
TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. X, NO. Y, TBD 2016 1

Computationally-Aware Switching Criteria for
Hybrid Model Predictive Control

Of Cyber-Physical Systems
Kun Zhang, Student Member, IEEE, Jonathan Sprinkle, Senior Member, IEEE,

and Ricardo G. Sanfelice, Senior Member, IEEE

Abstract—This paper describes hybrid model predictive con-
trollers that switch between two predictor functions based on
the uncontrollable divergence metric. The uncontrollable diver-
gence metric relates the computational capabilities of the model
predictive controller, to the error of the system due to model
mismatch of the predictor function during computation of the
model predictive control solution. The contribution of this paper
is in its treatment of the model predictive controller to permit
optimization to take multiple timesteps to occur, but still rely on
the uncontrollable divergence metric. The results demonstrate
the approach for control of a vertical takeoff and landing aerial
vehicle.

Note to Practitioners—The work in this paper demonstrates
how to switch between two different predictor models for a model
predictive controller, based on the relative speed and accuracy of
those predictor models. Unlike other papers, this work permits
your optimization routine to take multiple timesteps to complete.
However, it requires that the predictor models each be stable,
and that you have access to the plant under control in order to
measure the error between your predictor models and the plant
throughout the state space.

Index Terms—Primary Topics: cyber-physical systems (CPS),
model predictive control (MPC). Secondary Topic Keywords:
vehicle control, hybrid control.

I. INTRODUCTION

MODEL Predictive Control (MPC) utilizes a predictive
function to simulate the behavior of a set of control

inputs over a time horizon, in order to select an input sequence
that minimizes the cost according to a cost function under
constraints. A sequence of control inputs and state predictions
is the result of an optimization solution, obtained either
through closed form or through numerical techniques. This
paper is motivated by the real-time demands of a cyber-
physical system (CPS) under model-predictive control. Cyber-
Physical Systems are typified by the need to consider issues
of computation, communication, and control when designing,
analyzing, and implementing the system. Examples of systems
where such an approach might be using MPC in real-time
include fixed-wing aerial vehicles, and ground vehicles. Each
of these vehicle types has a complex nonlinear plant, for

K. Zhang and J. Sprinkle are with the Department of Electrical and
Computer Engineering, University of Arizona, Tucson, AZ, USA e-mail:
{dabiezu,sprinkjm}@email.arizona.edu.

R.G. Sanfelice is with the Department of Computer Engineering, University
of California, Santa Cruz, CA, USA.

Manuscript received January 27, 2016.

which predictive controllers must synthesize trajectories that
are feasible according to the plant, but which do not violate
constraints for the safe operation of the vehicle according
to its own constraints as well as the avoidance of some
areas of the state space. These areas may represent “no fly
zones” or obstacles that would result in collision. Thus, the
vehicle (system) must synthesize and then follow trajectories
to arrive at a final or intermediate destination while meeting
state constraints at the final location, and satisfying other state
constraints all along the trajectory.

MPC has some attractive features for systems where tra-
jectories could be infeasible, and in which safety constraints
can be specified in terms of state and control variables: (a) it
handles constraints systematically as part of the cost function;
and (b) it guarantees feasibility of the trajectory through the
use of a predictive model that approximates the system plant
over the horizon.

Limitations of the use of MPC at runtime include the need
to carefully consider the timeliness of the optimization pro-
cess for nonlinear plants using a nonlinear predictor function
without a closed form solution [1]. Online optimization is not
always guaranteed to complete in real time [2] or may return a
local optimum [3]: such a limitation makes MPC unsuitable for
use in systems where a safety violation would occur given such
a failure. Since the use of MPC with even a single prediction
function would therefore also be limited, our approach merely
requires the availability of two predictor functions whose
optimization in bounded time can be guaranteed.

Fundamentally, designers must trade off the accuracy of the
predictor functions with the timing capabilities of the computa-
tional nodes. In terms of a suboptimal solution, or unbounded
return time, approaches to mitigate these risks fall into three
major categories: (i) enforcement of timing constraints if a
solution has not yet been found; (ii) continued operation of
the system until a solution is found, with a reduced operating
envelope to ensure safe operation; or (iii) design of a predictive
model that more coarsely approximates the plant model, but
which guarantees (or significantly improves the guarantee) that
a solution will be obtained in time.

Approach (i), enforcement of timing constraints, can be
performed in several ways. Concurrent operation of multiple
optimization engines could select the first feasible solution
returned. A more draconian approach is to cancel the opti-
mization routine after a certain time and proceed with the best
solution found so far; such an approach faces the risk that no

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. X, NO. Y, TBD 2016 2

feasible solution may have been obtained when the routine is
halted.

Approach (ii), continued operation of the system in in
degraded mode, has a few alternative solutions. One is to
continue to execute the control inputs from the previous
solution until a new, optimal, solution is returned. The major
limitation of this approach is that the solution will be for
a timestep that has already passed, and any new constraint
issues (e.g., to avoid undesired regions of the system state)
will not have been accounted for since the last solution. If
the timestep is large relative to the dynamics of the vehicle or
its disturbances, this approach could potentially result in large
gaps between new control inputs. In situations such as these,
the system behavior at runtime might be modified until a viable
solution is returned. As an example, a vehicle might reduce its
velocity until it gets a feasible solution—which might affect
nonfunctional metrics such as passenger comfort.

Approach (iii), selection of a reduced-complexity predictive
model, helps to provide a significant margin for robustness
to potential disturbances. In some regions of the state space,
this approach will execute reliably—e.g, around an operating
point where linearization has occurred. Outside this region,
an alternative approach is to select reduced order predictive
models that are known to be simple to use when computing
an optimal solution. An example of this approach is to select
the kinematic (instead of dynamic) model for problems such
as path planning and following. Unfortunately, as described in
[4], a kinematic model diverges more quickly than the dynamic
model for systems such as car-like robots, when they are used
in prediction.

The two challenges that feature prominently in our expres-
sion of this approach are computational burden and predictive
divergence. MPC operates based on its predictive model;
model accuracy, which is normally proportional to mathemat-
ical complexity, effects computational burden such that it may
endanger real-time operation.

Given the availability of a set of predictive models (of
the controlled plant) with different levels of accuracy, assume
that their computational delay and model mismatches can be
estimated prior to online control. In [5], we introduced a trade-
off metric to reveal the uncontrollable divergence between
predicted and true states caused by return time and model
mismatch. We demonstrate the effective use of this metric as
the chief mechanism to select an appropriate predictive model
in both [5] and [6]. The metric is obtained at design time
through extensive system simulation, and the results of its
calculation can be used at runtime to make decisions for the
real-time controller.

Contribution of this work

The contribution of this work is in accounting for the
discrete nature of the system, especially in the case that
optimization may take multiple timesteps to complete. We
reframe the approaches in [5] to explicitly account for the
discrete sampling of the system, and the discrete times at
which system control inputs can be sent. In previous work, we
used an event-triggered (rather than time-triggered) approach

to send new control inputs to the plant. Further, the application
of this approach is applied to a different platform: namely, a
vertical takeoff and landing (VTOL) vehicle.

