Hybrid Systems:. stability and control

Chaohong Caj Rafal Goebél Ricardo G. Sanfelice Andrew R. Teel

1. Center for Control, Dynamical Systems, and Computafdmpartment of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106-9560AUS
E-mail: cai, rsanfelice, teel@ece.ucsb.edu

2. 3518 NE 42 St., Seattle, WA 98105, USA
E-mail: rafal.k.goebel@gmail.com

Abstract: Modeling issues for hybrid dynamical systems are discussebifundamental stability analysis tools are
summarized. These tools are useful for the developmenthloidhgontrol algorithms.

Key Words: Hybrid systems, stability, control

1 Introduction xt = g(x). A hybrid system is summarized by the data

Hybrid dynamical systems are those that exhibit both COH-H (0, 1,C,g, D) and/or the equations [7]

tinuous and discontinuous state evolution. These systems i o= @) reC
have been studied from a theoretical point of view for mul- H : xeO {

tiple decades and cover a wide range of physical processes
and engineering systems. The fram_ework of hybrlc_j SYS-Be|OW, Rog = [0,00), N = {0,1,2,..}, | - | denotes the
tems can be used to model mechanical systems with IM= | lidean vector norm. and given a nonempty.4et
pacts, like a ball bouncing on the ground, and networks ) '

of biological oscillators where oscillator states make fism | la = infacale —al.

when other oscillator states pass certain thresholds. Hy-

brid systems also address a wide range of control system&Xxample 1 (bouncing ball)

including sample-and-hold control systems, reset controlConsider a ball bouncing on the ground with vertical posi-
systems like those that employ the so-called “Clegg inte-tion z1 and vertical velocityz, as shown in Figure 1. Let
grator”, control systems that involve hysteresis, etc.

zt = g(x) zeD.

2 Mathematical modeling ' ?

xy <0
Several models and solution concepts for hybrid systems 1
have been proposed during the last decades, see, for ex-
ample, the work of Tavernini [19], Michel and Hu [15], T
Lygeros et al. [14], Aubin et al. [1], and van der Schaft and 7
Schumacher [20]. In this paper, we work in the framework Figure 1: Bouncing ball.

outlined in [6] (related to concurrent approach in [4]) and

established in [8]. A hybrid system is specified by its state

space, which we take to be an open setin a Euclidean spacghe state space 2 = R2. The equations of motion for the

mappings that specify the continuous and discontinuousya|| are given by

evolution, and sets in the state space where the continu-

ous and discontinuous evolution are possible. We typically By =39, do=—7,

useO C R™ to denote the state space,C O to denote the

flow sef that is, the set where continuous evolution is pos-when the ball is above the floor, wheye> 0 is the gravity

sible, D C O to denote thgump setthat is, the set where constant. Then, the continuous dynamics of the ball are

discontinuous evolution is possiblg,: ¢ — R™ to de- governed by the functiofi on the seC given by

note the map that determines continuous evolution, which

we refer to as thélow map according to the differential T

equationi = f(x), andg : D — R" to denote the map () = [_7

that determines discontinuous evolution, which we refer to

as thejump map according to the “difference” equation The ball bounces on the ground when its height is zero and
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jump mapg that keeps the ball's height constant and de-Jumps are allowed when at least one state component is
creases the magnitude of the velocity and reverses its diequal to one, then
rection. The discrete dynamics are given by

D:={ze0,1]":Fie{l,....,n}:a; =1} .

T
g(x) = [_)\ZJ, D:={ze€O |z1=0,22<0}, o
where) € [0, 1) is the restitution coefficient. The functions Example3 (sampled-data systems) Given a nonlinear
# andg and the set€?, D, andO defined above describe Ccontrol system
the bouncing ball system as a hybrid syst&m o .~

I S §=feu), EERP, weR™, (1)

Example 2 (biological oscillator)
Consider the network of biological oscillators describgd b
n fireflies where an oscillator is associated with each fire-
fly’s flashing mechanism [16]. Let € R"™ be the state of
the group of oscillators. Théth component of the state
x corresponds to the state of theh firefly which is re-
set to zero when it reaches the value one. The interactio
between each firefly is modeled as coupling between the ¢
oscillators: when a firefly flashes, all the other firefly oscil-
lators are shifted by a fixed amount of time> 0. During
flows, the state of théth biological oscillator;x;, evolves
in the interval[0, 1] increasing its value according to the with state spacé&?t™*!, Since the variable: is held
differential equation constant during flows, the timer variabtekeeps track of
) elapsed time, and the stateevolves with the dynamics in
i = filxi) (1), the flow map is given by

let the control law to be implemented, by sample-and-hold
with periodT’, be the state-feedback law: R? — R™. A
timer variabler is used to keep track of when the sampling
period has elapsed. The held value of the control is stored
in the variableu. This variable becomes part of the state of
I1|he closed-loop system, which is given by

