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1 Introduction

Hybrid dynamical systems are those that exhibit both con-
tinuous and discontinuous state evolution. These systems
have been studied from a theoretical point of view for mul-
tiple decades and cover a wide range of physical processes
and engineering systems. The framework of hybrid sys-
tems can be used to model mechanical systems with im-
pacts, like a ball bouncing on the ground, and networks
of biological oscillators where oscillator states make jumps
when other oscillator states pass certain thresholds. Hy-
brid systems also address a wide range of control systems,
including sample-and-hold control systems, reset control
systems like those that employ the so-called “Clegg inte-
grator”, control systems that involve hysteresis, etc.

2 Mathematical modeling

Several models and solution concepts for hybrid systems
have been proposed during the last decades, see, for ex-
ample, the work of Tavernini [19], Michel and Hu [15],
Lygeros et al. [14], Aubin et al. [1], and van der Schaft and
Schumacher [20]. In this paper, we work in the framework
outlined in [6] (related to concurrent approach in [4]) and
established in [8]. A hybrid system is specified by its state
space, which we take to be an open set in a Euclidean space,
mappings that specify the continuous and discontinuous
evolution, and sets in the state space where the continu-
ous and discontinuous evolution are possible. We typically
useO ⊂ R

n to denote the state space,C ⊂ O to denote the
flow set, that is, the set where continuous evolution is pos-
sible,D ⊂ O to denote thejump set, that is, the set where
discontinuous evolution is possible,f : C → R

n to de-
note the map that determines continuous evolution, which
we refer to as theflow map, according to the differential
equationẋ = f(x), andg : D → R

n to denote the map
that determines discontinuous evolution, which we refer to
as thejump map, according to the “difference” equation
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x+ = g(x). A hybrid system is summarized by the data
H := (O, f, C, g, D) and/or the equations [7]

H : x ∈ O

{
ẋ = f(x) x ∈ C

x+ = g(x) x ∈ D .

Below, R≥0 = [0,∞), N = {0, 1, 2, ...}, | · | denotes the
Euclidean vector norm, and given a nonempty setA,
| · |A := infa∈A |x − a|.

Example 1 (bouncing ball)
Consider a ball bouncing on the ground with vertical posi-
tion x1 and vertical velocityx2 as shown in Figure 1. Let

Figure 1: Bouncing ball.

the state space beO = R
2. The equations of motion for the

ball are given by

ẋ1 = x2, ẋ2 = −γ,

when the ball is above the floor, whereγ > 0 is the gravity
constant. Then, the continuous dynamics of the ball are
governed by the functionf on the setC given by

f(x) :=

[
x2

−γ

]
, C := {x ∈ O | x1 > 0} .

The ball bounces on the ground when its height is zero and
its velocity indicates that it moves towards the floor. The
sign convention in Figure 1 implies that the velocity at im-
pacts has to be negative. The impacts are modeled by a



jump mapg that keeps the ball’s height constant and de-
creases the magnitude of the velocity and reverses its di-
rection. The discrete dynamics are given by

g(x) :=

[
x1

−λx2

]
, D := {x ∈ O | x1 = 0, x2 < 0} ,

whereλ ∈ [0, 1) is the restitution coefficient. The functions
f andg and the setsC, D, andO defined above describe
the bouncing ball system as a hybrid systemH.

Example 2 (biological oscillator)
Consider the network of biological oscillators described by
n fireflies where an oscillator is associated with each fire-
fly’s flashing mechanism [16]. Letx ∈ R

n be the state of
the group of oscillators. Thei-th component of the state
x corresponds to the state of thei-th firefly which is re-
set to zero when it reaches the value one. The interaction
between each firefly is modeled as coupling between the
oscillators: when a firefly flashes, all the other firefly oscil-
lators are shifted by a fixed amount of timeε > 0. During
flows, the state of theith biological oscillator,xi, evolves
in the interval[0, 1] increasing its value according to the
differential equation

ẋi = fi(xi)

wherefi : [0, 1] → R>0 is continuous.
At jumps, oscillators with state equal to one reset to zero
while all of the other state components change according
to the rule

x+
i = min {1, xi + ε} .

Thus, the flow map is given by

f(x) :=




f1(x1)
...

fn(xn)




and the jump map can be constructed by first defining the
functiong : R

n × {1, . . . , n} → R
n as

g(x, i) :=




min {1, x1 + ε}
...

min {1, xi−1 + ε}
0

min {1, xi+1 + ε}
...

min {1, xn + ε}




and then defining the set-valued jump mapG as

G(x) :=
⋃

{i∈{1,...,n}:xi=1}

g(x, i) .