This paper is a significant extension of a previous version
published in the 2015 ACM/IEEE International Conference
on Cyber-Physical Systems [5], and a different extension of
[5] under revision to Autonomous Robots, [6]. This paper
extends [5] in significant ways since the main contribution
of this work is the discrete nature of sampling and updates for
the predictive controller when it is possible that solving for
the optimal input sequence will require multiple timesteps,
and a new platform on which we demonstrate the approach.
Since multiple timesteps may be required, the process for
computing the uncontrollable divergence is complicated by the
need to consider the predicted state, based on a previous state’s
prediction of the current state. This distinction is carefully
considered in this paper.

The work in [6] extended [5] primarily in the demonstration
of how to calculate the uncontrollable divergence metric in a
physical platform, especially when it is nontrivial to perform
system data gathering in areas of the state space in which op-
erating the system can be unsafe or uncomfortable. That paper
addresses stability through tuning the dwell time parameters
of the system controller, an approach we also depend on for
this paper.

Organization

We begin with a review of the MPC problem, and discussion
of related approaches in the literature to addressing model
uncertainty, limitations of computation time for optimization,
and the application of switched MPC in Section II. In order
to provide a full treatment of discrete events in this paper, we
provide in Section III a derivation and set of formalisms for the
MPC problem that we approach, including our extensions from
previous work to account for discrete inputs to the system, for
variable delays in time to compute the optimal solution, as
well as the definition of the uncontrollable divergence metric
in terms of plant/predictive model mismatch for two predictive
models. We follow in Section IV with our explicit problem
statement, and in Section V demonstrate an example appli-
cation to a plant model for VTOL aircraft control, including
calculation of the uncontrollable divergence, and exposition of
the controller switching conditions. We close the paper with
a discussion of the limitations of our approach, and our goals
for future work in Section VI.

II. BACKGROUND

In this section we formulate the MPC problem and describe
the cost functions used, and follow it with discussions of the
use of switched MPC in the literature, and the approaches and
assumptions for stability of MPC in the literature.

A. Review of MPC

Model predictive control has been particularly effective in
controlling plants whose trajectory must be controlled over a
long horizon [7], [8]. Fundamentally, by considering the future

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. X, NO. Y, TBD 2016 3

state value over a fixed horizon of discrete points, feedback
control through optimal control techniques is used to optimize
cost. In [9], readers can find a thorough review of the setup
of MPC. The MPC formulation used in this work is based on
that of [5], [6]. The system to control is given by the nonlinear
continuous-time plant

ż = f(z, u) (1)

with state z and input u, where z and u are constrained to
belong to the set X and U , respectively. A discretization of
this model by a sample time ∆T is given by ẑ+ = f̂(ẑ, û),
where ẑ, û, and f̂ are the discretizations of z, u, and f ,
respectively, and ẑ+ denotes the state value after a discrete
step. Let k denote discrete time: given the state ẑ at time k,
denoted as ẑk, the algorithms in MPC compute the evolution
of the state of the discrete-time system in (1) for N steps
forward in time according to input sequences of the form
Ûk = {ûk,k, ûk,k+1, · · · , ûk,k+N−1}, where ûk,k+s denotes
the value of the input in s discrete steps after of the initial
state ẑk. Thus, the goal is to solve the problem1

P(ẑk) : argmin
Ûk

JN (ẑk, Ûk) (2)

where

JN (ẑk, Ûk) =

k+N−1∑
t=k

`(ẑk,t, ûk,t) + ϕ(ẑk,k+N) (3)

is the cost function, ` is the stage cost function, and ϕ is
the terminal cost function. Denoting an optimal sequence by
Û∗k and the resulting optimal prediction state sequence by
Ξ∗k = {ẑ∗k,k+1, · · · , ẑ∗k,k+N−1, ẑ

∗
k,k+N}, MPC then applies to

the discretized system the M first entries in Û∗k and then
computes a new optimal sequence at discrete time k+M + 1.
The parameter M ≤ N determines how often to update the
sequence of inputs.

B. Predictive Model Uncertainty
For any realistic physical plant, predictive model uncertainty

will become a factor over a long horizon. In linear MPC,
the efforts in [10], [11] consider the uncertainty error orig-
inating from linearization of a nonlinear plant, or bounded
disturbance, when designing robust MPCs. These approaches
(referred to as min-max schemes) specify as part of the
cost function the uncertainty of the maximum possible model
error and then minimize this cost function. Such schemes
are also used in [12], [13], and although they carry a high
computational burden their result is the minimum error among
available linearizations.

Approaches to robustness that do not require min-max
schemes include [14], where the approach uses a quadratically
constrained quadratic program (QCQP) suitable for following
piecewise constant references. For our work, the need to follow
a smooth trajectory limits the ability to use these related
approaches to mitigate uncertainty.

In cases where the plant structure is known, only the plant
parameters are subject to uncertainty, the approach in [15] can

1

be used. If the structure of the plant is uncertain, then work
in [16] is relevant to quantifying the behavior of the system.
When plant uncertainty can be characterized by linear matrix
inequality constraints, the approach in [17] demonstrates how
to quantify the performance of the predictive model.

C. Optimization Approaches and Computation Time

Regardless of the predictor function used, increasing the
length of the horizon (i.e., larger parameters M and N) results
in a longer computation time for Û∗k and Ξ∗k. More subtly,
a nonlinear predictor dynamics (or nonlinear cost function),
adversely affects computation time, as do input and state
constraints.

Work to guarantee polynomial complexity of the optimiza-
tion algorithm for linear plants is discussed in [13], [18]. That
approach uses quadratic maximization through recursion, and
is shown to be polynomial in the rank of the constraint/cost
matrix: the main limitation is in its applicability only to linear
systems. If only probabilistic guarantees of completion for
linear systems are needed, work in [19] provides recent results.

Linearized MPC (LMPC) has the advantages over nonlinear
approaches due to its relatively low computation time [20],
and also that it avoids the non-convex programming common
to NMPC [21]. Typically the LMPC approach (discussed in
[2], [22], [23]), is performed along the previous horizon of
prediction. The propagation error of the linear model from an
operating point is the main limitation of LMPC for nonlinear
plants. In some work the linearization is performed at runtime,
which carries with it a high (but bounded) computational cost.

In this work, we assume that optimization times for a cold-
start (i.e., no optimization history) of any predictive model that
we could select with our hybrid controller can be bounded.
If the optimization time cannot be bounded for one of the
models that we use, then it would not have been used in a
non-switching MPC controller.

D. Switched MPC

For a limited set of known operating points, work in [24]
discusses multiple predetermined operating models for MPC
predictor functions; this overcomes the limitation of runtime
linearization in terms of computation time. Thus, as the
state moves to a new operating region with a more accurate
linearization, the predictor function can switch. The logic for
switching between dynamical models naturally applies the
use of finite automata (for piecewise affine systems) [25].
In that work, the ability to utilize mixed-integer quadratic
programming (MIQP) as the solver is demonstrated, if the
system model can be written in closed form. Mayne [9] lists
the various approaches to hybrid MPC for implementation,
including work by the authors in [26]. Explicit switching
conditions based on transitions and guard conditions (in the
case of hybrid automata) or implicit switching conditions
based on state values and jump sets, are each appropriate
methods through which switching can be specified.

Switching conditions play a significant role in any hybrid
system’s stability and performance: it is therefore necessary to
craft these switching rules using tools that will enable stable

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. X, NO. Y, TBD 2016 4

behavior. We return to this thesis later in the paper when
discussing the switching criteria, and their relationship to plant
dynamics and error.