T

wheref; : [0,1] — R is continuous. (& u)
At jumps, oscillators with state equal to one reset to zero () O’
while all of the other state components change according 1
to the rule
7 =min{l,z;, +¢} . Since, at the end of a sampling period, the variablis
updated by the feedback law (function of &), the timer

Thus, the flow map is given b ;
. y should restart its count, and the state of the plant does not

fi(zy) change, the jump map is given by
f(z) = : ¢
fn(n) g9(x) = | K(£)
0
and the jump map can be constructed by first defining the
functiong : R™ x {1,...,n} — R" as The continuous evolution is allowed when the timer vari-
abler belongs to the intervd0, T']. In other words,
min {1, z; + ¢}
: 3
min {1 x.ifl +e} ¢i= u | ERVFHL 7 €0, 7]
g9(x, i) = 0 !
min {1, z;41 + £} The jump evolution is allowed when the timer variable
: equalsT, i.e.,
min{1l,z, +¢e} | ¢
— ’ +m+l .
and then defining the set-valued jump n@@as D= u | ER? rr=T
-
G(z) = U g(x,i) . o
{ie{1,...,n}:z;=1} '
o 3 Solutions
For state values satisfyingz; < 1foralli € {1,...,n}, _ _ . . o
this set-valued mapping is empty. The typical continuous and discontinuous behavior in a hy-
Since flows are allowed only when all state components aréid system produces motions (or solutions) fhat when
in the interval[0, 1], then the behavior is continuous ajdmp when the evolution

is discontinuous. As in the case of classical continuous-
C:={zeR":2,€0,1] Vie{l,...,n}}=:[0,1]". time systems, we parametrize flows with the ordinary time



variablet € R>( while, as in the case of classical discre
time systems, we parametrize jumps with the discrete !
variablej € N. With this parametrization, a solution to
hybrid systenH is given by a function, which we call o
hybrid arg, defined on an extended time domain, which
call ahybrid time domain

AsubsetE C R> x N is ahybrid time domairif for every
(T,J) € E,

X, [m]

oo B N W A O O N ® ©

J—1
En ([OaT] X {07 11 J}) = U ([tjvtj-i-l]aj)
Jj=0

for some finite sequence of timés= ty < t; < t3 ... < ([mdmry““me] s sl
ty. Thatis, for every elemen(l’, J) of E, its truncation

up to (T, J) can be written as the union of (well-define
intervals int indexed by thej variable. Then, a function
x : E — R™is ahybrid arcif E is a hybrid time domain
and if for eachj € N, the functiont — z(t, j) is locally
absolutely continuous.

Hybrid time domains are similar to the concept of hybrid
time trajectories in [13],[14], and [1], and to the notion of Systems often contain logic variables, timers, etc. thattdo
time evolution in [20]. However, hybrid time domains give necessarily converge to a point, it is natural in hybrid sys-
a more prominent role to the number of jumpécf. the  temsto consider asymptotic stability of compact sets rathe
definition of hybrid time set by Collins in [4]). On a hybrid than of simple equilibrium points. The notion of uniform
time domain there is a natural ordering of points: we write global asymptotic stability is relevant here. It entaile th
(t,5) = (', 5) for (t,5), (t',5') € Eif t <t andj < j'. following:

A hybrid arcz: can be classified based on its hybrid time Let.A C R" be compact. The set is said to be

domaiq. We say it i$}ontrivial i_f dom contair!s at _Ieast o uniformly globally stabldor 7 if there existsy € Ko
two points; completeif dom x |s_unbounded, ie., |_f .the such that any solution to H satisfies|z (¢, j)|4 <
projection ofE ontoR >, and/orN is unboundedZenaoif it v(|z(0,0)|.4) for all (¢, §) € domz;

is complete and its domain is bounded in treomponent.

