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Abstract: We study the problem of estimating the state of a linear time-invariant plant in
a distributed fashion over networks allowing only intermittent transmission of information.
By attaching to each node an observer that employs information received from its neighbors
in an intermittent fashion, we propose a distributed state observer that guarantees global
asymptotic stability of the zero estimation error set. We also characterize the proposed observer’s
robustness to measurement and communication noise in terms of ISS. The design of parameters is
formulated as matrix inequalities. The properties of the proposed observer are shown analytically
and validated numerically.
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1. INTRODUCTION

State estimation in multi-agent systems over generic con-
nected networks has seen increased attention recently. A
typical challenge in this setting comes in the form of
each agent being unable to generate an estimate alone,
therefore, communication to other systems is needed. One
methodology to solve this problem is to design an appro-
priate information fusion protocol which uses the local in-
formation available to an agent so as to guarantee conver-
gence of the local state estimates to the state of the plant of
interest. For example, the estimation of the trajectories of
a moving target can be solved by using distributed sensor
networks, see, e.g., Wang and Ren (2015) and Kamal et al.
(2013). In Li and Sanfelice (2016), robust decentralized
estimation with performance guarantees is explored under
the assumption that information is available continuously.
The distributed Kalman filtering is employed for achieving
spatially-distributed estimation tasks in Cortes (2009). In
Hong et al. (2008), switching inter-agent topologies are
used to design distributed observers for a leader-follower
problem in multi-agent systems.

In this paper, we consider the problem of designing a
distributed estimation algorithm to estimate the state of
the linear time-invariant plant

ẋ = Ax (1)

when measurement of its output is only available inter-
mittently, i.e., at isolated (potentially nonperiodic) time
instances. For the case of a single estimator, Ferrante
et al. (2013) proposes a hybrid observer guaranteeing
global exponential stability of the zero estimation error
set. In the context of multi-agent systems, Cheng and Xie
(2014) proposes a distributed observer with undirected
fixed communication topology and switching communica-
tion topology for periodic sampling time/communication
events. In contrast to the latter work, in this paper,
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we consider the case where the agents may only receive
information from their neighbors intermittently, say, to
reduce the cost of communication and computation. In our
setting, agents are only allowed to take measurements and
communicate at isolated (potentially nonperiodic) events,
where the time elapsed between two consecutive events are
governed by a random variable. Our contributions include
the following:

(1) We establish a hybrid model for a distributed state
observer under intermittent information transmission
that is well-posed;

(2) We propose sufficient conditions to guarantee uniform
global asymptotic stability of the zero estimation er-
ror set. Moreover, robustness of the stability property
of the proposed observer with respect to communica-
tion and measurement noise is characterized in terms
of input-to-state stability (ISS).

The remainder of this paper is organized as follows. In
Section 2, some preliminaries on the hybrid systems frame-
work used and graph theory are briefly discussed. The
main results are presented in Section 3. In Section 4, the
scenario of asynchronous event times is studied. Numer-
ical and analytical examples illustrating the results are
discussed throughout the paper.

2. PRELIMINARIES

2.1 Notation

Given a matrix A, the set eig(A) contains all eigenvalues

of A and |A| := max{|λ| 12 : λ ∈ eig(A⊤A)}. Given two

vectors u, v ∈ R
n, |u| :=

√
u⊤u and notation [u⊤ v⊤]⊤ is

equivalent to (u, v). Given a function m : R≥0 → R
n,

|m|∞ := supt≥0 |m(t)|. Z≥1 denotes the set of positive
integers, i.e., Z≥1 := {1, 2, 3, . . .}. N denotes the set of
natural numbers including zero, i.e., N := {0, 1, 2, 3, . . .}.
Given a symmetric matrix P , λ(P ) := max{λ : λ ∈
eig(P )} and λ(P ) := min{λ : λ ∈ eig(P )}. Given matrices
A,B with proper dimensions, we define the operator



He(A,B) := A⊤B + B⊤A; A ⊗ B defines the Kronecker
product; diag(A,B) denotes a 2 × 2 block matrix with
A and B being the diagonal entries; and A ∗ B defines
the Khatri-Rao product between A and B. Given N ∈ N,
IN ∈ R

N×N defines the identity matrix and 1N is the
vector of N ones.