III. FORMULATION

We extend the formalisms from Section II-A in order to
distinguish solutions based on the predictor function used, the
elapsed time in discrete steps for each predictor function, and
the state values upon which solutions were based.

A. Predictive models

The formalisms used to distinguish our predictive models
are taken after those in [6]. We define a family of discrete-
time equivalent systems, which will be used in MPC as
predictor functions for a nonlinear plant. Given a discrete
set Q := {0, 1, · · · , qmax} and, for each q ∈ Q, a function
f̂q : Rn × Rm → Rn, let {f̂q}q∈Q define a family of right-
hand sides defining discrete-time models of (1) that are used
by the predictive controller.2 The constant qmax defines the
number of available models for prediction. For each q ∈ Q, we
define Γ̂q : Rn × Rm → Rn as the model mismatch function

Γ̂q(ẑ, û) := f̂e(ẑ, û)− f̂q(ẑ, û) (4)

which captures the error between the q-th model that is
available for MPC (f̂q) and a reference discretization of the
right-hand of the system (f̂e). Note that f̂e is not necessarily
equivalent to f̂ , but is sufficiently accurate to serve as a
reference.

To distinguish between the plant’s states and MPC’s pre-
dicted states, let subindex t represent the discrete time over
the prediction horizon N ∈ {1, 2, · · · } and write ẑk,t to
denote the predicted state at time t resulting from the initial
state ẑk and under the effect of the planned (given) inputs
ûk,k, ûk,k+1, · · · , ûk,t−1.

By convention, ẑk,k is equivalent to ẑk (i.e., the predicted
state at time k based on the sampled state at time k). We note
that, ûk,t is the control input that should be selected at time
t, and it is generated from the state sample at time k, viz. ẑk.
When we write ûk,k, it is the first element of the solution to
the MPC problem in (6), with initial state ẑk, and it is intended
to be applied at time k as the control input. In this way, for
a chosen q ∈ Q, the discrete-time nonlinear model used by
MPC for prediction is

ẑk,t+1 = f̂q(ẑk,t, ûk,t) (5)

for each t over the prediction horizon, i.e.,

t ∈ {k, k + 1, · · · , k +N − 1}
where ẑk is fed into the prediction as the initial state.

Given ẑk, a selected MPC solves the optimization problems
Pq(ẑk) at time k by using the predictive model f̂q . By use

2The dimension of the state of each resulting discrete-time model is allowed
to be different. In such a case, since the number of models is finite, one can
embed all of the models into the largest space of size n by adding dummy
variables. The same argument applies for the dimension of the inputs.

of the superscript (i.e., Pq) we denote the use of predictive
function q ∈ Q. This work denotes the input sequence

{ûqk,k, û
q
k,k+1, · · · , û

q
k,k+N−1}

by Ûq
k , and formulate Pq(ẑk) as the following:

Pq(ẑk) : argmin
Ûq

k⊂U
{JN (ẑk, Û

q
k)} (6)

where the cost function JN is an analog to that in (3) that is
specialized through the use of the q-th prediction function as

JN (ẑk, Û
q
k) =

N∑
t=1

`(ẑqk,k+t, û
q
k,k+t) + F (ẑqk,k+N) (7)

where ` : Rn × Rm → R+ is the stage cost function and
F : Rn → R+ is the terminal cost function.

Denote the optimal solution3 to Pq(ẑk) by

Û∗qk = {û∗qk,k, û
∗q
k,k+1, · · · , û

∗q
k,k+N−1}

By feeding Û∗qk into the predictive model f̂q , we obtain the
optimal prediction sequence

Ξ∗qk = {ẑ∗qk,k+1, · · · , ẑ
∗q
k,k+N−1, ẑ

∗q
k,k+N}

Taking the first input û∗qk,k and applying it to the plant, we
arrive at the implicit control law

κq(ẑk) := û∗qk,k

where κq(ẑk) solves the problem in (2) using predictive model
q (i.e., Pq(ẑk)) Then, at k, the state of the plant under this
control law is updated via

ẑk+1 = f̂e (ẑk, κ
q(ẑk))

At the next step, k + 1, the hybrid controller may select a
new value for q denoted q′ ∈ Q, or keep it constant (q′ = q),
and the problem Pq′(ẑk+1) is solved. The algorithm continues
this process indefinitely.

We let κQ(ẑ) represent an implicit control law that selects
between predictive models q, q′ ∈ Q to apply either κq or κq

′
.

We later define our process for selecting q at each timestep.
N.B. This approach is not intended to stabilize systems with

significant model mismatch, and not intended to address issues
of robustness to significant structural or parameter-based error.
We require that each predictive model would result in stable
behaviors if deployed on its own, since that model would
otherwise not be considered a suitable prediction model for
an MPC controller.

B. MPC with Computation Time

To improve the applicability of the work to practical sys-
tems, this work studies the closed-loop system considering the
time delay of the solution to (6) (i.e., Pq(ẑ))), to permit the
results to be applied to time-triggered systems.

Figure 1 provides an abstract example wherein the time
required to compute the solution to (6) is larger than the

3Since we will later be selecting q to optimize another function, we use
û∗q instead of ûq∗ to represent the optimal solution.

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. X, NO. Y, TBD 2016 5

sampling and control input timestep; Figure 2 depicts the
notation used to relate the sample times employed in the
calculation of a solution to (6) and the times at which an
input is provided to the physical plant. To make the use
of this notation clear, we devote some effort to explaining
how to represent discrete advancements in the solution, versus
discrete time instances at which the state is sampled and
control variables inputted.

1) Solution timesteps: Let ∆tq(ẑ) represent the return time
of Pq(ẑ) for the given state ẑ. The return time ∆tq(ẑ) ranges
within the interval (0,∆tqmax] ⊂ R+, where the constant ∆tqmax

is the assumed maximum return time of Pq(ẑ) for all ẑ ∈ X .
Let

Sq(ẑ) :=

⌈
∆tq(ẑ)

∆T

⌉
∈ N

represent the number of discrete sampling intervals that Pq(ẑ)
takes to generate a solution at ẑ (as shown in Figure 1) and
note the following inequality

Sq(ẑ) 6 Sq
max :=

⌈
∆tqmax

∆T

⌉
For brevity of notation, we distinguish specific intervals and
return times at different timesteps as ∆tq(ẑk) = ∆tqk and
Sq(ẑk) = Sq

k. Note that, ∆T is not necessarily larger than
∆tqmax, especially since high-fidelity models are more likely
to use multiple intervals of ∆T within ∆tq(ẑ) seconds. If
it is necessary to bound ∆tqmax, especially for some highly
complex model, premature termination of optimization can be
deployed if sub-optimality is sufficient to ensure stability.

2) Solution timestep indices: Solutions to (6) are only
drawn from solution timesteps; that is, intermediate timesteps
at which a new solution is not available are not used as the
initial condition for solving the MPC problem.

To identify these solution timesteps, we introduce a function
to which to refer to previous and next timesteps for states and
inputs.

Definition III.1 (Solution timestep). Let a solution timestep
be a discrete timestep value k ∈ N+ := {1, 2, . . .}, at which
a solution to (6) becomes available.

