 > 0 such that

• z1x+ z2 ≥ z3 for all x ∈ G(D),
• Jx+K < −z4 for all x ∈ C that satisfy |z1x+z2| ≤ z3,
• for all x ∈ C with z1x + z2 ≤ 0, there exists a y ∈ D

such that Jx+K ≤ −z5‖x− y‖,
• all maximal solutions of (11) are complete.

The first three bullets of this assumption are illustrated
in Fig. 1. Note that this assumption directly implies
D ∩ G(D) = ∅, cf. Assumption 2. All solutions to (11)
have a time domain that is unbounded in t-direction, as,
firstly,G(D)∩D = ∅ excludes Zeno-behaviour sinceD is
closed, secondly,G is linear and, thirdly, f is Lipschitz in
its second argument. Hence, Assumption 3 implies that
Assumptions 1 and 2 hold for system (11). In Section 6,
we present an example of a mechanical system that sat-
isfies (11) and Assumption 3.
In order to present a constructive Lyapunov function
design, we first introduce the function Ḡ : Rn 7→ Rn as

Ḡ(x) := Lx+H+M(Jx+K)+sLJT max(0, z1x+z2), (12)

where the parameter M ∈ Rn is to be designed. Note
that if x ∈ D, then Ḡ(x) = G(x) = Lx+H.
SinceG(D)∩D = ∅, Definition 1 implies that d(x, y) = 0
if and only if x = y, or x = G(y), or y = G(x). To design
a Lyapunov function V , we note that (8) requires that
V (x, y) = 0 if and only if d(x, y) = 0. Hence, we propose
the following piecewise quadratic Lyapunov function:

V (x, y) = min(‖x− y‖2P0
, ‖x− Ḡ(y)‖2Ps

, ‖Ḡ(x)− y‖2Ps
),

(13)
where the positive definite matrices P0, Ps ∈ Rn×n are
to be designed. While this function is not smooth, we
restrict our attention to a sufficiently small sub-level set
where, as we will show in Lemma 3, the function V is
smooth.
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Design of Lyapunov function parameters

To design the parameters P0, Ps and M of the Lyapunov
function V in (13), we employ the following lemma.

Lemma 3 Consider the hybrid system (11), let M ∈
Rn satisfy (JL−1M + 1)s < 0, let P0, Ps � 0 and let
Assumption 3 hold. Consider the function V in (13). If
for some λd ∈ R it holds that

(L+MJ)TPs(L+MJ) � eλdP0, (14)

P0 � eλdPs, (15)

then there exist K∞-functions α1, α2 and vL > 0 such
that the conditions (8) and (9) in Theorem 2 are satisfied
with VL = V −1([0, vL]) and the function V in (13) is
smooth on an open domain containg VL.

PROOF. The proof is given in Appendix B. 2

This lemma provides sufficient conditions on the hybrid
systems (11) and the Lyapunov function (13) such that
the conditions (8) and (9) are satisfied. In the follow-
ing section, we present a tracking control law, and ad-
ditional conditions on V , such that the other conditions
in Theorem 2 are also satisfied.

5 Tracking control problems

We now employ the results on the asymptotic stability
of jumping hybrid trajectories to solve a tracking prob-
lem of a hybrid trajectory with jumps.
We restrict our attention to tracking control problems
for the class of systems (11) with f(t, x) = Ax + E +
Bu(t, x), A ∈ Rn×n, E,B ∈ Rn, with a control law
u : [0,∞) × C 7→ R to be designed. In the scope of this
tracking problem, we consider a reference trajectory xd,
which is a solution to (11) for a feedforward input signal
u(t, x) = uff(t). We assume that y is a trajectory that is
generated by the control signal u(t, y) = uff(t)+ufb(t, y),
and assume that ufb vanishes along the trajectory xd,
i.e. ufb(t, xd(t, j)) = 0 for almost all (t, j) ∈ dom xd (ap-
propriate designs for ufb will depend on the known tra-
jectory xd). Hence, the flow map of the extended hybrid
system (5) is given by