2.2 Preliminaries on Hybrid Systems

In this paper, a hybrid system H has data (C, f,D,G) and
is defined by

ż = f(z) z ∈ C,

z+ ∈ G(z) z ∈ D,
(2)

where z ∈ R
n is the state, f defines the flow map capturing

the continuous dynamics and C defines the flow set on
which f is effective. The map G defines the jump map and
models the discrete behavior, whileD defines the jump set,
which is the set of points from where jumps are allowed.
A solution φ to H is parametrized by (t, j) ∈ R≥0 ×
N, where t denotes ordinary time and j denotes jump
time. The domain dom φ ⊂ R≥0 × N is a hybrid time
domain if for every (T, J) ∈ dom φ, the set dom φ ∩
([0, T ]× {0, 1, . . . , J}) can be written as the union of sets
∪J
j=0(Ij × {j}), where Ij := [tj , tj+1] for a time sequence

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ+1. The tj ’s with j > 0 define
the time instants when the state of the hybrid system
jumps and j counts the number of jumps. A solution to
H is called maximal if it cannot be extended, i.e., it is
not a truncated version of another solution. It is called
complete if its domain is unbounded. A solution is Zeno if
it is complete and its domain is bounded in the t direction.
A solution is precompact if it is complete and bounded.
The set SH contains all maximal solutions to H, and the
set SH(ξ) contains all maximal solutions to H from ξ.

We consider the definition of uniform global asymptotic
stability (UGAS) for a set given in (Goebel et al., 2012,
Definition 3.6). A sufficient condition for a set A to be
UGAS for H is given in (Goebel et al., 2012, Proposition
3.27). A hybrid system is said to satisfy the hybrid basic
conditions if (Goebel et al., 2012, Assumption 6.5) holds.
We refer the reader to Goebel et al. (2012) for more details
on these notions and the hybrid systems framework.

2.3 Preliminaries on Graph Theory

A directed graph (digraph) is defined as Γ = (V , E ,G). The
set of nodes of the digraph are indexed by the elements
of V = {1, 2, . . . , N}, and the edges are the pairs in the
set E ⊂ V ×V . Each edge directly links two nodes, i.e., an
edge from i to k, denoted by (i, k), implies that agent i can
receive information from agent k. The adjacency matrix of
the digraph Γ is denoted by G ∈ R

N×N , where its (i, k)-th
entry gik is equal to one if (i, k) ∈ E and zero otherwise.
A digraph is undirected if gik = gki for all i, k ∈ V .
Without loss of generality, we assume that gii = 0 for
all i ∈ V . The in-degree and out-degree of agent i are

defined by dini =
∑N

k=1 gik and douti =
∑N

k=1 gki. The
in-degree matrix D is the diagonal matrix with entries
Dii = dini for all i ∈ V . The Laplacian matrix of the
graph Γ, denoted by L ∈ R

N×N , is defined as L = D − G.
The set of indices corresponding to the neighbors that
can send information to the i-th agent is denoted by
N (i) := {k ∈ V : (i, k) ∈ E}.

3. INTERMITTENT STATE OBSERVERS WITH
SYNCHRONOUS COMMUNICATION EVENTS

3.1 Configuration and basic properties

Consider N agents that are connected via a directed graph
and where each agent runs a local observer of the state x
of (1). Each local observer uses its own measurement and
information received from its neighbors. In particular, the
local observer at the i-th agent has a local estimate x̂i and
it has a measurement of the state x, which is given by

yi = Hix ∈ R
pi (3)

as well as information from all its connected neighbors.
However, the availability of such measurements is at iso-
lated time instances {ts}∞s=1, where s is the communica-
tion event index. More precisely, the i-th agent receives
yi(ts) = Hix(ts), yk(ts) = Hkx(ts), and x̂k(ts) at each
communication event, where k ∈ N (i). Furthermore, it is
assumed that a random variable Ωs ∈ [T1, T2] determines
the time elapsed between such communication events, i.e.,

ts+1 − ts = Ωs (4)

where s ∈ {1, 2, 3, · · · } and T2 ≥ T1 > 0. The scalar values
T1 and T2 define the lower and upper bounds, respectively,
of the time allowed to elapse between consecutive com-
munication events. Due to the impulsive nature of such
communication mechanism, the communication events are
triggered when the timer τ reaches zero, which is then
reset to a point in [T1, T2], from where it decreases with
ordinary time. Namely, the timer τ evolves according to