It is worth noting that due to the variances of the time Sq(ẑ),
that the solution timesteps will not be regular or periodic (even
for the same predictor model, q ∈ Q), although they will be
bounded per our assumptions.

Definition III.2 (Solution timestep series). Let the series K =
{K0,K1, . . . } represent the series of solution timesteps for a
given solution to the system.

Definition III.3 (pre(·) solution timestep). Let pre : N+ →
K be the most recent previous solution timestep k′ ∈ K for
timestep k, where k′ < k.4

Definition III.4 (next(·) solution timestep). Let next : N+ →

4Given k ∈ N+, pre(k) denotes the previous solution timestep that is less
than k; i.e., pre(k) < k ∀k. Note that pre(k) is not defined for k < K0,
k ∈ N+.

K be the next timestep from k at which a solution is expected.5

Definition III.5 (identification whether k is a solution
timestep). Let soln : N+ → {0, 1} indicate whether or not
k is a solution timestep, i.e., soln(k) = 1 for each k ∈ K and
soln(k) = 0 if k ∈ N+ \K.

From the definitions above, next(k) identifies k as its
pre(k) if and only if k is a solution timestep. Namely,
k = pre(next(k)) ⇐⇒ soln(k) = 1.

N.B. we permit the controller κQ(ẑ) to change modes only
at solution timesteps, e.g., when k ∈ K.

Example III.1. Take K = {0, 2, 3, 6, 9, 13} and note that, in
particular, K0 = 0 and K3 = 6. This set K represents an
MPC controller execution where a solution was not available
at time k = 1, but is available at time k = 2. We say that
the solution started at k = 0 became available at k = 2.
Note that pre(2) = 0 and pre(5) = 3, while next(9) = 13.
Operations compose naturally, namely, pre(pre(4)) = 2,
next(next(4)) = 9, pre(next(5)) = 3, and, as we mentioned
below Definition III.5, pre(next(6)) = 6. The main goal of
the functions next(·) and pre(·) is to identify the state values
at which we expect an answer (or from which we should select
our control input) during execution.

3) Considering arrival of a new solution: For any timestep
k ∈ N+, it is possible that in the continuous time open interval
between timesteps k−1 and k (i.e., [∆T (k−1),∆Tk)) , either
(a) no new solution was finalized (soln(k) = 0), or (b) a new
solution was finalized (thus, soln(k) = 1).

Possibility (a): If in the continuous time interval [∆T (k −
1),∆Tk) a solution is not finalized, then the computation to
produce Û∗qpre(k) has not yet completed. Thus the solution we
are executing became available by time pre(k), meaning that it
was based on the state at time pre(pre(k)): it was this timestep
which produced Û∗qpre(pre(k)).

Possibility (b): If a new solution was finalized in the interval
[∆T (k − 1),∆Tk), then

pre(k) + Sq
pre(k) = k (8)

and a new MPC procedure based on ẑk is triggered. If ∆tqmax >
∆T , it may be that more than one time step elapses during the
time of calculation of the solution to (6). To make it clear that
the time index is the previous solution time to k, we indicate
the solution to (6) based on the state at time ẑpre(k) as

Û∗qpre(k) = Pq(ẑpre(k))

where

Û∗qpre(k) = {û∗qpre(k),pre(k), û
∗q
pre(k),pre(k)+1, . . . , û

∗q
pre(k),pre(k)+N−1}

as illustrated in Figure 2.
We know that when in mode q during the interval that the

solution index pre(k) will take Sq
pre(k) timesteps to return.

5Given k ∈ N+, next(k) denotes the least next solution timestep that is
greater than k; i.e., next(k) > k ∀k. Note that next(k) is not defined for
k > supK when supK <∞.

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. X, NO. Y, TBD 2016 6

k k + 1 k + 2 k + 3 k + 4

Uq⇤
k

MPCq0

k + 5 k + 6 k + 7

U q0⇤
k+2

U q00⇤
k+6

system state
state evolution
state observation
solution return

Sq
k = d1.5e = 2

Sq0

k+2 = d3.2e = 4MPCq

Fig. 1. Specific values are assumed to illustrate the system evolution. For
example, Ûq′∗

k+2 is generated upon the sampling instance at k+ 2 by a MPC
procedure, and this procedure returns at [∆T (k + 5),∆T (k + 6)). Before
the termination of this procedure, the previous solution Ûq∗

k is applied within
[∆T (k + 2),∆T (k + 6)).

system state
state evolution
state observation
solution return

Fig. 2. System update process illustration.

Also, index pre(pre(k)) took Sq′

pre(pre(k)) steps to return. Thus,

pre(k) = pre(pre(k)) + Sq′

pre(pre(k))

and as long as soln(k) = 0,

next(k) = pre(k) + Sq
pre(k)

so by simple substitution and rearrangement:

next(k)− pre(pre(k)) = Sq
pre(k) + Sq′

pre(pre(k))

The system update function is therefore formulated as:

ẑk+1 = f̂e(ẑk, ûk) (9)

where

ûk =

{
û∗qpre(pre(k)),k if soln(k) = 0

û∗qpre(k),k if soln(k) = 1

C. Definition of Uncontrollable Divergence (UD)

The metric UD is calculated using the error of the predictive
models with respect to the plant model, and the state change
that occurs while awaiting the return of the optimization func-
tion. Suppose a MPC procedure is triggered at k (i.e., k ∈ K is
a solution timestep, so soln(k) = 1), and the MPC procedure
returns within [∆T (next(k) − 1),∆Tnext(k)), next(k) =
k + Sq

k, as shown in Figure 3. The metric UD is defined as
the difference between the predicted state and the actual state
after feeding the control input into the plant:

UDq(ẑk) :=
∥∥∥ẑnext(k) − ẑ∗qk,next(k)∥∥∥ (10)

Considering that several timesteps may elapse between k and
next(k), we consider the uncontrollable divergence by firstly
investigating an error between the reference model and the q-th
predictor model within the elapsed interval [∆Tk,∆T (k+1)).

Recalling that Γ̂q(ẑk, ûk) := f̂e(ẑk, ûk)− f̂q(ẑk, ûk), we have
the below:

f̂e(ẑk, ûk)− f̂q(ẑ∗qk , û
∗q
k)

= (f̂q(ẑk, ûk)− f̂q(ẑ∗qk , û
∗q
k)) + Γ̂q(ẑk, ûk)

=

(
∂f̂q

∂ẑ
|ẑ∗qk ,û∗qk

)
(ẑk − ẑ∗qk) +(

∂f̂q

∂û
|ẑ∗qk ,û∗qk

)(
∇û|ẑ∗qk ,û∗qk

)
(ẑk − ẑ∗qk) + Γ̂q(ẑk, ûk)

we conclude that (ẑnext(k) − ẑ∗qk,next(k)) is bounded, if ∂f̂q

∂ẑ ,
∂f̂q

∂û , ∇û, Γ̂q , and Sq
k are also bounded.