Fe(t, xd, y) =

(
Axd+E+B(uff(t)+ufb(t, xd))

Ay+E+B(uff(t)+ufb(t, y))

)
. (16)

We partition Ce ∪De in the three sets S0, S1, S2 where
the minimiser of (13) is ‖x − y‖2P0

, ‖x − Ḡ(y)‖2Ps
or

‖Ḡ(x) − y‖2Ps
, respectively. Introducing the function

x̄d(t) :=xd(t, min
(t,j)∈dom xd

j), we design a switching feed-

back law ufb as:

ufb(t, y) =



−c0(x̄d(t)− y),

for (x̄d(t), y) ∈ S0

− βT
2

βT
2 β2

β1(t)− c1(x̄d(t)− Ḡ(y)),

for (x̄d(t), y) ∈ S1

− βT
4

βT
4 β4

β3(t)− c2(Ḡ(x̄d(t))− y),

for (x̄d(t), y) ∈ S2

(17)

with cT0 , c
T
1 , c

T
2 ∈ Rn,

β1(t) =
(
In −L−MJ

)( Ax̄d(t) +Buff(t) + E

AḠ◦(x̄d(t))+Buff(t)+E

)
,

β3(t) =
(
L+MJ −In

)( Ax̄d(t) +Buff(t) + E

AḠ(x̄d(t))+Buff(t)+E

)
,

β2 = −(L + MJ)B and β4 = −B, where Ḡ◦(x) is de-
signed as Ḡ◦(x) = (L + MJ)−1(x −H −MK), which,
restricted to S1 ∩ VL, coincides with the inverse of Ḡ.
Using this switched control law, which switches on the
basis of the Lyapunov function designed in (13), we
formulate in the following result explicit conditions on
the controller parameters c0, c1, c2,M, P0 and Ps under
which the tracking problem is solved.

Theorem 4 Consider the hybrid system (11) with
f(t, x) = Ax+E+B(uff(t) + ufb(t, x)), for some meas-
urable function uff(t) and let xd be a solution of (11)
for ufb ≡ 0. Let P0, Ps ∈ Rn×n, M ∈ Rn, consider
V as in (13) and let ufb be designed as in (17), with
x̄d(t) = xd(t,min

(t,j)∈dom xd
j) and cT0 , c

T
1 , c

T
2 ∈ Rn.

Let L+MJ be invertible and B 6= 0.
Let the assumptions of Lemma 3 hold for λd ∈ R, let all
trajectories of (11) have a time domain that is unboun-
ded in t-direction, and assume

β1(t) ∈ span(β2), and β3(t) ∈ span(β4) (18)

hold for almost all t.
Let, for some λc ∈ R, the following LMIs be satisfied:

(A+Bc0)TP0 + P0(A+Bc0)− λcP0 � 0, (19)

Ps(β2c1 + (L+MJ)A(L+MJ)−1) + (β2c1+

(L+MJ)A(L+MJ)−1)TPs + λcPs � 0, (20)

Ps(A+Bc2) + (A+Bc2)TPs + λcPs � 0. (21)

If either of the following cases hold, then the trajectory
xd is asymptotically stable with respect to d.

1) λc < 0, λd ≤ 0,
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2) all trajectories of (1) have minimal average inter-
jump time 2τ > 0, λc ≤ 0 and λd + λcτ < 0,

3) all trajectories of (1) have maximal average inter-
jump time 2τ > 0, λd ≤ 0 and λd + λcτ < 0.

PROOF. The proof is given in Appendix B. 2

6 Example

We now present hybrid system and design a control
law for which a maximal dwell-time argument proves
asymptotic stability of the reference trajectory. Consider
a single degree-of-freedom system with a damper with
damping constant c > 0 and a spring with stiffness k > 0
and unloaded position x = x̄1, as shown in Fig. 2. Im-
pacts can only occur at the constraint at x1 = 0. Let the

u

ε

x1
c

k

Figure 2. Dissipative mechanical system.

impacts be described by a restitution coefficient ε = 0.9.
Hence, the impacts are dissipative, which allows to study
the stability of the trajectory using a maximal average
inter-jump time result. Assuming that finite constraint
forces can be ignored, i.e. persistent contact does not oc-
cur, the hybrid system is described by (11) with