A hybrid arc is a solution to the hybrid system only when ~® uniformly globally pre-attractivéor 7{ if for eache >

j [jlumps]

Figure 2: Height of the ball as a function ¢f, j) on its
hybrid time domain.

the dynamics defined by the d&i@, f, C, g, D) are satis- 0andr > 0 there existsI’ > 0 such that, for any
fied during flows and jumps. More precisely, a hybrid arc solutionz to H with [2(0,0)[.4 < 7, (¢,j) € domz
z is asolution to the hybrid systef if z(0,0) € C U D, andt 4 j > T'imply |z(t, )[4 <&;

x(t,j) € Oforall (¢, j) € domz, and e uniformly globally pre-asymptotically stablr

if it is both uniformly globally stable and uniformly

(S1) for all j; € N such thatl’ has nonempty interior, )
globally pre-attractive.

wherel? x {j} = domz N ([0,00) x {j}),
It turns out that uniform global pre-asymptotic stabiligy i

x(t,j) € C forallt € int I, equivalent to the existence af, o, € Ko, and such that
@(t,7) = f(z(t,5)) foralmostallt € I7; any solutionz to H satisfies
: as(|2(0,0)[4) ,
. . <
(S2) forall(t,j) € domz such thait, j + 1) € dom«, |z(t, )[4 < < exp (t+ §) V(t,j) € domz
x(t,j) € D, x(t,j +1) = g(x(t,5)). where|z| 4 denotes the distance ofto the setA.

A sufficient condition for uniform global pre-asymptotic
A solution to the bouncing ball system in Example 1 with stability is given.in thg following Lyapunov conditiops.-ln
its corresponding hybrid time domain is given in Figure 2. 9€€d. the se is_uniformly globally pre-asymptotically
Note that solutions to hybrid systerfiscan be nonunique st.able 'f,G(D) < C U D and there exists a continuously
from points in the state spacgthat are both irC' and D, differentiable functior” : R™ — Rxo, a1, a2 € Koo and
and from which either behavior is possible, that is, both & continuous positive definite functign: R>o — Ryxo,

(S1) and (S2) hold. such that

4 Stability ar(|z|la) < V(z) < ao(|z|la) YzeCUD
Control engineers focused on inducing stability and the ap- sup (VV(z),f) < —p(lzla) VzeC
propriate long-term trends in hybrid control systems wéll b FEF(z)

interested in stability properties for hybrid systems amd i sup V(g)=V(&) < —p(lz|la) VeeD.

tools for establishing asymptotic stability. Because g/br 9€G(2)



Example4 (bouncing ball, revisited) The reader is en- Solutions toH, are defined for only a class of state per-

couraged to verify for the bouncing ball that the function
V(z) := (1 4+ @ arctan(zs)) (%x% + ’71‘1)

is a Lyapunov function for the set taken to be the origin
when# > 0 is chosen appropriately. o

Example5 (linear sampled-data systems)

functionsf (¢, u) = A¢ + Buandk(§) = K¢. This corre-
sponds to a hybrid system with statevherex,; = { i } ,

fa=| M7 ] o= ta e e )

o) = | ] Do =)
where

we[2 2] anli ]

Define H := exp(A;T)A, and note that the matriff
indicates the evolution of the variable at sampling times
just before jumps. In particular

r1(tj42,5 +1) = Hr1(tj41,5) Vj€N.

Conside,
sampled-data systems as discussed earlier, but with lin

turbations. The hybrid are is anadmissible state pertur-
bationif dome is a hybrid time domain and the function
t — e(t, j) is measurable odom eN (R>( x {j}) for each

j € N. A hybrid arcx is asolution to the hybrid system
H. with admissible state perturbatierif dom z = domee,
2(0,0) + €(0,0) € CU D, z(t,j) + e(t,j) € O for all
(t,j) € domz, and

gf‘le) for all j € N such that/? has nonempty interior,

wherel’ x {j} := domx N ([0, +o0) x {j}),

x(t,7) +e(t,j) € C forallt €int I7,
i(t,7) = f(x(t,j) +e(t,j)) foralmostallt € I7;

(S2) forall (t,j) € domz suchthaft,j + 1) € domz,

I(taj)+e(tvj) €D, I(tvj+1) = g(I(tvj)+e(tvj))'

The following example illustrates one possible effect of
state perturbations in hybrid systems.

Example 6 (rotate and converge) Consider the hybrid sys-
temH with data given by

€2
-1

0=R,  f@)=|

g(x) =0, D:={z€R® |21 >0,2,=0} .