D. Calculation of UD

To estimate the value of (10) for variable return times
between plant predictor models at various portions of the state,
off-line computation and approximation are required. The state
at k can be approximated as

ẑk ≈ ẑ∗qpre(k),k +

Sq
pre(k)

−1∑
i=0

Γ̂q(ẑ∗qk,k+i, û
∗q
k,k+i)

≈ ẑ∗qpre(k),k + Sq
pre(k)Γ̂

q(ẑk, ûk)

where each ûk,k+i ∈ κq(ẑ∗qk,k+i). By denoting $q(ẑ, τ) the
control signal û which is synthesized from Pq(ẑ) and applied
at time k+ i (e.g., û∗qk,k+i = $q(ẑk, k+ i), i ∈ {0, 1, · · · , N−
1}), we have

û∗qpre(k),k+i = $q(ẑpre(k), k + i) = $q(ẑ∗qpre(k),k+i, k + i)

and then approximate the difference

û∗qpre(k),k+i − û
∗q
k,k+i

= $q(ẑpre(k), k + i)−$q(ẑk, k + i)

= $q(ẑ∗qpre(k),k, k + i)−$q(ẑk, k + i)

≈ (−∇$q|ẑk,k+i)(ẑk − ẑ∗qpre(k),k)

≈ (−∇$q|ẑk,k+i)(S
q
pre(k)Γ̂

q(ẑk, ûk)) (11)

Note that, during each discrete timestep in the range
[∆Tk,∆Tnext(k)), Û∗qk is applied to prediction, while
Û∗qpre(k) is utilized in the actual control. By applying (11), we
obtain the following approximation

ẑk+i − ẑ∗qk+i−1,k+i

≈ f̂e(ẑk+i−1, û
∗q
pre(k),k+i−1)− f̂q(ẑk+i−1, û

∗q
k,k+i−1)

≈ (f̂q(ẑk+i−1, û
∗q
pre(k),k+i−1)− f̂q(ẑk+i−1, û

∗q
k,k+i−1))

+Γ̂q(ẑk+i−1, ûk+i−1)

≈ (
∂f̂q

∂u
|ẑk,û∗qk,k

)(û∗qpre(k),k+i−1 − û
∗q
k,k+i−1) + Γ̂q(ẑk, ûk)

≈ (
∂f̂q

∂û
|ẑk,û∗qk,k

)(−∇$q|ẑk,k+i−1)(Sq
pre(k)Γ̂

q(ẑk, ûk))

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. X, NO. Y, TBD 2016 7

pre(k) kpre(k) + 1

U⇤q
pre(k) U⇤q

k

next(k)

next(k)

u⇤q
pre(k),k

system state
state evolution

state observation
solution return

predicted state
MPC prediction

û⇤q
k,k

û⇤q
k,k+1

Fig. 3. Uncontrollable divergence demonstration.

and then we have

ẑnext(k) − ẑ∗qk,next(k)
≈ (ẑk+1 − ẑ∗qk,k+1) + (ẑk+2 − ẑ∗qk+1,k+2) + · · ·

+(ẑnext(k) − ẑ∗qnext(k)−1,next(k))

≈ (
∂f̂q

∂û
|ẑk,û∗qk,k

)(−
Sq
k−1∑
i=0

∇$q|ẑk,k+i)(S
q
pre(k)Γ̂

q(ẑk, ûk))

(12)

in which the derivatives ∂f̂q

∂û and ∇$q can be obtained by
sensitivity analysis. Note that, the expected value or maximum
value (i.e., Sq

max) can be applied to replace Sq
pre(k) and Sq

k in
(12), in order to consider either the average performance, or
the worst case performance when estimating UD.

IV. PROBLEM

A. Applicable Systems

If the following assumptions are satisfied by a candidate
CPS, then this work can be applied:
• The origin of the state and input space is an equilibrium

point; namely, 0 ∈ X , 0 ∈ U , and f(0, 0) = 0;
• Implicit MPC control through κQ(·) will always drive

the plant within the desired state space. i.e., the function
f̂e(ẑ, κQ(ẑ)) ∈ X , is defined ∀ẑ ∈ X and û = κQ(ẑ) ∈
U , and the solution to Pq(ẑ) for each q, q′ ∈ Q is defined.

• The horizon is long enough; ∀q, q′ ∈ Q, Sq
max + Sq′

max 6
N . This prevents the depletion of control inputs while
waiting for MPC return.

• In order to ensure that UD is bounded, we require that
∂f̂q

∂ẑ , ∂f̂q

∂û , ∇û, and Γ̂q are bounded ∀ẑ ∈ X , ∀û ∈ U and
∀q ∈ Q.

The introduction of the assumption that we will not run
out of control inputs, requires an upper bound of the number
of timesteps for each model q, q′ ∈ Q, in order that when
switching between the two models, it cannot happen that a
sufficient delay will occur such that the number of available
inputs from the solution to (6) will be exhausted. Note that
we can safely assume that if not switching, the inputs will not
be depleted, since we assume that the MPC design under a
single controller is suitable for our application. As we saw in
(9) and the logic to select ûk, the selected value could be from
pre(pre(k)).

In our previous work [5], [6] we demonstrated the ability to
use the hybrid MPC controller on a ground vehicle, and in the

remainder of this paper we turn to an alternative plant which
is a vertical takeoff and landing (VTOL) fixed-wing aircraft.

B. Problem Statement

Consider a hybrid predictive controller which is synthesized
according to the following principle: for a given state ẑ, select
a model from the family of vehicle models {f̂q}q∈Q such that
the error (or divergence) between the discretized state of the
plant (ẑ) and of the model (ẑk) obtained with the same inputs
is minimized. In this controller, it is possible that solving for
the control input sequence will require more than one discrete
timestep.

Problem: use the uncontrollable divergence as the switching
criterion for the above hybrid controller.
Analysis: The logic to select q when solving Pq(ẑk) should
minimize the error between prediction and the actual state at
next(k). Then, the selection of q at ẑk is given by the law

q = argmin
q∈Q

‖UDq(ẑk)‖

= argmin
q∈Q

∥∥∥ẑnext(k) − ẑ∗qk,next(k)∥∥∥ (13)

In order to permit this approach at runtime, we calculate
the UD for various plant models offline, and generate lookup
tables in order to solve the problem in (13) at runtime.
According to work such as in [27], we utilize an average dwell-
time metric, selected based on experience and by simulation, in
order to allow switches to happen at any time when necessary,
but constraining the average durations between switches. The
dwell times we use are incorporated into the Sq for each
model.

V. EXAMPLE

We next use an example plant with several predictor models,
to demonstrate the approach to calculate the uncontrollable
divergence, and to generate the controllers. In one case,
we demonstrate that an unstable model does not satisfy the
necessary criteria in order to apply our approach.

A. Plant and Predictive Models

A vertical takeoff and landing (VTOL) aircraft example,
as shown in Figure 4, is used to demonstrate the above
approach to applying the UD to MPC at runtime when multiple
timesteps are required to calculate the optimal control input
sequence.

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. X, NO. Y, TBD 2016 8

Fig. 4. Vertical takeoff and landing (VTOL) aircraft model. The forces
generated by the downward thrust and transversal thrust are resolved as force
u1 and u2 acting at a distance r below the aircraft.

1) Reference Plant: The reference plant f̂e is formulated
by

ẍ = −g sin(θ) + u1 cos(θ)/m− u2 sin(θ)/m− cẋ/m
ÿ = g(cos(θ)− 1) + u1 sin(θ)/m+ u2 cos(θ)/m− cẏ/m
θ̈ = ru1/J

(14)

where x and y denote the position of the center of mass, θ
is the orientation, m denote the mass of the aircraft, J the
moment of inertia, g the gravity constant, and c the damping
coefficient. As shown in Figure 4, u1 and u2 are resolved
forces acting at a distance r below the aircraft.