τ̇ = −1 τ ∈ [0, T2], (5a)

τ+ ∈ [T1, T2] τ = 0. (5b)

This hybrid system generates any possible sequence of time
instances {ts}∞s=1 at which events occur and satisfy (4)
with Ωs given by any probability distribution function that
assigns Ωs ∈ [T1, T2].

The proposed distributed observer is as follows. The i-th
agent runs the following local observer:

˙̂xi = Ax̂i + ηi (6)

where ηi, referred as the information fusion state, is a
variable that stores the information obtained at each
communication event. Due to the intermittent nature of
availability of information, ηi is updated impulsively when
new information arrives. The generic dynamics of ηi can
be captured by

η̇i = foi(x̂i, ηi) τ ∈ [0, T2] (7)

η+i =
∑

k∈V

gikG
k
oi(x̂i, x̂k, yi, yk) τ = 0 (8)

for each i ∈ V , where the map foi : R
n ×R

n → R
n defines

the continuous evolution of the information fusion state
and the map Gk

oi : R
n ×R

n ×R
pi ×R

pk → R
n defines the

impulsive update law when new information is collected
from the k-th neighbor.

The resulting hybrid closed-loop system is given by the
interconnection between the plant in (1), all local ob-
servers in form (6), and the dynamics of the informa-
tion fusion state in (7)-(8). We denote the closed-loop
hybrid system by Ho = (C, f,D,G), which has state
z = (x, ξ1, . . . , ξN , τ) ∈ X := R

n × SN × [0, T2], where
S := R

n × R
n and ξi = (x̂i, ηi) for each i ∈ V . Its

continuous dynamics are given by

ż = f(z) := (Ax, f1(ξ1), . . . , fN (ξN ),−1) z ∈ C (9)



where C := X and fi(ξi) := (Ax̂i + ηi, foi(x̂i, ηi)) for each
i ∈ V . Since the communication and update events are
induced by the timer with dynamics as in (5), the jump
set D for Ho is defined as D := {z ∈ X : τ = 0}. Then
z+ ∈ G(z) := (x,G1(z), . . . , GN (z), [T1, T2]) z ∈ D, (10)

where Gi(z)=
(
x̂i,

∑
k∈V gikG

k
oi(x̂i, x̂k, yi, yk)

)
for all i∈V .

With the construction above, the data of the hybrid closed-
loop system Ho satisfies the following property.
Lemma 3.1. Suppose that, for each i ∈ V, the flow map
foi : R

n ×R
n → R

n is continuous; and for each (k, i) ∈ E,
the map Gk

oi : R2n × R
pi+pk → R

n is continuous. Then,
the hybrid system Ho satisfies the hybrid basic conditions.

Remark 3.2. Note that satisfying the hybrid basic con-
ditions implies that the hybrid system Ho is well-posed
and, with asymptotic stability of a compact set, leads to
robustness to small enough perturbations; see Goebel et al.
(2012) for more information. �

3.2 Sample-and-hold estimation protocol

In this section, we consider the following dynamics for ηi
defining a specific hybrid information fusion strategy:

foi(x̂i, ηi)=0 (11)

for all (x̂i, ηi) ∈ R
n×R

n, and, for all (x̂i, x̂k, yi, yk) ∈ R
n×

R
n × R

pi × R
pk ,

Gk
oi(x̂i, x̂k, yi, yk)=

1

dini
Kiiy

e
i +Kiky

e
k+γ(x̂i − x̂k) (12)

where, for each i, k ∈ V , yei = Hix̂i−yi, Kik ∈ R
n×pk , and

γ ∈ R are the gain matrices for the i-th agent. Note that
due to the specific update law in (8) and the definition
of gik, the second term in (12) uses the output error of
each k-th agent that is a neighborhood of the i-th agent,
and the third term in (12) uses the difference between
the estimates x̂i and x̂k. These are the quantities that are
transmitted at communication events.
Remark 3.3. The hybrid information fusion strategy pro-
posed in (11)-(12) falls into the category of zero-order
sample-and-hold control; see, e.g., Naghshtabrizi et al.
(2008) and Raff et al. (2008). Note that the work in
Naghshtabrizi et al. (2008) and Raff et al. (2008) pertain to
single-agent systems and that robustness to measurement
and communication noise is not studied. �

To analyze the hybrid system Ho, for each i ∈ V , denote
the local estimation error ei = x̂i−x. Then, it follows that
the continuous dynamics of ei and ηi are given by

ėi = Aei + ηi, (13)

η̇i = 0, (14)

for each τ ∈ [0, T2], and, when τ=0, the discrete dynamics
are

e+i =ei, (15)

η+i =KiiHiei+
∑

k∈V

gikKikHkek+γ
∑

k∈V

gik(ei − ek). (16)

By denoting e = (e1, e2, · · · , eN) and η = (η1, η2, · · · , ηN ),
it follows that

ė = (IN ⊗ A)e+ η,

η̇ = 0,

for each τ ∈ [0, T2], while when τ = 0,

e+ = e, (17)

η+ = (KgHg ∗ (IN + G) + γL⊗ In)e, (18)

where the matrix Hg = diag(H1, H2, . . . , HN ) is block
diagonal and Kg ∈ R

nN×p is a N × N block matrix with
the (i, k)-th entry given by Kik ∈ R

n×pk for all i, k ∈ V
with p =

∑
i∈V pi. Note that the operation “∗” denotes the

Khatri-Rao product, where the matrix KgHg is treated as
a N ×N block matrix.

Then, in the (e, η) coordinates, the system Ho can be
written as a hybrid system Hs = (Cs, fs, Ds, Gs) with
state χ = (σ, τ) ∈ Xs := R

nN × R
nN × [0, T2] with

σ = (e, η), and data given by

fs(χ) := (Afσ,−1) ∀χ ∈ Cs (19)

Gs(χ) := (Agσ, [T1, T2]) ∀χ ∈ Ds, (20)

where Cs := Xs, Ds := R
nN × R

nN × {0},
Af :=

[
IN ⊗A InN

0 0

]
, (21)

Ag :=

[
InN 0

KgHg ∗ (IN + G) + γL⊗ In 0

]
, (22)

Note that Hs is autonomous; in particular, its dynamics
are independent of the dynamics of Ho.

Remark 3.4. Due to the jumps being triggered by the
timer τ with dynamics (5) reaching zero, the hybrid time
domain of any maximal solution to Ho (or to Hs) satisfies
the following property. For any given φ∈SHo

(or φ∈SHs
),

T1≤ tj+1−tj≤T2 for all j ≥ 1 and 0 ≤ t1 ≤ T2, and

(j − 1)T1 ≤ t ≤ (j + 1)T2 ∀ j ≥ 1 (23)

for all (t, j) ∈ domφ. �

As the objective of each agent is to estimate the state
x of the plant, i.e., for each i ∈ V , make x̂i converge
to x asymptotically, and since ηi approaches zero as ei
approaches zero, the set of interest is defined as

A = {0nN} × {0nN} × [0, T2]. (24)

The following result provides a sufficient condition for
uniform global asymptotic stability of A.

Theorem 3.5. Let 0 < T1 ≤ T2 be given. Suppose there
exist matrices Kg ∈ R

nN×p and P ∈ R
2nN×2nN such that

P = P⊤ > 0 and

A⊤
g exp(A⊤

f ν)P exp(Afν)Ag − P < 0 (25)

for all ν ∈ [T1, T2]. Then, the set A in (24) is UGAS for
the hybrid system Hs.