}, C:=R*\D

Suppose there exists a positive definite symmetric ma-gojutions toH converge to the origin in at most one jump.

trix P such thatd” PH — P is negative definite; equiv-

In fact, solutions starting fron§ € C U D, £ # 0, flow

alently, the eigenvalues off all have magnitude less yntil they reach the s&b, from where a jump to the origin

than one. Under this condition, the compact get:=
{z :21 =0, 25 € [0,T]} is uniformly globally asymptot-

follows. After that jump, solutions flow for all time at the
origin. The solution starting froh = 0 € C U D flows for

ically stable. The reader is encouraged to verify that theg|| time.
functionV»(z) is a Lyapunov function for the hybrid sys-  solutions to with state perturbation, that is, solutions to

tem with respect to this sedl where W (2) := 2" Pz, 1, with an admissible state perturbatiohave a total dif-
Vi(z) := W (exp(As (T — x2))z1) and ferent behavior. Solutions t&, from points¢ € C' U D,
v - v ¢ # 0, can miss the jump at the sét and flow for all

2() := exp(—ow2)Vi(2) time. Letz : [0,00) x {0} — R2 be such that:(t,0) =

as long azr > 0 is taken to be sufficiently small. o J((t,0)), andlet; > 0,i € N, be suchthat(t;,0) € D

for eachi € N. Define the admissible state perturbation
e :[0,00) x {0} — R?to bee(t,0) = 0 forall t # ¢,

5 Generalized Solutions
L . i € N, ande(t;,0) = [0 &5]7, for somes, > 0. It follows
The presence of state perturbations in hybrid systems Cafhat for all(t, j) € domz = [0,00) x {0}

dramatically change its behavior if the d&@, f, C, g, D)

of H fail to satisfy certain properties. This can occur even
if the magnitude of the perturbation is arbitrarily smaltlan
the functionsf andg have nice regularity properties, e.g.
they are smooth. This section addresses this issue and M&hen, is a solution taH, with admissible state perturba-
tivates the concept ajeneralized solutions to hybrid sys- 1ion ¢ for anye, > 0.

tems Solutions taH, from points¢ € CUD, € = 0 can jump for
ever, for a particular admissible noise. ket {0} x N —
R? be such that(0,5 + 1) = g(x(0,4)) = 0 forall j € N.
Define the admissible state perturbation{0} x N — R?

to bee(0,j) = [e1 0] for all j € N for somee; > 0. It
follows that for all(¢, j) € domz = {0} x N

z(t,j) +e(t,j) € Cforallt € R,
z(t,7) = f(z(t,7) + e(t,j)) foralmostallt € R .

5.1 Hybrid systemswith state perturbations

Ahybrid systent{ = (O, f, C, g, D) with a state perturba-
tion e is denoted by, and can be written in the suggestive
form:

r+eecC
r+eeD.

| i = fe+e)
He:a+e€O { . £(t.§) +elt.9) € D, w(t.j +1) = glx(t.j) + e(t. ).



Then,z is a solution toH,. with admissible state perturba- A hybrid arcz is aHermes solutiorto H if the restriction

tion e for anye; > 0. Comparing this solution with the of x, denoted:’, to each compact subset @m z that is
solution without noise, even though their value is zero fora hybrid time domain is such that there exist a sequence
all (¢, j) in their domain, their hybrid time domains are to- {z}}$°, of hybrid arcs ande; }32, a sequence of admissi-
tally different. o ble state perturbations such that

Example 7 (discontinuous jump map) Consider the hybrid ~ ® x} is .a so!ution toH. with state perturbatiom; for
system{ with data given by eachi € N;

e for eachs > 0 there existg, such that for all > i,
x} andz’ are(t, ¢)-close, where = T+ J and(T, J)
is the supremum ofom z’;

O = R?, flx)=0, C:=0 2

0
g(z) = LCJ 7170 , D :=R2%. 3)
0 z1 =0 e the sequence ofup ; j)cqom ., [€i(t; j)| converges to
0.
Solutions toH always jump for every point ifR?. From
¢ = [¢& &7 € R? with & # 0, they first jump ta¢; = 0
from where they jump to the origin and stay there jumping
for ever. From every = [& &7 € R? with & = 0, so-
lutions reach the origin in one jump and stay there jumping

Hermes solutions té{ = (O, f, C, g, D) are captured by
the solutions to the hybrid system resulting froegular-
izing H via the following closure operation, referred to as
Krasovskii regularization given by [17]

forev_er‘ _ ) ) C:=CnO, D:=DNO

Solutions with state perturbation can fail to converge o th

origin. Letz : {0} x N — R2? be such thatr(0,0) = voeC [(x):= (| @nf((=+0B)NC),

€1 )T € R?, &1,6 # 0,2(0,5) = [0 &]" forall j >0, 550

J € N. Define the admissible state perturbation{0} x .