2) Predictive Model 1 (q = 1): The first predictive model
is derived from (14) by removing the last terms:

ẍ = −g sin(θ) + u1 cos(θ)/m− u2 sin(θ)/m

ÿ = g(cos(θ)− 1) + u1 sin(θ)/m+ u2 cos(θ)/m

θ̈ = ru1/J

(15)

3) Predictive Model 2 (q = 2): The second predictive
model is a linearized version of (15) about the origin:

ẍ = u1/m+ (−g − u2/m)θ

ÿ = u2/m+ u1θ/m

θ̈ = ru1/J

(16)

4) Predictive Model 3 (q = 3): The third predictive model
is reduced from (16) by removing the last terms:

ẍ = u1/m

ÿ = u2/m

θ̈ = ru1/J

5) Predictive Model 4 (q = 4): The fourth predictive model
is reduced from (16) by removing the first terms:

ẍ = (−g − u2/m)θ

ÿ = u1θ/m

θ̈ = ru1/J

(17)

B. Simulation Setup

The VTOL aircraft model is discretized using a sampling
interval ∆T = 0.02 sec, and it has the state and control input

ẑ =
[
x y θ ẋ ẏ θ̇

]T
û =

[
u1 u2

]T
where T denotes matrix transpose. The cost function in (7) is
selected as

JN (ẑk, Û
q
k) =

N∑
t=0

(ẑqk,k+t)
TP (ẑqk,k+t)

+

N−1∑
t=0

(ûqk,k+t)
TR(ûqk,k+t)

in which N = 35, and matrix P and R are selected as

P =


10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10


R =

[
0 0
0 0

]
i.e., there are no constraints associated with inputs. Aircraft
parameters as set to m = 4000, J = 47.6, r = 2.5, g = 9.8
and c = 15. The optimization problem is described in AMPL
[28] and then fed into the solver Minos [29]. Aircraft state
update is simulated in MATLAB, which is used as the primary
system integration environment.

C. Simulation

The simulation results are provided in order to demonstrate
the feasibility of this approach for the plant models selected,
if the assumptions can be met.

1) Hybrid MPC with predictive models q = 1 and q = 2:
Model 1 and Model 2 are used to synthesize the hybrid MPC.
According to (12), the UDs of Model 1 and Model 2 can
be obtained, as shown in Figure 5. For the VTOL example,
UD (or model mismatch Γ̂q) is determined by ẋ, ẏ and θ.
To represent the comparison in an intuitive way, we select
specific values of θ and then plot out UDs over the plane
of ẋ and ẏ. Note that the upper limits for Sq

k, u1 and u2 are
used when estimating UDs. By using the switching logic (13),
one can easily plot out the switching boundary, as shown and
explained in Figure 6. Through experimentation in simulation
we set Sq=1

max = Sq=2
max = 5, based on a minimum return time

of 3.49 timesteps and a maximum return time of just over 4
timesteps.

Simulations are conducted using MPC with the predictor
function fq1 , fq2 , and a hybrid MPC using Q = {q1, q2}.
Simulation results are summarized in Figure 8, Figure 9 and
Figure 10.

2) Hybrid MPC with Predictive Models q = 3, q = 4:
Similar as the above procedure, a hybrid MPC can be synthe-

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. X, NO. Y, TBD 2016 9

10

speed in x-axis

5

08

theta = 0.03(rad)

76
speed in y-axis

54321

#10-5

0

3.5

0

0.5

1

1.5

2

3

5

4.5

4

2.5

Model 2

Model 1

Fig. 5. Comparison of UDs for models q = 1, q = 2. Since the model
mismatch Γ̂q of VTOL plane is determined by ẋ, ẏ and θ, this figure shows
the condition when θ = 0.03 rad.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
theta = 0 rad

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
theta = 0.03 rad

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
theta = 0.06 rad

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
theta = 0.09 rad

Fig. 6. Black dots represent where q = 1 should be applied to the MPC, the
empty part is where q = 2 should be used. The abscissa and ordinate denote
ẋ and ẏ, respectively. These four figures show the evolution of switching
boundary in slices from θ = 0 rad to θ = 0.09 rad.

time step
0 50 100 150 200 250 300 350

nu
m

be
r o

f s
w

itc
he

s

0

10

20

30

40

50

60

70

Maximum allowed switching times M(k,0)
Number of swtiches

Fig. 7. Number of switches during the simulation never exceed the maximum
limit M(k, 0).

-14 -12 -10 -8 -6 -4 -2 0
0

2

4

6

8

10

12

14
Hybrid
Model 1
Model 2

-14 -12 -10 -8 -6 -4 -2 0
0

2

4

6

8

10

12

14

Model 2

Model 1

Fig. 8. The above figure plots out the airplane trajectories under the control
of hybrid MPC (black solid line), Model 1-based MPC (green dashed line)
and Model 2-based MPC (blue dash-dot line). The airplane moves from the
initial position (−14, 14) to the origin. It slowly lands and slides from the
upper left to the origin. The bottom figure shows the switches that happened
in hybrid MPC controlled trajectory.

x position
-14 -12 -10 -8 -6 -4 -2 0

th
et

a
(ra

d)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Hybrid
Model 1
Model 2

Fig. 9. Vehicle θ relative to position along the x-axis.

time step
0 50 100 150 200 250 300 350

el
ap

se
d

tim
e

(s
ec

)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Hybrid
Model 1
Model 2

Fig. 10. Comparison of return time. The green line represents ∆T q=1 (return
time of Model 1), and the blue line represents ∆T q=2. The black line is the
return time of the Hybrid MPC controller.

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. X, NO. Y, TBD 2016 10

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
theta = 0 rad

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
theta = 0.065 rad

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
theta = 0.068 rad

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
theta = 0.071 rad

Fig. 11. Black dots represent where Model 4 should be applied to the MPC,
the empty part is where Model 3 should be used. Ordinates denote ẋ and
ẏ, respectively. These four figures show the evolution of switching boundary
from θ = 0 rad to θ = 0.071 rad.

time step
0 200 400 600 800 1000 1200po

si
tio

n
in

 x
-a

xi
s

(m
)

-40

-20

0

20

40

time step
0 200 400 600 800 1000 1200po

si
tio

n
in

 y
-a

xi
s

(m
)

-40

-20

0

20

time step
0 200 400 600 800 1000 1200

th
et

a
(ra

d)

-0.5
0

0.5
1

1.5
2

Fig. 12. The initial state of this simulation is the same as that in Figure 8.
However, the position x and y move far from the origin. The simulation step
is long enough to show such instability.

sized using Models 3 and 4. The switching boundary is shown
in Figure 11.

In this case, we selected the structure of q = 3 and q =
4 deliberately, in order to violate our assumptions regarding
applicability of the controllers to our approach. Namely, model
q = 3 is not stable at the origin. Although it is possible to
calculate the UD for this model, doing so results in selecting
the model q = 3 at low angles near the origin, which results
in instability, shown in Figure 12. Although the roll angle θ is
bounded around the origin, the positional coordinates are far
from the origin, and the airplane is sliding along the x-axis
without decaying to the origin.