A =

(
0 1

−k −c

)
, B =

(
0

1

)
, E =

(
0

kx̄1

)
, L = −εI2,

J =
(

1 0
)

, K = 0, H = 0, s = −1, z1 =
(

0 1
)

, z2 = 0

and the set C is selected to exclude the origin. The para-
meters x̄1 = 1, k = 1 and c = 0.02 are used.
Let the reference trajectory xd be a solution to (11) for
a feedforward function u = uff(t) = 100 cos(ωt), with
ω = 0.4. This forcing is selected such that the reference
trajectory xd with initial condition xd(0, 0) = (50, 0) has
a maximal average inter-jump time τd > 0. In addition,
‖xd(t, j)‖ > s for all (t, j) ∈ dom xd, for some s > 0, i.e.
xd does not tend to the origin.
We now apply the constructive control law design pro-
posed in Section 5 to enforce tracking of the trajectory

xd. Selecting P0 =

(
k 0

0 1

)
and Ps = 1

εP0, we observe

that the conditions of Lemma 3 are satisfied with λd =
log(ε) < 0. In addition, we observe that c0 = c1 = c2 = 0
can be selected, such that (19)-(21) hold with λc = 0, as

P0A+ATP0 =

(
0 0

0 −2c

)
and PsA+ATPs =

(
0 0

0 − 2c
ε

)
.

0

50

100

150

x
1

xd
x

−100

0

100

x
2

xd
x

50
100
150
200
250

x
−

x
d

10

20

30

40

d(
x

,x
d
)

0 20 40 60 80 100
−100

0

100

200
u

t

a)

b)

c)

d)

e)

Figure 3. a) and b) Reference trajectory xd and plant tra-
jectory x for the dissipative mechanical system and periodic
forcing. c) Euclidean tracking error. d) Distance function (2).
e) Control force u.

Then, (17) yields the control law:

ufb(t, y)=


0, (x̄d(t), y) ∈ S0

− 1+ε
ε (kx̄1 + uff(t)), (x̄d(t), y) ∈ S1

−(1+ε)(kx̄1+uff(t)), (x̄d(t), y) ∈ S2.

(22)

As the trajectory xd has a maximal average inter-jump
time, denoted τd, nearby trajectories will have the same
behaviour. Hence, selecting vL > 0 sufficiently small
and restricting our attention to the hybrid system (5)
with flow set Ce ∩ VL and jump set De ∩ VL, with VL =
V −1([0, vL]), we conclude that x also has a maximal av-
erage dwell-time τx, with τx close to τd. Hence, the tra-
jectory of the embedded system (5) has a maximal aver-

age inter-jump time max(τd,τx)
2 > 0. Consequently, case

3) of Theorem 4 proves that the trajectory is (locally)
asymptotically stabilised with respect to d by the con-
trol law (22).
In Fig. 3, the performance of this controller is illustrated
and a trajectory with initial condition x(0, 0) = (100, 0)
is shown. The achieved stability of xd with respect to d
clearly corresponds to desirable behaviour.
From the structure of the control law (22), we observe

7



that no control is active when V (ϕ̄y(t, j), xd(t, j)) =
‖ϕy(t, j) − xd(t, j)‖2P0

. In fact, the dissipative effect of
both the damping force cẋ and the jump map implies
that no control is needed during these time intervals. The
control input u only needs to compensate the destabil-
ising effect of the forcing term E + Buff during the
“peaks” of the Euclidean error.