N — R2? to bee(0,0) = 0, e(0, j) = [¢1 0] forall j > 0, VeeD g(x):=()g((=+B)ND).

j € Nfor somes; > 0. (Similar construction is possible 6>0

for points¢ with & = 0.) It follows that for all (¢, j) € Note that at points inC, respectivelyD, where f, re-

domz = {0} x N spectivelyg, is continuous,f(z) = f(z), respectively
g(x) = g(x). Moreover, wherC, respectivelyD, is closed

x(t,j) +e(t,j) € D, z(t,j+1) = g(z(t, j) +e(t, 7). relative toO, the regularization does not changerespec-

h . luti ith admissibl b tively D. (A setS, subset of an open sét € R", is closed
Then,z is a solution toH. with admissible state perturba- . 1iive toO if S = 5 N 0))

tir?nefo_r anye; > 0. The solutionx does not converge to A hybrid arc z is a Krasovskii solutionto H —
the origin. 9 (0,f,C g, D) if (S1) and (S2) hold withi = f(z) and

+_ P e f +ed -
Note that the solutions in the examples above exhibit the” = 9(x) replaced byi € f(z) andz™ & g(x), respec
same behavior for arbitrarily small state perturbatiomrev  tivVely; andC andD replaced by and D, respectively.

in the limit when its magnitude goes to zero. Under locally boundedness assumptions forand g, it
follows that

5.2 Hermesand Krasovskii solutions

The examples in Section 5.1 suggest that solutions obtaineé hybrid arcz is a Hermes solution t@{ if and only if is a

by taking the limit of sequences of solutions with vanishing Krasovskii solution td-.

state perturbations in hybrid systems can lead to solutions

that differ from the nominal solutions. These solutions are This implies that every limiting solution obtained from any

calledHermes solutions sequence of solutions @, with admissible state perturba-

Before defining Hermes solutions, a metric that measuredion converging to zero is a Krasovskii solution’ty and

the distance between hybrid arcs is introduced. Such metthat every Krasovskii solution & can be reproduced with

ric is needed since hybrid arcs do not necessarily share tharbitrary precision by solutions . with admissible state

same hybrid time domain. Given> 0 ande > 0, we say  perturbation.

that two hybrid arcs:; andz, are(r, ¢)-closeif ) o o
Example 8 (bouncing ball, revisited) The regularization

(a) forall(t,j) € doma; with ¢t + j < 7 there exists of the bouncing ball system in Example 1 is given by

such tha(s, j) € domz, |t — s| < e, and
= {I €0 | xr1 > 0}

={zxe€0 |z1=0,22<0},
Vo e C f(z) = f(z), Yz € D G(x) = g(x)

|.§C1(t,j) _'IQ(Saj” <g,

(b) for all (¢,7) € domzy with t + j < 7 there exists
such thats, j) € domxy, |t — 5| < ¢, and The only solution added by the regularization is a solution
starting fromz = 0. (Note that from the origin there is no
lw2(t,5) — x1(s, 4)| <. solution to the bouncing ball system in Example 1.) This



solution has a hybrid time domain given b} x N. This any sequencéx; }°, with z; € S, lim;_.. z; = z and
corresponds to a special case of Zeno solution called  any sequencéy; }5°, with y; € ¢(z;) andlim; o y; =y
crete o we havey € ¢(z).

. We say that{ satisfies théaybrid basic conditionsf
Example9 (rotate and converge, revisited) The regular-

ization of the hybrid system in Example 6 is given by (A0) O C R™is an open set;

C=C=R (A1) C andD are sets closed relative ;
D=D={z€0 |z >0,2,=0}, . —
{Ax —~ o1 20,22 A} N (A2) F : O = R"™ is outer semicontinuous and locally
Ve e C f(z) = f(z), Vz € D g(z) = g(x) bounded, andF'(z) is nonempty and convex for all
x € C,

The solution to the system in Example 6 that always flows
is a Hermes solution as it can be obtained as the limitinga3y ¢ . © = R" is outer semicontinuous and locally
operation of sequences of solutions with vanishing state ~ pounded, ands(z) is nonempty and(z) ¢ O for
perturbation. Moreover, since the regularized hybrid sys- allz e D.
tem has flow se€ = R?, it is also a Krasovskii solution.
Similarly for the solution to the system in Example 6 that The hybrid basic conditions are automatically satisfied by
always jumps —itis both a Hermes and Krasovskii solution.the Krasovskii regularization of a hybrid systems in Sec-
] tion 5.2.