VI. CONCLUSION

In this paper, we described a more realistic approach to
the application of uncontrollable divergence as a switching
condition for CPS systems using model predictive control. The

work relies on the nature of the varying dynamical models
and kinematic models, in order to return results from the
optimization routine faster for simpler models (which are less
accurate) than dynamical models (which are more accurate).
The merit of the work is in understanding how to quantify this
tradeoff as a switching condition. The result is a switching
condition formalism that supports shorter sampling periods,
thus enabling an optimization routine to run longer than one
sampling period. The examples provide demonstration of the
approach to a VTOL vehicle that is controlled to the origin.

A. Limitations

The approach described in this paper is suitable only for
systems with two predictor models, each of which is stable
independently. Our approach does not include any verification
requirements to ensure that unstable predictor models are used,
as shown in Section V-C2. We leave for future work to develop
tools that will detect these issues during calculation of the UD,
and leave open the possibility that such tools may necessarily
be analytic rather than computational.

Additional complexities in application of the results stem
from the requirement to gather sufficient data to calculate the
uncontrollable divergence with a physical plant. Since the plant
may have states which are undesirable to explore for reasons of
safety or comfort, and since a ground truth measurement may
be difficult to obtain in all states, developers may wish to apply
techniques to approximate the error functions from a sample
set. One such example is provided in [6], which explores how
to calculate the UD for a ground vehicle platform. That paper
also describes how comparisons to a high-fidelity simulation
and the physical plant can be carried out.

We obtain the UD using extensive simulation, and that
we take advantage of the continuity (and stability) of the
physical plant to sample its behavior to estimate the time
required to optimize the control inputs. We leave as future
work the approach to estimate (or bound) the optimization
time at runtime for the candidate control inputs, which would
not require extensive simulation.

A final note is that the UD calculations must be re-done if a
new computational node is utilized to perform the optimization
routine during MPC execution. This is due to the fact that the
calculation of the UD depends heavily on the time required to
return the solution to the MPC problem for each plant. Thus,
a UD calculated for a computing platform of one type cannot
be reused on another platform directly. This is analogous to
changes in worst case execution time (WCET) for a real-time
system: changes in the computing platform impact the WCET
calculation, and can similarly impact schedulability.

B. Future work

In future work, we are interested in Q with qmax > 2;
since in this paper it is only possible to switch to at least one
more state, implementation is much simpler. When extending
to more than one possible predictor function, the work may
require the specification of guard conditions, or application of
other hybrid automata in the switching conditions.

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. X, NO. Y, TBD 2016 11

When the optimization process may have a variable number
of parameters for the cost function (e.g. obstacles to avoid),
the optimization time may also vary. In future work we have
explored how to estimate the upper bound of the execution
time of the optimizer as a function of the number of obstacles
over the horizon.

We are also interested in determining necessary conditions
for processes and prediction functions that are suitable for the
approach outlined in this paper. As presented in this work
and our previous work, the switching surfaces are easy to
determine and approximate as a function, but all processes
and prediction functions may not satisfy these criteria.

The most compelling extension to the work regards theoret-
ical demonstration of stability. Techniques for the demonstra-
tion of stability for constrained MPC can be found in [30].
The complexity of demonstrating stability in our approach
comes from our inability to assume temporally decaying
uncertainty or cost (as shown in [31], [32]). Further, because
typical approaches to MPC stability use the Lyapunov function
that guarantees stability as the cost function, it is not clear
that such an approach will work for our system, since each
predictor model will have its own cost function. For future
work, we have ideas for how to extend the state of the art
in order to demonstrate necessary conditions for stability for
our approach. Our proposed approach is based on deriving
the dwell-time parameters and the decay of the cost function
from the UD metric throughout the state space. We suspect
that for many MPC systems that the approach will work, but
the applicability to general systems will require further study.

ACKNOWLEDGMENT

Work by K. Zhang and J. Sprinkle is supported in part by
the National Science Foundation under award CNS-1253334.
Research by R. G. Sanfelice has been partially supported
by the National Science Foundation under Grant no. ECS-
1150306 and by AFOSR under Grant no. FA9550-12-1-0366.
The authors thank the comments of the anonymous reviewers
of this work in its initial revision in the 2015 ACM/IEEE
International Conference on Cyber-Physical Systems, and the
feedback and discussions as part of that conference presenta-
tion.

REFERENCES

[1] M. Cannon and B. Kouvaritakis, “Continuous-time predictive control of
constrained nonlinear systems,” in Nonlinear Model Predictive Control.
Springer, 2000, pp. 205–215.

[2] P. Falcone, M. Tufo, F. Borrelli, J. Asgari, and H. Tsengz, “A linear
time varying model predictive control approach to the integrated vehicle
dynamics control problem in autonomous systems,” in Decision and
Control, 2007 46th IEEE Conference on. IEEE, 2007, pp. 2980–2985.

[3] R. S. Parker, E. P. Gatzke, R. Mahadevan, E. S. Meadows, and F. Doyle,
“Nonlinear model predictive control: issues and applications,” IEE
CONTROL ENGINEERING SERIES, pp. 33–58, 2001.

[4] M. Egerstedt, X. Hu, and A. Stotsky, “Control of a car-like robot using
a dynamic model,” in ICRA. Citeseer, 1998, pp. 3273–3278.

[5] K. Zhang, J. Sprinkle, and R. G. Sanfelice, “A hybrid model predictive
controller for path planning and path following,” in International
Conference on Cyber-Physical Systems (ICCPS). Seattle, WA: ACM,
Apr. 2015, pp. 139–148. [Online]. Available: http//dx.doi.org/10.1145/
2735960.2735966

[6] ——, “Computationally-aware control of autonomous vehicles: A hybrid
model predictive control approach,” Autonomous Robots, pp. 503–517,
2015. [Online]. Available: http://dx.doi.org/10.1007/s10514-015-9469-5

[7] E. F. Camacho and C. A. Bordons, Model Predictive Control in the
Process Industry. Springer-Verlag New York, Inc., Aug. 1997.

[8] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
theory and practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–348,
May 1989.

[9] D. Q. Mayne, “Model predictive control: recent developments and future
promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[10] A. Richards, “Robust model predictive control for time-varying sys-
tems,” in Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC’05. 44th IEEE Conference on. IEEE, 2005,
pp. 3747–3752.

[11] M. Bahadorian, B. Savkovic, R. Eaton, and T. Hesketh, “Robust model
predictive control for automated trajectory tracking of an unmanned
ground vehicle,” in American Control Conference (ACC), 2012. IEEE,
2012, pp. 4251–4256.

[12] T. Alamo, D. M. de la Peña, and E. F. Camacho, “Min–Max MPC based
on a network problem,” Systems & Control Letters, vol. 57, no. 2, pp.
184–192, Jan. 2008.

[13] T. Alamo, D. M. de la Pena, D. Limon, and E. F. Camacho, “Constrained
min-max predictive control: modifications of the objective function lead-
ing to polynomial complexity,” Automatic Control, IEEE Transactions
on, vol. 50, no. 5, pp. 710–714, May 2005.

[14] M. N. Zeilinger, D. M. Raimondo, A. Domahidi, M. Morari, and
C. N. Jones, “On real-time robust model predictive control,” Automatica,
vol. 50, no. 3, pp. 683–694, 2014.