Remark 3.6. Note that when condition (25) holds, Theo-
rem 3.5 guarantees that e and η converges to zero asymp-
totically. Recalling that ei = x̂i − x, this implies that x̂i
converges to x asymptotically for all i ∈ V . Furthermore,
due to the multiplication of the parameters ν, P , and Kg

in the first term of (25), it might be difficult to efficiently
check (25) numerically. It is worth pointing out that condi-
tion (25) is satisfied if, for all ν ∈ [T1, T2], the eigenvalues
of exp(Afν)Ag are contained in the unit circle. �

Note that the pair (Hi, A) is not explicitly assumed to be
detectable in this work. In fact, as we will show in the
following example, even when (Hi, A) are not detectable
for each i ∈ V , we can still guarantee UGAS of A by
satisfying (25).

Example 3.7. Consider an oscillatory plant as in (1) with

A =
[
0 −1
1 0

]
. (26)
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(b) Estimation error, where x =
(x1, x2), x̂i = (x̂i1, x̂i2), ei1 =
x̂i1 − x1, ei2 = x̂i2 − x2, for
i ∈ {1, 2}.

Fig. 1. Phase portraits and estimation errors of two agents
that are all-to-all connected for the observer in Ex-
ample 3.7. Initial conditions are x(0, 0) = (2, 2),
x̂1(0, 0) = (5, 5), x̂2(0, 0) = (−1, 0), η1(0, 0) = (1, 1),
η2(0, 0) = (−1,−1), τ(0, 0) = 0.2.
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(b) Estimation errors for both
components.

Fig. 2. Phase portraits and estimation errors for the
observer in Example 3.7. The gain used is γ = −0.4
while the rest of the parameters are the same as those
used for the simulations in Figure 1.

Consider the case of two agents that are all-to-all con-
nected, namely,

G =
[
0 1
1 0

]
.

Let the measurements of x at agent 1 be

y1 = H1x, H1 = [1 0]

and the measurements at agent 2 be

y2 = H2x, H2 = [0 1].

Let T1 = 0.5 and T2 = 1. By solving inequality 1 (25) in
Theorem 3.5, we obtain the following parameters:

K11 = [−0.5 −0.2 ]⊤ , K12 = [−0.2 −0.2 ]⊤ ,

K21 = [ 0.2 0.3 ]⊤ , K22 = [−0.1 −0.5 ]⊤ ,

with γ = −0.1. A simulation with these parameters is
shown in Figure 1. The estimates x̂1 and x̂2 converge to x
asymptotically as guaranteed by Theorem 3.5. 2

More interestingly, consider the scenario where agent 1
loses the capability of receiving measurements, i.e., H1 =
0. A simulation with same initial conditions and gains
as those in Figure 1 is shown in Figure 2. As suggested
from the simulation, it can be seen that even though the
agent has measurement y1 ≡ 0, through the consensus-
like term (the third term in (12)), the components x̂1
and x̂2 reach consensus first and then converge to x
asymptotically. This highlights further a benefit of the

1 Note that the inequality in (25) is not linear. The tool developed
in Fiala et al. (2013) provides a way to solve it.
2 Code at https://github.com/HybridSystemsLab/ObsSyncTimes2nd.

third term in the dynamics of η in (12). In fact, the third
term enforces consensus between the estimates x̂1 and x̂2.
Another benefit of using this term will be seen in the next
example. △

Next, we establish another sufficient condition to guaran-
tee that the estimation error e converges to zero asymp-
totically. Following the idea in Ferrante et al. (2015), by
defining the variable θi =

∑
k∈V gikG

k
oi(x̂i, x̂k, yi, yk) − ηi

and θ = (θ1, θ2, . . . , θN ), we have that the continuous
evolution of e and θ is given by

ė = Aθe− θ, (27)

θ̇ = KAθe−Kθ, (28)

when τ ∈ [0, T2], where Aθ = IN ⊗A+K and K = KgHg ∗
(IN+G)+γL⊗In. Moreover, the discrete dynamics of e and
θ are given by e+ = e and θ+ = 0 when τ = 0. Then, the
system in coordinates e and θ can be written as a hybrid
systemHθ = (Cθ, fθ, Dθ, Gθ) with state χθ = (σθ, τ) ∈ Xs,
σθ = (e, θ), and data given by

fθ(χθ) := (Afθσθ,−1)

for each χθ ∈ Cθ := R
nN × R

nN × [0, T2], and

Gθ(χθ) := (Agθσθ, [T1, T2])

when χθ ∈ Dθ := R
nN × R

nN × {0}, where
Afθ =

[
Aθ −InN
KAθ −K

]
, Agθ =

[
InN 0
0 0

]
. (29)