For state valuesx satisfyingxi < 1 for all i ∈ {1, . . . , n},
this set-valued mapping is empty.
Since flows are allowed only when all state components are
in the interval[0, 1], then

C := {x ∈ R
n : xi ∈ [0, 1] ∀i ∈ {1, . . . , n}} =: [0, 1]n .

Jumps are allowed when at least one state component is
equal to one, then

D := {x ∈ [0, 1]n : ∃i ∈ {1, . . . , n} : xi = 1} .

Example 3 (sampled-data systems) Given a nonlinear
control system

ξ̇ = f̃(ξ, u), ξ ∈ R
p , u ∈ R

m , (1)

let the control law to be implemented, by sample-and-hold
with periodT , be the state-feedback lawκ : R

p → R
m. A

timer variableτ is used to keep track of when the sampling
period has elapsed. The held value of the control is stored
in the variableu. This variable becomes part of the state of
the closed-loop system, which is given by

x :=




ξ

u

τ




with state spaceRp+m+1. Since the variableu is held
constant during flows, the timer variableτ keeps track of
elapsed time, and the statex evolves with the dynamics in
(1), the flow map is given by

f(x) :=




f̃(ξ, u)

0
1



 .

Since, at the end of a sampling period, the variableu is
updated by the feedback lawκ (function of ξ), the timer
should restart its count, and the state of the plant does not
change, the jump map is given by

g(x) :=




ξ

κ(ξ)
0


 .

The continuous evolution is allowed when the timer vari-
ableτ belongs to the interval[0, T ]. In other words,

C :=








ξ

u

τ



 ∈ R
p+m+1 : τ ∈ [0, T ]



 .

The jump evolution is allowed when the timer variableτ

equalsT , i.e.,

D :=








ξ

u

τ



 ∈ R
p+m+1 : τ = T



 .

3 Solutions

The typical continuous and discontinuous behavior in a hy-
brid system produces motions (or solutions) thatflowwhen
the behavior is continuous andjump when the evolution
is discontinuous. As in the case of classical continuous-
time systems, we parametrize flows with the ordinary time



variablet ∈ R≥0 while, as in the case of classical discrete-
time systems, we parametrize jumps with the discrete time
variablej ∈ N. With this parametrization, a solution to a
hybrid systemH is given by a function, which we call a
hybrid arc, defined on an extended time domain, which we
call ahybrid time domain.
A subsetE ⊂ R≥0×N is ahybrid time domainif for every
(T, J) ∈ E,

E ∩ ([0, T ]× {0, 1, ...J}) =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times0 = t0 ≤ t1 ≤ t2 ... ≤
tJ . That is, for every element(T, J) of E, its truncation
up to (T, J) can be written as the union of (well-defined)
intervals int indexed by thej variable. Then, a function
x : E → R

n is ahybrid arc if E is a hybrid time domain
and if for eachj ∈ N, the functiont 7→ x(t, j) is locally
absolutely continuous.
Hybrid time domains are similar to the concept of hybrid
time trajectories in [13],[14], and [1], and to the notion of
time evolution in [20]. However, hybrid time domains give
a more prominent role to the number of jumpsj (cf. the
definition of hybrid time set by Collins in [4]). On a hybrid
time domain there is a natural ordering of points: we write
(t, j) � (t′, j′) for (t, j), (t′, j′) ∈ E if t ≤ t′ andj ≤ j′.
A hybrid arcx can be classified based on its hybrid time
domain. We say it isnontrivial if domx contains at least
two points; completeif domx is unbounded, i.e., if the
projection ofE ontoR≥0 and/orN is unbounded;Zenoif it
is complete and its domain is bounded in thet component.
A hybrid arc is a solution to the hybrid system only when
the dynamics defined by the data(O, f, C, g, D) are satis-
fied during flows and jumps. More precisely, a hybrid arc
x is asolution to the hybrid systemH if x(0, 0) ∈ C ∪ D,
x(t, j) ∈ O for all (t, j) ∈ domx, and

(S1) for all j ∈ N such thatIj has nonempty interior,
whereIj × {j} = domx ∩ ([0,∞) × {j}),

x(t, j) ∈ C for all t ∈ int Ij ,

ẋ(t, j) = f(x(t, j)) for almost allt ∈ Ij ;

(S2) for all(t, j) ∈ domx such that(t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) = g(x(t, j)).