[15] C. Løvaas, M. M. Seron, and G. C. Goodwin, “Robust output-feedback
model predictive control for systems with unstructured uncertainty,”
Automatica, vol. 44, no. 8, pp. 1933–1943, 2008.

[16] P. Falugi and D. Q. Mayne, “Getting robustness against unstructured
uncertainty: a tube-based MPC approach,” Automatic Control, IEEE
Transactions on, vol. 59, no. 5, pp. 1290–1295, 2014.

[17] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust constrained
model predictive control using linear matrix inequalities,” Automatica,
vol. 32, no. 10, pp. 1361–1379, 1996.

[18] T. Alamo, D. M. de la Pea, and E. F. Camacho, “An Efficient Maxi-
mization Algorithm With Implications in Min-Max Predictive Control,”
Automatic Control, IEEE Transactions on, vol. 53, no. 9, pp. 2192–2197,
Oct. 2008.

[19] T. Alamo, R. Tempo, and E. F. Camacho, “Randomized Strategies
for Probabilistic Solutions of Uncertain Feasibility and Optimization
Problems,” Automatic Control, IEEE Transactions on, vol. 54, no. 11,
pp. 2545–2559, Nov. 2009.

[20] F. Künhe, J. Gomes, and W. Fetter, “Mobile robot trajectory tracking
using model predictive control,” in II IEEE latin-american robotics
symposium, 2005.

[21] M. A. Henson, “Nonlinear model predictive control: current status and
future directions,” Computers and Chemical Engineering, vol. 23, no. 2,
pp. 187–202, 1998.

[22] J. B. Rawlings, “Tutorial: Model predictive control technology,” in
American Control Conference, 1999. Proceedings of the 1999, vol. 1.
IEEE, 1999, pp. 662–676.

[23] F. Kuhne, W. F. Lages, and J. M. G. da Silva Jr, “Model predictive
control of a mobile robot using linearization,” in Proceedings of Mecha-
tronics and Robotics, 2004, pp. 525–530.

[24] Z. Zhao, X. Xia, J. Wang, J. Gu, and Y. Jin, “Nonlinear dynamic matrix
control based on multiple operating models,” Journal of Process Control,
vol. 13, no. 1, pp. 41–56, Jan. 2003.

[25] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[26] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. New Jersey: Princeton University
Press, 2012.

[27] J. Hespanha and A. Morse, “Stability of switched systems with average
dwell-time,” in Decision and Control, 1999. Proceedings of the 38th
IEEE Conference on, vol. 3, 1999, pp. 2655–2660 vol.3.

[28] R. Fourer, D. M. Gay, and B. W. Kernighan, “Ampl: A modeling
language for mathematical programming,” p. 540, 2002, ISBN 0-534-
38809-4.

[29] B. Murtagh and M. A. Saunders, “MINOS 5.5 User’s Guide,” Jul. 1998.
[Online]. Available: http://web.stanford.edu/group/SOL/guides/minos55.
pdf

http//dx.doi.org/10.1145/2735960.2735966
http//dx.doi.org/10.1145/2735960.2735966
http://dx.doi.org/10.1007/s10514-015-9469-5
http://web.stanford.edu/group/SOL/guides/minos55.pdf
http://web.stanford.edu/group/SOL/guides/minos55.pdf

TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING , VOL. X, NO. Y, TBD 2016 12

[30] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, 2000.

[31] D. L. Marruedo, T. Alamo, and E. Camacho, “Stability analysis of
systems with bounded additive uncertainties based on invariant sets:
Stability and feasibility of MPC,” in American Control Conference,
2002. Proceedings of the 2002, vol. 1. IEEE, 2002, pp. 364–369.

[32] P. O. Scokaert, J. B. Rawlings, and E. S. Meadows, “Discrete-time
stability with perturbations: Application to model predictive control,”
Automatica, vol. 33, no. 3, pp. 463–470, 1997.

Kun Zhang received the Ph.D. degree in Electri-
cal and Computer Engineering at the University of
Arizona in 2015. His research interests are domain-
specific modeling, cyber-physical systems and soft-
ware engineering.

Jonathan Sprinkle is the Litton Industries John M.
Leonis Distinguished Associate Professor of Elec-
trical and Computer Engineering at the University
of Arizona. He received the B.S. degree from Ten-
nessee Technological University in 1999, the M.S.
and Ph.D. degrees from Vanderbilt University in
2000 and 2003, respectively. From 2003-2007 he
was at the University of California, Berkeley as a
postdoctoral scholar. He joined the University of
Arizona in 2007. In 2013 he received the NSF
CAREER award, and in 2009, he received the UA’s

Ed and Joan Biggers Faculty Support Grant for work in autonomous systems.
His work has an emphasis for industry impact, and he was recognized with the
UA “Catapult Award” by Tech Launch Arizona in 2014, and in 2012 his team
won the NSF I-Corps Best Team award. His research interests and experience
are in systems control and engineering, and he teaches courses ranging from
systems modeling and control to mobile application development and software
engineering.

Ricardo G. Sanfelice received the B.S. degree in
Electronics Engineering from the Universidad de
Mar del Plata, Buenos Aires, Argentina, in 2001,
and the M.S. and Ph.D. degrees in Electrical and
Computer Engineering from the University of Cali-
fornia, Santa Barbara, CA, USA, in 2004 and 2007,
respectively. In 2007 and 2008, he held postdoc-
toral positions at the Laboratory for Information
and Decision Systems at the Massachusetts Institute
of Technology and at the Centre Automatique et
Systmes at the cole de Mines de Paris. In 2009, he

joined the faculty of the Department of Aerospace and Mechanical Engineer-
ing at the University of Arizona, Tucson, AZ, USA, where he was an Assistant
Professor. In 2014, he joined the faculty of the Computer Engineering
Department, University of California, Santa Cruz, CA, USA, where he is
currently an Associate Professor. Prof. Sanfelice is the recipient of the 2013
SIAM Control and Systems Theory Prize, the National Science Foundation
CAREER award, the Air Force Young Investigator Research Award, and
the 2010 IEEE Control Systems Magazine Outstanding Paper Award. His
research interests are in modeling, stability, robust control, observer design,
and simulation of nonlinear and hybrid systems with applications to power
systems, aerospace, and biology.

	Introduction
	Background
	Review of MPC
	Predictive Model Uncertainty
	Optimization Approaches and Computation Time
	Switched MPC

	Formulation
	Predictive models
	MPC with Computation Time
	Solution timesteps
	Solution timestep indices
	Considering arrival of a new solution

	Definition of Uncontrollable Divergence (UD)
	Calculation of UD

	Problem
	Applicable Systems
	Problem Statement

	Example
	Plant and Predictive Models
	Reference Plant
	Predictive Model 1 (q=1)
	Predictive Model 2 (q=2)
	Predictive Model 3 (q=3)
	Predictive Model 4 (q=4)

	Simulation Setup
	Simulation
	Hybrid MPC with predictive models q=1 and q=2
	Hybrid MPC with Predictive Models q=3, q=4

	Conclusion
	Limitations
	Future work

	References
	Biographies
	Kun Zhang
	Jonathan Sprinkle
	Ricardo G. Sanfelice