7 Conclusion

In this paper, we considered the stability of time-varying
and jumping trajectories of hybrid systems with state-
triggered jumps. This requires the comparison of differ-
ent trajectories of a hybrid system for which we proposed
a novel systematic distance function design, because the
standard Euclidean distance is not adequate. Sufficient
conditions for stability in terms of this distance func-
tion were formulated using Lyapunov functions that can
exploit maximum or minimum average inter-jump time
properties and that have sub-level sets that can be parti-
tioned in disconnected domains. In fact, when the jump
map is an affine function and the jump set a hyper-
plane, a systematic design procedure for piecewise quad-
ratic Lyapunov functions was proposed as well. Based
on the general theory and the specific matrix conditions
for the piecewise quadratic Lyapunov function design,
we designed a switched tracking control law for hybrid
systems that only allow control during flow. A numer-
ical example illustrates the applicability of our results
leading to a control law that achieves accurate tracking.
Moreover, the example nicely shows that the presented
distance function and the corresponding asymptotic sta-
bility notion do indeed correspond to desired tracking
behaviour.
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[3] J. J. B. Biemond, W. P. M. H. Heemels, R. G. Sanfelice,
and N. van de Wouw. Constructing distance functions and
piecewise quadratic Lyapunov functions for stability of hybrid
trajectories. In Proceedings of the 54th IEEE Conference on
Decision and Control, December 15-18, 2015, Osaka, Japan,
2015.

[4] J. J. B. Biemond, N. van de Wouw, W. P. M. H. Heemels, and
H. Nijmeijer. Tracking control for hybrid systems with state-
triggered jumps. IEEE Transactions on Automatic Control,
58(4):876–890, 2013.

[5] J. J. Benjamin Biemond, W. P. Maurice H. Heemels,
Ricardo G. Sanfelice, and Nathan van de Wouw. Distance
function design and Lyapunov techniques for the stability
of hybrid trajectories. Technical report, 2014. Arxiv:
https://arxiv.org/abs/1501.00161.

[6] B. Brogliato. Nonsmooth Mechanics. Springer-Verlag,
London, 1999.

[7] M. Broucke and A. Arapostathis. Continuous selections of
trajectories of hybrid systems. Systems & Control Letters,
47:149–157, 2002.

[8] A. F. Filippov. Differential equations with discontinuous
righthand sides, volume 18 of Mathematics and its
applications (Soviet Series). Kluwer Academic Publishers,
Dordrecht, 1988.

[9] F. Forni, A. R. Teel, and L. Zaccarian. Follow the bouncing
ball: global results on tracking and state estimation with
impacts. IEEE Transactions Automatic Control, 58(6):1470–
1485, 2013.

[10] S. Galeani, L. Menini, A. Potini, and A. Tornambè.
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A Alternative distance function

The distance function (2) is not necessarily continuous
over jumps when evaluated along solutions to (1). When
G is a single-valued and invertible function, such a con-
tinuity property could be induced by the function:

dQ(x, y) = inf
N∈N

inf
(xi,yi)∈A, i=1,...,N,

y0=x, xN+1=y

N∑
i=0

‖yi − xi+1‖,

that coincides with the quotient metric on the quotient
space generated by the equivalence x ∼ y if (x, y) ∈ A.
This quotient space has been suggested in [17] to study
hybrid systems. We note that when G is non-invertible,
then dQ(x, y) = 0 ⇔ (x, y) ∈ A may not hold. To al-
low for non-invertible jump maps, we prefer the distance
function d in (2) over dQ.

B Proofs

PROOF. [Proof of Theorem 2] We restrict our atten-
tion to maximal trajectories ϕq to (5) that represent
ϕx in the first n states. These trajectories always exist,
which follows from the comparison of (1) and (5) and
the fact that ϕx is a trajectory to (1). The observation
that ϕ̄y is a reparameterisation of a trajectory ϕy for
(1), and both ϕx and ϕy are unbounded in t-direction
by Assumption 2, proves that the trajectory ϕq is un-
bounded in t-direction.
We first prove that V (ϕq(t, j)) < vL for all (t, j) ∈
dom ϕq and all trajectories ϕq of (5) if k̄V (ϕq(t0, 0)) <
vL, where k̄ is chosen as k̄ = 1 if 1) holds, k̄ = eλdN0

if 2) holds and λd ≥ 0, and k̄ = eλcN0τ if 3) holds and
λc ≥ 0, with N0 given in Definition 3. Observe that if all
trajectories of (1) have a minimal or maximal average
inter-jump time 2τ , then (5) has minimal or maximal

average interjump time τ .
To prove that the values of k̄ defined above are ap-
propriate, for the sake of contradiction, suppose that
k̄V (ϕq(t0, 0)) < vL and there exists a time (t0 + T̄ , J̄) ∈
dom ϕq, T̄ , J̄ ≥ 0, such that V (ϕq(t0 + T̄ , J̄)) ≥ vL.
Hence, there exist T ≤ T̄ and J ≤ J̄ such that (t0 +
T, J) ∈ dom ϕq and