A solution to the bouncing ball system in Example 1 with
its corresponding hybrid time domain is given in Figure 2.
Note that solutions to hybrid systemsH can be nonunique
from points in the state spaceO that are both inC andD,
and from which either behavior is possible, that is, both
(S1) and (S2) hold.

4 Stability

Control engineers focused on inducing stability and the ap-
propriate long-term trends in hybrid control systems will be
interested in stability properties for hybrid systems and in
tools for establishing asymptotic stability. Because hybrid
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Figure 2: Height of the ball as a function of(t, j) on its
hybrid time domain.

systems often contain logic variables, timers, etc. that don’t
necessarily converge to a point, it is natural in hybrid sys-
tems to consider asymptotic stability of compact sets rather
than of simple equilibrium points. The notion of uniform
global asymptotic stability is relevant here. It entails the
following:
LetA ⊂ R

n be compact. The setA is said to be

• uniformly globally stableforH if there existsγ ∈ K∞

such that any solutionx to H satisfies|x(t, j)|A ≤
γ(|x(0, 0)|A) for all (t, j) ∈ domx;

• uniformly globally pre-attractivefor H if for eachε >

0 and r > 0 there existsT > 0 such that, for any
solutionx to H with |x(0, 0)|A ≤ r, (t, j) ∈ domx

andt + j ≥ T imply |x(t, j)|A ≤ ε;

• uniformly globally pre-asymptotically stablefor H
if it is both uniformly globally stable and uniformly
globally pre-attractive.

It turns out that uniform global pre-asymptotic stability is
equivalent to the existence ofα1, α2 ∈ K∞ and such that
any solutionx toH satisfies

|x(t, j)|A ≤ α1

(
α2(|x(0, 0)|A)

exp (t + j)

)
∀(t, j) ∈ domx

where|x|A denotes the distance ofx to the setA.
A sufficient condition for uniform global pre-asymptotic
stability is given in the following Lyapunov conditions. In-
deed, the setA is uniformly globally pre-asymptotically
stable ifG(D) ⊂ C ∪ D and there exists a continuously
differentiable functionV : R

n → R≥0, α1, α2 ∈ K∞ and
a continuous positive definite functionρ : R≥0 → R≥0,
such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ C ∪ D

sup
f∈F (x)

〈∇V (x), f〉 ≤ −ρ (|x|A) ∀x ∈ C

sup
g∈G(x)

V (g) − V (x) ≤ −ρ (|x|A) ∀x ∈ D .



Example 4 (bouncing ball, revisited) The reader is en-
couraged to verify for the bouncing ball that the function

V (x) := (1 + θ arctan(x2))

(
1

2
x2

2 + γx1

)

is a Lyapunov function for the setA taken to be the origin
whenθ > 0 is chosen appropriately.

Example 5 (linear sampled-data systems) Consider
sampled-data systems as discussed earlier, but with linear
functionsf̃(ξ, u) = Aξ + Bu andκ(ξ) = Kξ. This corre-

sponds to a hybrid system with statex wherex1 =

[
ξ

u

]
,

x2 = τ ,

f(x) =

[
Afx1

1

]
, C = {x | x2 ∈ [0, T ]}

g(x) =

[
Agx1

0

]
, D = {x | x2 = T }

where

Af :=

[
A B

0 0

]
, Ag :=

[
I 0
K 0

]
.

Define H := exp(AfT )Ag and note that the matrixH
indicates the evolution of the variablex1 at sampling times
just before jumps. In particular

x1(tj+2, j + 1) = Hx1(tj+1, j) ∀j ∈ N .

Suppose there exists a positive definite symmetric ma-
trix P such thatHT PH − P is negative definite; equiv-
alently, the eigenvalues ofH all have magnitude less
than one. Under this condition, the compact setA :=
{x : x1 = 0 , x2 ∈ [0, T ]} is uniformly globally asymptot-
ically stable. The reader is encouraged to verify that the
functionV2(x) is a Lyapunov function for the hybrid sys-
tem with respect to this setA whereW (z) := zT Pz,
V1(x) := W (exp(Af (T − x2))x1) and

V2(x) := exp(−σx2)V1(x)

as long asσ > 0 is taken to be sufficiently small.