Since the state e denotes the estimation error, the variable
θ denotes the difference between the current information
fusion state (η) and the new value of the fusion state (η+),
we are also interested in guaranteeing asymptotic stability
of the set A defined in (24). In these new coordinates, we
establish the following result.
Theorem 3.8. Let 0 < T1 ≤ T2 be given. Suppose there
exist δ > 0 and matrices Kg ∈ R

nN×p, P,Q ∈ R
nN×nN

satisfying P = P⊤ > 0, Q = Q⊤ > 0, and[
He(Aθ, P ) −P + exp(δν)A⊤

θ K⊤Q
⋆ − exp(δν)(δQ +He(K, Q))

]
<0 (30)

for all ν ∈ [0, T2]. Then, the set A in (24) is UGAS for
the hybrid system Hθ.

Note that the condition in (30) needs to be checked over
a closed interval [0, T2], which is a difficult task. The
following result relaxes this requirement.
Proposition 3.9. Let T2 > 0 be given. The inequality in
(30) holds for each ν ∈ [0, T2] if there exist δ > 0
and matrices P,Q ∈ R

nN×nN satisfying P = P⊤ > 0,
Q = Q⊤ > 0,[

He(Aθ, P ) −P +A⊤
θ K⊤Q

⋆ −δQ−He(K, Q))

]
<0, (31)

[
He(Aθ, P ) −P + exp(δT2)A

⊤
θ K⊤Q

⋆ − exp(δT2)(δQ +He(K, Q))

]
<0. (32)

Example 3.10. Consider the network estimation problem
in Example 3.7. Using the same parameters K11,K12,
K21,K22 and γ therein, it can be verified that (31) and
(32) hold for δ = 10 and a maximum value of T2 ≈ 0.4. As
expected, replacing condition (30) by (31) and (32), which
is a relaxation of (30), the largest T2 allowed becomes
smaller. △
Remark 3.11. Note that the matrices E1 and E2 involve
the multiplication of QKAθ, which contains cross terms



involving Q, Kg, and γ. The presence of these terms makes
the problem nonlinear and difficult to solve numerically.
LMI conditions can be established following ideas in Fer-
rante et al. (2013). �

3.3 Robustness to measurement noise and channel noise

In this section, we investigate the scenario when the
measurements yi’s are noisy, i.e., for each i ∈ V , ỹi = yi +
mi, where mi : R≥0 → R

pi denotes the measurement noise
on the information received by agent i. Moreover, when
agent i receives information (including x̂k, yk) from agent
k (k ∈ N (i)), it is also affected by channel noise, i.e., x̃i

k =
x̂k+cxi and ỹik = ỹk+c

y
i , where ci = (cxi , c

y
i ) : R≥0 → R

n+pi

is the channel noise when agent i receives information from
its neighbors. Then, according to the design in (11)-(12),
the noise is injected through the update law of ηi, that is,

η̇i = 0 (33)

when τ ∈ [0, T2], and

η+i = KiiHiei +
∑

k∈V

gik(KikHkek+ei−ek)+ζi (34)

when τ = 0, where

ζi = −Kiimi +
∑

k∈V

gikKik(Hkc
x
i − c

y
i −mk)− γ

∑

k∈V

gikc
x
i .