) i ) o A hybrid arcz is a solution toH = (O, F,C, G, D) if it
Example 10 (discontinuous jump map, revisited) The reg- gasisfies (S1) and (S2) with = f(z) andz* = g(x) re-
ularization of the hybrid system in Example 7 is given by placed by € F(z) andat € G(x), respectively. (When

O—CT=0.D=D=R? H is regular, that is, satisfies the hybrid basic conditions,
PO solutions toH as just defined coincide with Krasovskii so-
veeC f(z) =0, lutions.)
{0 2140 When H satisfies the hybrid basic conditions, then the
veeD 3(z) = T2 following sequential compactness of solutions property
{o {0” _0 holds [8]:
) Zo Tl =

The solution to the system in Example 7 that aIwaysjumpsFOr every (locally eventually) bounded with respectCto

Lo . -sequence of solutions : dom x; — R"™ to H, there exists
and stays away from the origin is a Hermes solution as it : : .
. - ; subsequence graphically converging to a solutiofi{to
can be obtained as the limiting operation of sequences o

solutions with vanishing state perturbation Moreover, .
since the regularized hybrid system has jump map includ-By a locally eventually bounded with respectiequence

ing [0 )7 whena, — 0, then it is also a Krasovskii solu- of solutionsx; we mean that for anyn > 0, there exists

L . T 1o > 0 and a compact sét’ C O such that for alk > 1,
Jj[:lomnpsthe one corresponding to always choosing. ] at all (¢, ) € doma; With ¢ + j < m, z:(t, j) € K.

When H satisfies the hybrid basic conditions and is
The results above generalize, to the hybrid setting, atresusuch that all solutions from some compact $étC O

for differential equations initially reported by Hermes in aré complete, then the following outer-semicontinuous
[10] and expanded upon by Hajek in [9]. Following the dependence of solutions holds [8]:

lines of [5], a similar result but for the state feedback case

also holds for hyb”d systems, see [17] For anye > 0 andr € Rzo there exist® > 0 such that:

. . . for any solutionr’ € Sy (K + 0B) there exists a solution
6 Basic Conditionsand their consequences xtoH withz(0,0) € K suchthat’ andz are (7, )-close.
Note thatH has set-valued dynamics due to the regular-

ization procedure. Hybrid systems with set-valued dynam- - .

ics appear also when perturbations are explicitly modeled7 Stability revisited
and, for the particular case of the jump map, when mul-Let A ¢ R™ be compact. The set is said to be

tiple possibilities at jumps are possible, like in the case

of hybrid control with logic variables. From now on, we e stablefor 7 if for eache > 0 there exist$ > 0 such
consider the general case of a hybrid systémwith data that any solution to H with [z(0,0)|.4 < ¢ satisfies
(O, F,C,G, D), whereF andG are set-valued mappings, |z(t,j)|a < eforall (¢, ) € dom =

and can be written in the compact form o , ,
e globally pre-attractiveif each solutionz to H is

- o & € F(x) zeC bounded or complete, and in the latter case satisfies
: Te zt e G(x) xeD. limy 4 j o0 [2(t, )[4 = 0.
Below, a set-valued mapping: S = R", whereS C O, e globally pre-asymptotically stabli it is both stable

is outer semicontinuous relative ®if for any € S and and globally pre-attractive.