5 Generalized Solutions

The presence of state perturbations in hybrid systems can
dramatically change its behavior if the data(O, f, C, g, D)
of H fail to satisfy certain properties. This can occur even
if the magnitude of the perturbation is arbitrarily small and
the functionsf andg have nice regularity properties, e.g.
they are smooth. This section addresses this issue and mo-
tivates the concept ofgeneralized solutions to hybrid sys-
tems.

5.1 Hybrid systems with state perturbations

A hybrid systemH = (O, f, C, g, D) with a state perturba-
tion e is denoted byHe and can be written in the suggestive
form:

He : x + e ∈ O

{
ẋ = f(x + e) x + e ∈ C

x+ = g(x + e) x + e ∈ D .

Solutions toHe are defined for only a class of state per-
turbations. The hybrid arce is anadmissible state pertur-
bation if dom e is a hybrid time domain and the function
t → e(t, j) is measurable ondom e∩(R≥0×{j}) for each
j ∈ N. A hybrid arcx is a solution to the hybrid system
He with admissible state perturbatione if domx = dom e,
x(0, 0) + e(0, 0) ∈ C ∪ D, x(t, j) + e(t, j) ∈ O for all
(t, j) ∈ domx, and

(S1e) for all j ∈ N such thatIj has nonempty interior,
whereIj × {j} := domx ∩ ([0, +∞) × {j}),

x(t, j) + e(t, j) ∈ C for all t ∈ int Ij ,

ẋ(t, j) = f(x(t, j) + e(t, j)) for almost allt ∈ Ij ;

(S2e) for all (t, j) ∈ domx such that(t, j + 1) ∈ domx,

x(t, j)+e(t, j) ∈ D, x(t, j+1) = g(x(t, j)+e(t, j)).

The following example illustrates one possible effect of
state perturbations in hybrid systems.

Example 6 (rotate and converge) Consider the hybrid sys-
temH with data given by

O = R
2, f(x) :=

[
x2

−x1

]
, C := R

2 \ D

g(x) = 0, D :=
{
x ∈ R

2 | x1 > 0, x2 = 0
}

.

Solutions toH converge to the origin in at most one jump.
In fact, solutions starting fromξ ∈ C ∪ D, ξ 6= 0, flow
until they reach the setD, from where a jump to the origin
follows. After that jump, solutions flow for all time at the
origin. The solution starting fromξ = 0 ∈ C ∪D flows for
all time.
Solutions toH with state perturbation, that is, solutions to
He with an admissible state perturbatione have a total dif-
ferent behavior. Solutions toHe from pointsξ ∈ C ∪ D,
ξ 6= 0, can miss the jump at the setD and flow for all
time. Letx : [0,∞) × {0} → R

2 be such thaṫx(t, 0) =
f(x(t, 0)), and letti ≥ 0, i ∈ N, be such thatx(ti, 0) ∈ D

for eachi ∈ N. Define the admissible state perturbation
e : [0,∞) × {0} → R

2 to bee(t, 0) = 0 for all t 6= ti,
i ∈ N, ande(ti, 0) = [0 ε2]

T , for someε2 > 0. It follows
that for all(t, j) ∈ domx = [0,∞) × {0}

x(t, j) + e(t, j) ∈ C for all t ∈ R,

ẋ(t, j) = f(x(t, j) + e(t, j)) for almost allt ∈ R .

Then,x is a solution toHe with admissible state perturba-
tion e for anyε2 > 0.
Solutions toHe from pointsξ ∈ C∪D, ξ = 0 can jump for
ever, for a particular admissible noise. Letx : {0} × N →
R

2 be such thatx(0, j +1) = g(x(0, j)) = 0 for all j ∈ N.
Define the admissible state perturbatione : {0}×N → R

2

to bee(0, j) = [ε1 0]T for all j ∈ N for someε1 > 0. It
follows that for all(t, j) ∈ domx = {0} × N

x(t, j) + e(t, j) ∈ D, x(t, j + 1) = g(x(t, j) + e(t, j)).



Then,x is a solution toHe with admissible state perturba-
tion e for any ε1 > 0. Comparing this solution with the
solution without noise, even though their value is zero for
all (t, j) in their domain, their hybrid time domains are to-
tally different.