V (ϕq(t0 + T, J)) ≥ vL, (B.1)

but V (ϕq(t, j)) < vL for all (t, j) ∈ R := {(t, j) ∈
dom ϕq | t < t0 + T ∨ j < J}.
Since ϕq represents ϕx in the first n states, (9)-(10) im-

ply that V (g) ≤ eλdV (ϕq(t, j)) and
〈
∂V
∂q

∣∣∣
ϕq(t,j)

, f
〉
≤

λcV (ϕq(t, j)) hold for all (t, j) ∈ R, f ∈ F̄e(t, ϕq(t, j))
and g ∈ Ge(ϕq(t, j)).
Analogue to [22], we study the function (t, j) 7→
w(t, j) := V (ϕ̄x(t, j), ϕ̄y(t, j)) along the given solu-
tion ϕq over the time domain R and we introduce
scalars {tj} such that R =

⋃
j([tj , tj+1] × {j}). As,

for each j, the functions ϕ̄x, ϕ̄y are absolutely con-
tinuous in t in the time interval [tj , tj+1] × {j},
w(t, j) is absolutely continuous in t as well. Evaluating

ẇ(t, j) = ∂V
∂q f for some f ∈ F̄e(t,

(
ϕ̄x(t, j), ϕ̄y(t, j)

)
),

we find with (10) that ẇ(t, j) ≤ λcw(t, j). With
the comparison lemma, [14, Lemma 3.4], we find
w(tj+1, j) = eλc(tj+1−tj)w(tj , j) for all j. For a sub-
sequent jump, (9) yields w(tj+1, j + 1) = eλdw(tj+1, j).
Applying this result repetitively, we find

w(t0 +T, j) = V (ϕq(t0 +T, J)) ≤ eλcT+λdJV (ϕq(t0, 0)).
(B.2)

If case 1) of the theorem holds, we directly observe
V (ϕq(t0 + T, J)) ≤ V (ϕq(t0, 0)), contradicting (B.1).
If λd ≥ 0 and case 2) holds, then the definition of
minimal average inter-jump time yields λcT + λdJ ≤
T
τ (λcτ + λd) + λdN0 ≤ λdN0, such that with (B.2) we

find V (ϕq(t0 + T, J)) ≤ k̄V (ϕq(t0, 0)) < vL, contradict-
ing (B.1). If λc ≥ 0 and case 3) holds, then applying
the definition of maximal average inter-jump time, we
observe that λcT + λdJ ≤ (λd + λcτ)J + τN0λc ≤
λcτN0. Substituting this inequality in (B.2) we find
V (ϕq(t0 + T, J)) ≤ k̄V (ϕq(t0, 0)) < vL, contradict-
ing (B.1). A contradiction has been obtained in all
three cases, proving that k̄V (ϕq(t0, 0)) < vL im-
plies ϕq(t, j) ∈ VL for all (t, j) ∈ dom ϕq. Hence,
V (ϕq(t0, 0)) ≤ vL

k̄
implies that, for all (t0 + t, j) ∈

dom ϕq, V (ϕq(t0 + t, j)) ≤ eλct+λdjV (ϕq(t0, 0)).
Assumption 2 states that all trajectories of (1) are un-
bounded in t-direction, which implies G(D) ⊆ C ∪ D.
Hence, we find ϕq(t0 + t, j) ∈ Ce ∪ De for all
(t0 + t, j) ∈ dom ϕq, and we can use (8). Consequently,

d(ϕq(t0 + t, j)) ≤ α−1
1 (eλct+λdjα2(d(ϕq(t0, 0)))). With

the inequalities for λct + λdj derived above, we con-
clude that in any of the three cases of the theorem,
d(ϕq(t0 + t, j)) ≤ α−1