Then, the closed-loop system in (19) and (20) with added
noise can be written in the following compact form:

χ̇ = fs(χ) := (Afσ,−1) χ ∈ Cs, (35)

χ+ ∈ Gs(χ, ζ) := (Agσ + ζ, [T1, T2]) χ ∈ Ds, (36)

where Af and Ag are given in (21) and (22), respectively,

ζ = (0,Kmm+Kcc),

Km = −Kg ∗ (I + G),
Kc = [(KgHg − γI) ∗ G −Kg ∗ G] ,

m = (m1,m2, . . . ,mN), c = (cx, cy), cx = (cx1 , c
x
2 , . . . , c

x
N),

and cy = (cy1 , c
y
2 , . . . , c

y
N ). 3 For this perturbed hybrid

system, we have the following result.
Theorem 3.12. Let 0 < T1 ≤ T2 be given. Suppose there
exist matrices Kg ∈ R

nN×p and P ∈ R
2nN×2nN such that

P = P⊤ > 0 and condition (25) holds. Then, the set A is
ISS with respect to measurement noise and communication
noise, i.e., each φ ∈ SHs

satisfies, for any (t, j) ∈ domφ,

|φ(t, j)|A ≤ max
{√

2α2

α1

λ
j/2
d |φ(0, 0)|A, γ̃m(j)|m|∞, γ̃c(j)|c|∞

}
,

where λd = 1 − µ
α2

+ ǫ ∈ (0, 1), γ̃m(j) = 2

√
ρ
α1

1−λj

d

1−λd
|Km|,

γ̃c(j) = 2

√
ρ
α1

1−λj

d

1−λd
|Kc|, ρ = 1

ǫα1

w1 + w2, ǫ ∈
(
0, µ

α2

)
,

µ ∈
(
0,min

{
α2,−β̂

})
,

α1 = min
ν∈[0,T2]

λ
(
exp(A⊤

f ν)P exp(Afν)
)
,

α2 = max
ν∈[0,T2]

λ
(
exp(A⊤

f ν)P exp(Afν)
)
,

w1 = max
ν∈[T1,T2]

| exp(A⊤
f ν)P exp(Afν)Ag|2,

w2 = max
ν∈[T1,T2]

| exp(A⊤
f ν)P exp(Afν)|,

β̂= max
ν∈[T1,T2]

λ(exp(δν)A⊤
g exp(A⊤

f ν)P exp(Afν)Ag − P ).

3 Note that the Khatri-Rao product −Kg ∗ (I + G) is such that the
(i, k)-th entry Kik of Kg is multiplied by the (i, k)-th scalar entry of
the matrix I + G for all i, k ∈ V .
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(a) Noise magnitude a = 0.2.
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(b) Noise magnitude a = 0.4.
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(c) Noise magnitude a = 0.6.

0 5 10 15 20
-5

-4

-3

-2

-1

0

1

2

3
e11
e12
e21
e22

t

(d) Noise magnitude a = 0.8.

Fig. 3. Effect of measurement noise and communication
noise for the system in Example 3.13.

Example 3.13. To show the effect of communication noise
and measurement noise, we revisit Example 3.7. Moreover,
we consider the communication noise and measurement
noise is generated randomly and with values in [0, a],
where a ∈ R≥0. With the same set of parameters, four
simulations are shown in Figure 3. It can be seen that the
steady-state estimation error increases with the size of the
measurement and communication noises. △
Remark 3.14. Since the hybrid system Hs satisfies the
hybrid basic conditions and, under the conditions in The-
orem 3.5, the compact set A is UGAS for Hs, it follows
from (Goebel et al., 2012, Lemma 7.20) that the stability
of A is robust to general small perturbations. �

4. ASYNCHRONOUS EVENT TIMES

In this section, we study the scenario where each agent
receives information asynchronously. To model such mech-
anism, instead of having one timer for all agents, each
agent has a timer τi that triggers the events following the
dynamics in (5), i.e.,

τ̇i = −1 τi ∈ [0, T2], (37a)

τ+i ∈ [T1, T2] τi = 0, (37b)

for each i ∈ V . Moreover, for each i ∈ V , the resulting
flow dynamics of ηi is given by (14) when τi ∈ [0, T2], and
the jump dynamics of ηi is given by (16) when τi = 0.
Let ei = x̂i − x and e = (e1, · · · , eN), θ = (θ1, · · · , θN ),
τ = (τ1, · · · , τN ), and

θi = Kiiy
e
i +

∑

k∈V

gikKiky
e
k+γ

∑

k∈V

gik(ei − ek)− ηi. (38)

Then, the interconnection between (1), (6), (37), and (38)
leads to a hybrid system Ha = (Ca, fa, Da, Ga) with state
χa = (σθ, τ) ∈ Xa := R

nN × R
nN × [0, T2]