Example 7 (discontinuous jump map) Consider the hybrid
systemH with data given by

O = R
2, f(x) ≡ ∅, C := ∅ (2)

g(x) =





[
0
x2

]
x1 6= 0

0 x1 = 0
, D := R

2 . (3)

Solutions toH always jump for every point inR2. From
ξ = [ξ1 ξ2]

T ∈ R
2 with ξ1 6= 0, they first jump toξ1 = 0

from where they jump to the origin and stay there jumping
for ever. From everyξ = [ξ1 ξ2]

T ∈ R
2 with ξ1 = 0, so-

lutions reach the origin in one jump and stay there jumping
for ever.
Solutions with state perturbation can fail to converge to the
origin. Let x : {0} × N → R

2 be such thatx(0, 0) =
[ξ1 ξ2]

T ∈ R
2, ξ1, ξ2 6= 0, x(0, j) = [0 ξ2]

T for all j > 0,
j ∈ N. Define the admissible state perturbatione : {0} ×
N → R

2 to bee(0, 0) = 0, e(0, j) = [ε1 0]T for all j > 0,
j ∈ N for someε1 > 0. (Similar construction is possible
for pointsξ with ξ1 = 0.) It follows that for all (t, j) ∈
domx = {0} × N

x(t, j) + e(t, j) ∈ D, x(t, j + 1) = g(x(t, j) + e(t, j)).

Then,x is a solution toHe with admissible state perturba-
tion e for anyε1 > 0. The solutionx does not converge to
the origin.

Note that the solutions in the examples above exhibit the
same behavior for arbitrarily small state perturbation, even
in the limit when its magnitude goes to zero.

5.2 Hermes and Krasovskii solutions

The examples in Section 5.1 suggest that solutions obtained
by taking the limit of sequences of solutions with vanishing
state perturbations in hybrid systems can lead to solutions
that differ from the nominal solutions. These solutions are
calledHermes solutions.
Before defining Hermes solutions, a metric that measures
the distance between hybrid arcs is introduced. Such met-
ric is needed since hybrid arcs do not necessarily share the
same hybrid time domain. Givenτ ≥ 0 andε > 0, we say
that two hybrid arcsx1 andx2 are(τ, ε)-closeif

(a) for all (t, j) ∈ domx1 with t + j ≤ τ there existss
such that(s, j) ∈ domx2, |t − s| < ε, and

|x1(t, j) − x2(s, j)| < ε,

(b) for all (t, j) ∈ domx2 with t + j ≤ τ there existss
such that(s, j) ∈ domx1, |t − s| < ε, and

|x2(t, j) − x1(s, j)| < ǫ.

A hybrid arcx is aHermes solutionto H if the restriction
of x, denotedx′, to each compact subset ofdomx that is
a hybrid time domain is such that there exist a sequence
{x′

i}
∞
i=1 of hybrid arcs and{ei}∞i=1 a sequence of admissi-

ble state perturbations such that

• x′
i is a solution toHe with state perturbationei for

eachi ∈ N;

• for eachε > 0 there existsi0 such that for alli > i0,
x′

i andx′ are(τ, ε)-close, whereτ = T +J and(T, J)
is the supremum ofdomx′;

• the sequence ofsup(t,j)∈dom ei
|ei(t, j)| converges to

0.

Hermes solutions toH = (O, f, C, g, D) are captured by
the solutions to the hybrid system resulting fromregular-
izingH via the following closure operation, referred to as
Krasovskii regularization, given by [17]

Ĉ := C ∩ O , D̂ := D ∩ O

∀x ∈ Ĉ f̂(x) :=
⋂

δ>0

conf((x + δB) ∩ C),

∀x ∈ D̂ ĝ(x) :=
⋂

δ>0

g((x + δB) ∩ D).

Note that at points inC, respectivelyD, wheref , re-
spectivelyg, is continuous,f̂(x) = f(x), respectively
ĝ(x) = g(x). Moreover, whenC, respectivelyD, is closed
relative toO, the regularization does not changeC, respec-
tively D. (A setS, subset of an open setO ∈ R

n, is closed
relative toO if S = S ∩ O.)
A hybrid arc x is a Krasovskii solution to H =
(O, f, C, g, D) if (S1) and (S2) hold withẋ = f(x) and
x+ = g(x) replaced byẋ ∈ f̂(x) andx+ ∈ ĝ(x), respec-
tively, andC andD replaced byĈ andD̂, respectively.
Under locally boundedness assumptions onf and g, it
follows that

A hybrid arcx is a Hermes solution toH if and only if is a
Krasovskii solution toH.

This implies that every limiting solution obtained from any
sequence of solutions toHe with admissible state perturba-
tion converging to zero is a Krasovskii solution toH, and
that every Krasovskii solution toH can be reproduced with
arbitrary precision by solutions toHe with admissible state
perturbation.