1 (k̄α2(d(ϕq(t0, 0)))), proving sta-
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(x, y) ∈ S1,
V (x, y) = ‖x− Ḡ(y)‖2Ps

y can jump

(x, y) ∈ S0,
V (x, y) = ‖x− y‖2P0

x and y can jump

(x, y) ∈ S2,
V (x, y) = ‖y − Ḡ(x)‖2Ps

x can jump

jump of y

jump of x

jump of x

jump of y

Figure B.1. The three nodes indicate when x and y may
jump provided V (x, y) ≤ vL, with vL sufficiently small.
When the conditions of Lemma 3 hold and, in addition,
V (x, y) ≤ max(1, e−λd)vL right before a jump, then this
jump satisfies the scenarios depicted by arrows.

bility with respect to d. Again using the mentioned
inequalities, we observe that λct+λdj → −∞ along the
solutions (this limit can be used since all trajectories are
unbounded in t-direction, cf. Assumption 2), such that
d(ϕq(t0 + t, j))→ 0. This proves asymptotic stability.
When (9) and (10) hold for all y such that
(ϕx(t, j), y) ∈ Ce ∪ De, then the upper bounds on
d(ϕq(t0 + t, j)) prove global asymptotic stability. 2

The proof of Lemma 3 employs Lemmas 3 and 7 in [5],
which hinge on the observation in [5] that the set VL can
be partitioned in three separated sets S0, S1, S2 where
the minimiser of (13) is ‖x − y‖2P0

, ‖x − Ḡ(y)‖2Ps
or

‖Ḡ(x)−y‖2Ps
, respectively, and, in addition, the jumps of

the system (5) are restricted to the scenarios in Fig. B.1.
Hence, Lemma 3 is proven by checking (9) along the
scenarios in Figure B.1.

PROOF. [Proof of Lemma 3] To prove the lemma, first,
we observe that [5, Lemma 7] directly guarantees that
there exist functions α1, α2 satisfying (8). In addition, [5,
Lemma 3] directly proves that there exists a sufficiently
small vL > 0 such that V is smooth in an open domain
containing VL. It remains to be proven that (14)-(15)
imply (9).
Jumps of (11) may trigger jumps between the sets S0, S1

and S2. From item 2) in [5, Lemma 3], we observe that
for (x, y) ∈ S1 ∩ VL and (x, y) ∈ S2 ∩ VL jumps of x
and y, respectively, are not feasible. Consequently, when
(x, y) ∈ S0, both x and y can jump, while from (x, y) ∈
S1, only a jump of y is feasible, and (x, y) ∈ S2 implies
x 6∈ D. We will now prove that (9) holds along these four
jumps:

a) We first study the jump (x, y) → (G(x), y), with
(x, y) ∈ S0. Since 3) of [5, Lemma 3] implies that
Ḡ(y) = (L + MJ)y + H + MK as z1y + z2 ≤ 0 and
x ∈ D implies Ḡ(x) = G(x) = (L+MJ)x+H+MK,
we observe that V (G(x), y) ≤ ‖G(x) − Ḡ(y)‖2Ps

=

‖Ḡ(x) − Ḡ(y)‖2Ps
= (x − y)T (L + MJ)TPs(L +

MJ)(x− y), such that (14) implies that (9) holds.

b) For a jump (x, y) → (x,G(y)) with (x, y) ∈ S1, we
observe V (x,G(y)) ≤ ‖x−G(y)‖2P0

= ‖x− Ḡ(y)‖2P0
,

as y ∈ D. Hence, (15) implies (9) in this case.
c) For a jump (x, y) → (x,G(y)), with (x, y) ∈ S0, (9)

directly follows from combining a) with the symmetry
relation V (x, y) = V (y, x).

d) For a jump (x, y) → (G(x), y) with (x, y) ∈ S2, sym-
metry of V and b) imply (9).