N , σθ = (e, θ)
and data given by

fa(χa) := (Afθσθ,−1N )

for each χa ∈ Ca = Xa, and

Ga(χa) := {Gi(χa) : χa ∈ Di, i ∈ V}
when χa ∈ Da =

⋃
i∈V Di, Di = {χa ∈ Ca : τi = 0},
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Fig. 4. Estimation errors e1 and e2 for the network system
in Example 4.3, where x = (x1, x2), x̂i = (x̂i1, x̂i2),
ei1 = x̂i1 − x1, ei2 = x̂i2 − x2, for i ∈ {1, 2}.
Initial conditions are x(0, 0) = (2, 2), x̂1(0, 0) =
(5, 5), x̂2(0, 0) = (−1, 0), η1(0, 0) = (1, 1), η2(0, 0) =
(−1,−1), τ(0, 0) = 0.2.

Gi(χa) =

[
e

(θ1, θ2, · · · , θi−1, 0, θi+1, · · · , θN )
(τ1, τ2, · · · , τi−1, [T1, T2], τi+1, · · · , τN )

]
,

where Afθ is given in (29). In this case, the set of interest
is Aa = {0nN} × {0nN} × [0, T2]

N .

Theorem 4.1. Let 0 < T1 ≤ T2 be given. Suppose N agents
are connected via a digraph Γ = (V , E ,G). Moreover,
suppose there exist δ > 0 and matrices Kg ∈ R

nN×p,
Pi, Qi ∈ R

n×N satisfying Pi = P⊤
i > 0, Qi = Q⊤

i > 0
for all i ∈ V, and[

He(Aθ, P ) −P +A⊤
θ K⊤Q̃(ν)

⋆ −δQ̃(ν)−He(K, Q̃(ν))

]
<0 (39)

for all ν = (ν1, ν2, . . . , νN ) ∈ [0, T2]
N , where P =

diag(P1, P2, · · · , PN ),

Q̃(ν) = diag
(
Q̃1(ν1), Q̃2(ν2), · · · , Q̃N (νN )

)

and Q̃i(νi) = exp(δνi)Qi for each i ∈ V. Then, the set Aa
is UGAS for the hybrid system Ha.

Condition (39) needs to be checked over a closed set
[0, T2]

N , which might be a difficult task. The following
result relaxes this requirement.

Proposition 4.2. Let T2 > 0 be given. The inequality in
(39) holds if there exists δ > 0 and matrices Kg ∈ R

nN×p,
Pi, Qi ∈ R

n×N satisfying Pi = P⊤
i > 0, Qi = Q⊤

i > 0 for
all i ∈ V such that[

He(Aθ, P ) −P+A⊤
θ K⊤Q

⋆ −δQ−He(K, Q)

]
< 0, (40)

[
He(Aθ, P ) −P+exp(δT2)A

⊤
θ K⊤Q

⋆ − exp(δT2)(δQ+He(K, Q))

]
< 0, (41)

where P = diag(P1, . . . , PN ) and Q = diag(Q1, . . . , QN).

Example 4.3. Consider the network system in Exam-
ple 3.7. Using the same parameters K11, K12, K21, K22,
and γ therein, it can be verified that (40) and (41) hold
for δ=10 and a maximum value of T2≈0.3. As expected,
for the case of asynchronous event times, the maximum

value of T2 allowed is smaller than the one obtained for
synchronous event times (T2=1). A simulation 4 is shown
in Figure 4 with T1=0.1 and T2=0.3. △

5. CONCLUSION

In this paper, a distributed state observer under inter-
mittent information communication is proposed. In con-
trast to classic observers for linear time-invariant systems,
a node with enough information from its neighbors can
estimate the plant state even without detectability or
even taking measurements of the plant output. Sufficient
conditions that guarantee UGAS of the convergence of es-
timation error to zero are presented. Though not explored
in detail, these conditions are expected to also guarantee
global exponential stability. Furthermore, robustness of
the stability under certain conditions with respect to com-
munication and measurement noises are studied in terms
of ISS.
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