Example 8 (bouncing ball, revisited) The regularization
of the bouncing ball system in Example 1 is given by

Ĉ = C = {x ∈ O | x1 ≥ 0}

D̂ = D = {x ∈ O | x1 = 0, x2 ≤ 0} ,

∀x ∈ Ĉ f̂(x) = f(x), ∀x ∈ D̂ ĝ(x) = g(x)

The only solution added by the regularization is a solution
starting fromx = 0. (Note that from the origin there is no
solution to the bouncing ball system in Example 1.) This



solution has a hybrid time domain given by{0} × N. This
corresponds to a special case of Zeno solution calleddis-
crete.

Example 9 (rotate and converge, revisited) The regular-
ization of the hybrid system in Example 6 is given by

Ĉ = C = R
2

D̂ = D = {x ∈ O | x1 ≥ 0, x2 = 0} ,

∀x ∈ Ĉ f̂(x) = f(x), ∀x ∈ D̂ ĝ(x) = g(x)

The solution to the system in Example 6 that always flows
is a Hermes solution as it can be obtained as the limiting
operation of sequences of solutions with vanishing state
perturbation. Moreover, since the regularized hybrid sys-
tem has flow setC = R

2, it is also a Krasovskii solution.
Similarly for the solution to the system in Example 6 that
always jumps – it is both a Hermes and Krasovskii solution.

Example 10 (discontinuous jump map, revisited) The reg-
ularization of the hybrid system in Example 7 is given by

Ĉ = C = ∅, D̂ = D = R
2

∀x ∈ Ĉ f̂(x) = ∅,

∀x ∈ D̂ ĝ(x) =





[
0
x2

]
x1 6= 0

{
0,

[
0
x2

]}
x1 = 0

The solution to the system in Example 7 that always jumps
and stays away from the origin is a Hermes solution as it
can be obtained as the limiting operation of sequences of
solutions with vanishing state perturbationε1. Moreover,
since the regularized hybrid system has jump map includ-
ing [0 x2]

T whenx1 = 0, then it is also a Krasovskii solu-
tion – the one corresponding to always choosing[0 x2]

T at
jumps.

The results above generalize, to the hybrid setting, a result
for differential equations initially reported by Hermes in
[10] and expanded upon by Hàjek in [9]. Following the
lines of [5], a similar result but for the state feedback case
also holds for hybrid systems, see [17].

6 Basic Conditions and their consequences

Note thatĤ has set-valued dynamics due to the regular-
ization procedure. Hybrid systems with set-valued dynam-
ics appear also when perturbations are explicitly modeled
and, for the particular case of the jump map, when mul-
tiple possibilities at jumps are possible, like in the case
of hybrid control with logic variables. From now on, we
consider the general case of a hybrid systemH with data
(O, F, C, G, D), whereF andG are set-valued mappings,
and can be written in the compact form

H : x ∈ O

{
ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D .

Below, a set-valued mappingφ : S →→ R
n, whereS ⊂ O,

is outer semicontinuous relative toS if for any x ∈ S and

any sequence{xi}∞i=1 with xi ∈ S, limi→∞ xi = x and
any sequence{yi}∞i=1 with yi ∈ φ(xi) andlimi→∞ yi = y

we havey ∈ φ(x).
We say thatH satisfies thehybrid basic conditionsif

(A0) O ⊂ R
n is an open set;

(A1) C andD are sets closed relative toO;

(A2) F : O →→ R
n is outer semicontinuous and locally

bounded, andF (x) is nonempty and convex for all
x ∈ C;

(A3) G : O →→ R
n is outer semicontinuous and locally

bounded, andG(x) is nonempty andG(x) ⊂ O for
all x ∈ D.

The hybrid basic conditions are automatically satisfied by
the Krasovskii regularization of a hybrid systems in Sec-
tion 5.2.
A hybrid arcx is a solution toH = (O, F, C, G, D) if it
satisfies (S1) and (S2) witḣx = f(x) andx+ = g(x) re-
placed byẋ ∈ F (x) andx+ ∈ G(x), respectively. (When
H is regular, that is, satisfies the hybrid basic conditions,
solutions toH as just defined coincide with Krasovskii so-
lutions.)
When H satisfies the hybrid basic conditions, then the
following sequential compactness of solutions property
holds [8]:

For every (locally eventually) bounded with respect toO

sequence of solutionsxi : domxi → R
n to H, there exists

a subsequence graphically converging to a solution toH.