For a hybrid systems satisfying the hybrid basic conditions e Weakly forward invariant:if for each point¢ € M

with state spac® = R™ and a compact sed c R"”, the there exists at least one complete solutidn H start-
following statements are equivalent: ing from¢ and satisfyinggex C M.
1. The set4 is globally pre-asymptotically stable. e Weakly backward invarianif for each point¢’ € M
] . ) and every positive numbe¥ there exists a poin{
2. The setA is uniformly globally pre-asymptotically from which there exists at least one solutiorio
stable.

starting from¢ that is equal tog’ for some(t*, j*) €
dom z with the property that* + j* > NN, and such

Under the same assumptions above, a Lyapunov charac-
P yap thatz(t, j) C M forall (¢, ) = (£, %).

terization of global pre-asymptotic stability holds aslie t
case (_)f uniform pre-asympto_tic stability in Section 4. The For a hybrid systen satisfying the hybrid basic condi-
following statements are equivalent: tions, a continuously differentiable functida : R — R,

1. The setd is globally pre-asymptotically stable. and anonempty sét C R such that for al: € U

2. (a) G(A) C A UC(Z) <0 anduD(z) <0 (4)
(b) There exist a continuously differentiable func- where
tionV : R™ — R> and functionsy;, ae € Koo
such that wo(@) = fglﬁé)wv(w)’f) zeC
—00 otherwise
ar (Jzfa) £ V(z) < ax(lzla) z€CUD max {V(g) — V(x)} xeD
up(x) = 9€G(z) .
fmg(x)(VV(I), fy < o0 vz € C\A —00 otherwise,
el (x
max V(g)—V(z) < 0 Wz D\A: every solutionz to H that is complete, bounded, and

9€G(2) rgex C U is such that converges to the largest weakly in-
variant set contained in
3. For each\ > 0 there exist a continuously differ-
entiable functiont : R™ — Rs( and functions
ay,as € Ko such that

[ug' (0) U (up'(0) N G(up' (0)) | NV ) nU  (5)

for some constant € V(U).

ar (Jzla) <V(z) < ag(|la) reRre  Examplell (bouncing ball, revisited) For the bouncing
ball system with regular data in Example 8, consider the
max (VV(z), f)) < =AV(z) Yz e C continuously differentiable functioW (z) = 123 + ;. It
fer(z) follows that
Vig) < ~\V(z) VzeD.
o Vig) < exp(-AV(e) Vee (VV(z), f(z)) =0 forallzeC. 6)

Implication from item 1 to item 3 constitutes a “converse and that

Lyapunov theorem” and can be used to establish robust- 9\ 9

ness of asymptotic stability to various types of perturba- Vig(z)) = V(z) = _5(1 =A%)z —y21 <0
tions, including slowly-varying, weakly jumping param-

eters, temporal regularization, small average-dwell time‘cor allz € D. Then

jumping, etc. o 0 zel
General sta.\tements ab_out the existence of smooth Lya- uc(r) = —00 otherwise
punovfuncuonsfor.hybrld systems and the ensuing robust- C1(1 = A2)22 — ceD
ness can be found in [3] and [2]. up(xz) = 2 .
—o0 otherwise,

8 Invarianceprinciples

) o ) Sinceuc andup are never positive, fo/ = R? we have
Invariance principles for hybrid systems that parallektho

for continuous and discrete-time systems proposed by uc(z) <0 andup(z) <O0. (7
LaSalle [11, 12] are introduced in this section. The con-

cept of invariance we use involves both forward and back-Therefore, every precompact solution to the bouncing ball
ward invariance. The prefix “weak” is used to indicate that System converges to the largest weakly invariant set in (5)
the invariance notion involves only a particular solution t Where

satisfy the invariance property. 1 -1 1 _
Below, we denote the range of the solutioby rge z, i.e. uc (0)=C, g(up (0)) =up (0) ={r €0 [z=0}.

rgexr = x(dor_n ). _ ) _ Then, it the set (5) is given by
Given a hybrid systerfi, a setM C O is weakly invariant
if it is both [18]: {r€eO |z >0}NVIr)NU.



Suppose: > 0 and consider solutions starting in this set. for all z € U. ThenA is pre-stable. Suppose additionally

There exists a finitét, 0) at whichz,(¢,0) = 0 and then  that

a jump occurs. Sincep(z) is strictly negative away from

the origin,V needs to decrease after the jump. This shows uc(z) < 0andup(z) <Oforallze U\ A.

that it is impossible for the a invariant set to exists in (5)

with positiver. Then, the only invariant set in (5) is for Then.A is pre-attractive, and hence pre-asymptotically sta-

r = 0. This set is the origin. Then precompact solutions ble.

converge to the origin. ] The key to these results is the said outer-semicontinuity
property of solutions. More general invariance principles

The following special cases to the invariance principle connections to observability and detectability, and other

above hold when consequences of asymptotic stability for hybrid systems

_ ) can be found in [18].
(a) x is Zeno: then, for some e V (U), it approaches the
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