Hence, we have proven that (9) holds over all feasible
jumps, therewith concluding the proof of the lemma. 2

PROOF. [Proof of Theorem 4] We prove this theorem
by application of Theorem 2. Lemma 3 proves that (8)
and (9) hold for some vL > 0. Hence, we now show
that the assumptions in the theorem prove that (10) is
satisfied in the sub-level set VL = V −1([0, vL]).
According to Lemma 3, V is differentiable in VL, such

that we evaluate 〈 ∂V∂q
∣∣∣
q
, f〉 for f ∈ F̄e(t, xd(t, j), y) only

when q = (xd(t, j), y) ∈ VL ∩ Ce, where, for almost all
t, F̄e is single-valued, and we distinguish the three cases
given by the minimisers of (13). If (xd(t, j), y) ∈ S0∩VL,
then

∂V

∂q
= 2(xd(t, j)− y)TP0

(
In −In

)
and

F̄e =

(
Axd(t, j) + E +Buff(t)

Ay + E +B(uff(t)− c0(xd(t, j)− y))

)
,

such that (10) is guaranteed by (19).
If (xd(t, j), y) ∈ S1∩VL, then 3) of [5, Lemma 3] implies
Ḡ(y) = (L+MJ)y +H +MK. Consequently

∂V
∂q = 2sT1 Ps

(
In −(L+MJ)

)
and

F̄e(t, xd(t, j), y)=

 Axd(t, j) + E +Buff(t)

Ay+E+B(uff(t)− βT
2 β1(t)

βT
2 β2

−c1s1)


with s1 = xd(t, j) − Ḡ(y) holds. Hence, we obtain
∂V
∂q F̄e(t, x, y) = 2sT1 Ps(Axd(t, j) + E + Buff(t) − (L +

MJ)Ay− (L+MJ)E− (L+MJ)Buff(t)− β2β
T
2

βT
2 β2

β1(t)−
(L+MJ)Bc1s1. With (18), we find

β2β
T
2

βT
2 β2

β1(t) = β1(t),

such that

∂V
∂q F̄e(t, xd(t, j), y) =

2sT1 Ps(Axd(t, j) + (I − L−MJ)(E +Buff(t))

− (L+MJ)Ay − β1(t) + β2c1s1). (B.3)
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Since y = (L + MJ)−1(−s1 + xd(t, j) − H −MK) =
−(L+MJ)−1s1 + Ḡ◦(xd(t, j)), we obtain

∂V
∂q F̄e(t, xd(t, j), y) =

2sT1 Ps((L+MJ)A(L+MJ)−1 + β2c1)s1, (B.4)

where we used the design of β1. Hence, (20) guarantees
that (10) holds in this case.
Now, we focus on the case (xd(t, j), y) ∈ S2 ∩ VL. In
that case, from 3) of [5, Lemma 3], we observe that
max(0, z1y+z2) = 0 follows from (xd(t, j), y) ∈ S2∩VL.
Hence,

∂V

∂q
= 2sT2 Ps

(
L+MJ −In

)
and

F̄e(t, xd(t, j), y) =

 Axd(t, j)+E+Buff(t)

Ay+E+B(uff(t)− βT
4 β3(t)

βT
4 β4

+c2s2)


with s2 = Ḡ(xd(t, j))−y. From (18) follows

β4β
T
4

βT
4 β4

β3(t) =

β3(t), such that ∂V
∂q F̄e(t, xd(t, j), y) = 2sT2 Ps

(
As2 −

β3(t)+
(
L+MJ −In

) ( Axd(t, j) +Buff(t) + E

AḠ(xd(t, j)) +Buff(t) + E

)
+

Bc2s2

)
, where we used y = Ḡ(xd(t, j)) − s2. With the

design of β3, β4, we find

∂V
∂q F̄e(t, xd(t, j), y) = 2sT2 Ps(A+ β4c2)s2, (B.5)

such that (21) proves that (10) holds in this case. Con-
sequently, if (19)-(21) hold, (10) is obtained. Hence, The-
orem 2 proves that xd is asymptotically stable with re-
spect to d. 2
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