By a locally eventually bounded with respect toO sequence
of solutionsxi we mean that for anym > 0, there exists
i0 > 0 and a compact setK ⊂ O such that for alli > i0,
all (t, j) ∈ domxi with t + j < m, xi(t, j) ∈ K.
When H satisfies the hybrid basic conditions and is
such that all solutions from some compact setK ⊂ O

are complete, then the following outer-semicontinuous
dependence of solutions holds [8]:

For anyε > 0 andτ ∈ R≥0 there existsδ > 0 such that:
for any solutionx′ ∈ SH(K + δB) there exists a solution
x toH with x(0, 0) ∈ K such thatx′ andx are(τ, ε)-close.

7 Stability revisited

LetA ⊂ R
n be compact. The setA is said to be

• stablefor H if for eachε > 0 there existsδ > 0 such
that any solutionx to H with |x(0, 0)|A ≤ δ satisfies
|x(t, j)|A ≤ ε for all (t, j) ∈ dom x;

• globally pre-attractiveif each solutionx to H is
bounded or complete, and in the latter case satisfies
limt+j→∞ |x(t, j)|A = 0.

• globally pre-asymptotically stableif it is both stable
and globally pre-attractive.



For a hybrid systems satisfying the hybrid basic conditions
with state spaceO = R

n and a compact setA ⊂ R
n, the

following statements are equivalent:

1. The setA is globally pre-asymptotically stable.

2. The setA is uniformly globally pre-asymptotically
stable.

Under the same assumptions above, a Lyapunov charac-
terization of global pre-asymptotic stability holds as in the
case of uniform pre-asymptotic stability in Section 4. The
following statements are equivalent:

1. The setA is globally pre-asymptotically stable.

2. (a) G(A) ⊂ A;

(b) There exist a continuously differentiable func-
tionV : R

n → R≥0 and functionsα1, α2 ∈ K∞

such that

α1 (|x|A) ≤ V (x) ≤ α2 (|x|A) x ∈ C ∪ D

max
f∈F (x)

〈∇V (x), f)〉 < 0 ∀x ∈ C\A

max
g∈G(x)

V (g) − V (x) < 0 ∀x ∈ D\A ;

3. For eachλ > 0 there exist a continuously differ-
entiable functionV : R

n → R≥0 and functions
α1, α2 ∈ K∞ such that

α1 (|x|A) ≤ V (x) ≤ α2 (|x|A) x ∈ R
n

max
f∈F (x)

〈∇V (x), f)〉 ≤ −λV (x) ∀x ∈ C

max
g∈G(x)

V (g) ≤ exp(−λ)V (x) ∀x ∈ D .

Implication from item 1 to item 3 constitutes a “converse
Lyapunov theorem” and can be used to establish robust-
ness of asymptotic stability to various types of perturba-
tions, including slowly-varying, weakly jumping param-
eters, temporal regularization, small average-dwell time
jumping, etc.
General statements about the existence of smooth Lya-
punov functions for hybrid systems and the ensuing robust-
ness can be found in [3] and [2].

8 Invariance principles

Invariance principles for hybrid systems that parallel those
for continuous and discrete-time systems proposed by
LaSalle [11, 12] are introduced in this section. The con-
cept of invariance we use involves both forward and back-
ward invariance. The prefix “weak” is used to indicate that
the invariance notion involves only a particular solution to
satisfy the invariance property.
Below, we denote the range of the solutionx by rgex, i.e.
rgex = x(domx).
Given a hybrid systemH, a setM ⊂ O is weakly invariant
if it is both [18]:

• Weakly forward invariant:if for each pointξ ∈ M

there exists at least one complete solutionx toH start-
ing fromξ and satisfyingrgex ⊂ M .

• Weakly backward invariant:if for each pointξ′ ∈ M

and every positive numberN there exists a pointξ
from which there exists at least one solutionx to H
starting fromξ that is equal toξ′ for some(t∗, j∗) ∈
domx with the property thatt∗ + j∗ ≥ N , and such
thatx(t, j) ⊂ M for all (t, j) � (t∗, j∗).

For a hybrid systemH satisfying the hybrid basic condi-
tions, a continuously differentiable functionV : R

n → R,
and a nonempty setU ⊂ R

n such that for allz ∈ U

uC(z) ≤ 0 anduD(z) ≤ 0 (4)

where

uC(x) :=

{
max

f∈F (x)
〈∇V (x), f〉 x ∈ C

−∞ otherwise

uD(x) :=

{
max

g∈G(x)
{V (g) − V (x)} x ∈ D

−∞ otherwise,

every solutionx to H that is complete, bounded, and
rgex ⊂ U is such that converges to the largest weakly in-
variant set contained in
[
u−1

C (0) ∪
(
u−1

D (0) ∩ G(u−1
D (0))

)]
∩ V −1(r) ∩ U (5)

for some constantr ∈ V (U).

Example 11 (bouncing ball, revisited) For the bouncing
ball system with regular data in Example 8, consider the
continuously differentiable functionV (x) = 1

2x2
2 +γx1. It

follows that

〈∇V (x), f(x)〉 = 0 for all x ∈ C . (6)

and that

V (g(x)) − V (x) = −
1

2
(1 − λ2)x2

2 − γx1 ≤ 0

for all x ∈ D. Then

uC(x) :=

{
0 x ∈ C

−∞ otherwise

uD(x) :=

{
− 1

2 (1 − λ2)x2
2 − γx1 x ∈ D

−∞ otherwise,

SinceuC anduD are never positive, forU = R
2 we have

uC(z) ≤ 0 anduD(z) ≤ 0 . (7)

Therefore, every precompact solution to the bouncing ball
system converges to the largest weakly invariant set in (5)
where

u−1
C (0) = C, g(u−1

D (0)) = u−1
D (0) = {x ∈ O | x = 0} .

Then, it the set (5) is given by

{x ∈ O | x1 ≥ 0} ∩ V −1(r) ∩ U .



Supposer > 0 and consider solutions starting in this set.
There exists a finite(t, 0) at whichx1(t, 0) = 0 and then
a jump occurs. SinceuD(x) is strictly negative away from
the origin,V needs to decrease after the jump. This shows
that it is impossible for the a invariant set to exists in (5)
with positiver. Then, the only invariant set in (5) is for
r = 0. This set is the origin. Then precompact solutions
converge to the origin.

The following special cases to the invariance principle
above hold when

(a) x is Zeno: then, for somer ∈ V (U), it approaches the
largest weakly invariant subset of

V −1(r) ∩ U ∩ u−1
D (0) ∩ G(u−1

D (0)); (8)

(b) if x is s.t., for someγ > 0, J ∈ N, and allj ≥ J ,
tj+1 − tj ≥ γ (i.e. the elapsed time between jumps
is eventually bounded below byγ): then, for some
r ∈ V (U), x approaches the largest weakly invariant
subset of

V −1(r) ∩ U ∩ u−1
C (0). (9)

The invariance principle above can be generalized to the
case where the functionsuC and uD are not necessar-
ily computed from the functionV . Given any functions
uc, ud : O → [−∞,∞] such that for any solutionξ ∈ SH

with rge ξ ⊂ U ,

uc(ξ(t, j)) ≤ 0, ud(ξ(t, j)) ≤ 0

for all (t, j) ∈ dom ξ and

V (x(t, j)) − V (x(t, j)) ≤

∫ t

t

uc(x(t, j(t))) dt +

j∑

j=j+1

ud(x(t(j), j − 1))

holds for any(t, j), (t′, j′) ∈ dom ξ such that(t, j) �
(t′, j′), Then every bounded and complete solutionx ∈ SH

with rgex ⊂ U approaches the largest weakly invariant
subset of

V −1(r) ∩ U ∩
(
u−1

c (0) ∪
(
u−1

d (0) ∩ G(u−1
d (0))

))

for somer ∈ V (U).
Special cases as the ones given above also hold for general
functionsuc, ud.
Stability corollaries follow from these invariance princi-
ples. The following result that parallels Lyapunov stability
theorem can be shown for the construction of the functions
uC anduD above.
Let A ⊂ O be compact,U ⊂ O be a neighborhood of
A, V : O → R continuously differentiable and positive
definite onC∪D with respect toA, anduC anduD satisfy

uC(z) ≤ 0, uD(z) ≤ 0

for all z ∈ U . ThenA is pre-stable. Suppose additionally
that

uC(z) < 0 anduD(z) < 0 for all z ∈ U \ A .

ThenA is pre-attractive, and hence pre-asymptotically sta-
ble.
The key to these results is the said outer-semicontinuity
property of solutions. More general invariance principles,
connections to observability and detectability, and other
consequences of asymptotic stability for hybrid systems
can be found in [18].
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