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Abstract: Invariance properties and convergence of solutions of set dynamical systems are
studied. Using a framework for systems with set-valued states, notions of stability and
detectability, similar to the existing results for classical dynamical systems, are defined and used
to obtain information about the convergence properties of solutions. In particular, it is shown
that local stability, detectability, and boundedness can be combined to conclude convergence of
set-valued solutions. Under the assumption of bounded solutions and outer semicontinuity of
the set-valued maps that define the system’s dynamics, invariance properties for set dynamical
systems are also presented along with an invariance principle. The invariance principle involves
the use of Lyapunov-like functions to locate invariant sets. Examples illustrate the results.
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1. INTRODUCTION

Complex technological systems available nowadays require
a suitable representation for realistic behavior analysis.
System dynamics often incorporate restrictions that the
state variables must satisfy, as well as a model of the
disturbances. Methods to check properties of the behavior
of such systems, without the need of explicitly computing
solutions are the main tools used in analysis and system
design nowadays. For such purposes, formulations based
on set-theoretic frameworks are well suited for design
problems involving constraints, uncertainties, multiple op-
eration points, among others.

Most popular methods to study the behavior of dynamical
systems consider a classical state representation, namely a
single-valued vector in some space. On the other hand, the
generation of tools to study the properties of systems in
which set-valued states represent variables or multivalued
signals has experienced a more delayed development. Early
approaches in this direction can be found in works such
as Pelczar (1977), where a type of generalized systems
is presented and basic stability properties are studied,
with follow-up developments for the study of limit sets
in Pelczar (1991). Notions of reachability for generalized
pseudo dynamical systems are formally studied in Pelczar
(1994). More recently, properties of systems with set-
valued states in continuous time are studied in Artstein
(1995) and a framework for the design of output feedback
algorithms incorporating set-valued systems is developed
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in Artstein and Raković (2011). Even though some early
predecessors exists, a tool for set dynamical systems that
resembles the widely used invariance principle is currently
not available.

With the objective of developing an invariance principle
so as to characterize the behavior of systems with set-
valued solutions, in this paper we study convergence of
solutions and invariance properties of set dynamical sys-
tems. Here, we consider systems with a set-valued state
that evolves in discrete time according to a set-valued
map and a constraint given in terms of a set, both in
Euclidean space. Solutions associated to such systems are
given by sequences of sets, rather than sequences of points
as in the case of classical dynamical systems in discrete
time. In particular, we extend the framework introduced
in Sanfelice (2014) to set dynamical systems with outputs
and formulate appropriate notions of detectability and sta-
bility. We follow similar ideas to those existing for classical
dynamical systems as well as those in the literature of set-
valued dynamical systems, such as Panasyuk (1986), Pel-
czar (1994), and Artstein (1995). The proposed concepts
are then used to obtain information about the convergence
properties of solutions and to state an invariance principle
for set dynamical systems. In particular, our contributions
include:

• Basic assumptions on the system data for key struc-
tural properties, namely, a semigroup property, a se-
quential compactness property, and closedness of the
set-valued states and outputs.

• Relationships between local stability, detectability,
and boundedness to conclude convergence of set-
valued solutions.



• Results about convergence of set-valued solutions
based on invariant sets involving the output map.
• An invariance principle, similar to the one avail-

able for continuous-time and discrete-time systems;
see, e.g., LaSalle (1967). Under the said basic as-
sumptions, our invariance principle uses a real-valued
Lyapunov-like function to locate invariant sets of
bounded and complete solutions.

Although results on convergence and stability properties
for dynamical systems under a set-valued approach have
been generated in the past, see Artstein and Raković
(2011) for results concerning systems with output feed-
back, and results pertaining to invariance of sets are
available (see Blanchini and Miani (2007), Artstein and
Raković (2008)), our approach provides a tool to analyze
convergence of solutions by using an invariance principle
for set dynamical systems, which allows to use nonstrict
Lyapunov functions for determining where set-valued so-
lutions converge to. To the best of our knowledge, such
tool is not available in the literature. 1

The reminder of this paper is organized as follows. After
basic notation is introduced, Section 2 presents concepts
associated to properties that are relevant for set dynamical
systems behavior. The framework for set dynamical sys-
tems with outputs is defined in Section 3. The main results
are presented in Section 4. More precisely, results relating
detectability, stability, and convergence of solutions are
described in Section 4.1. Invariance properties for set dy-
namical systems are presented in Section 4.2, where a for-
mulation of an invariance principle for set-valued systems
is proposed. Examples throughout the paper illustrate the
ideas.

2. PRELIMINARIES

Notation: The following notation is used throughout this
paper. N denotes the natural numbers including 0, i.e., N =
{0, 1, . . .}. Rn denotes the n-dimensional Euclidean space.
R≥0 denotes the nonnegative real numbers. B denotes the
closed unit ball in Euclidean space. Given a set A, its
closure is denoted by A. Given a map V , domV denotes
its domain of definition. Given x ∈ Rn, |x| denotes the
Euclidean vector norm and |x|1 denotes the taxicab norm.
For a closed setA ⊂ Rn and x ∈ Rn, we define the distance
|x|A = infy∈A |x − y|. Given a function V : domV → R
and a constant r ∈ R, its r-sublevel set is given by
LV (r) := {x ∈ domV : V (x) ≤ r }. For a map G, Gn

denotes the n-th composition.

Some basic definitions and properties that are used to
characterize set dynamical systems are given in this sec-
tion. We consider the standard topology in Rn. A set is
closed if and only if it contains its boundary. A set is
compact if bounded and closed.

Definition 2.1. (distance between sets). The Hausdorff dis-
tance between two closed sets A1, A2 ⊂ Rn is given by

d(A1,A2) = max

{
sup
x∈A1

|x|A2 , sup
z∈A2

|z|A1

}
1 Note that Proposition 9.1 in Artstein and Raković (2011) is a
convergence result that requires the Lyapunov function to strictly
decrease while the convergence criterion of sets in Proposition 4.5 in
Artstein and Raković (2008) requires a strict contraction property.

Definition 2.2. (inner and outer limit). For a sequence of
sets {Ti}∞i=0 in Rn:

• The inner limit of the sequence {Ti}∞i=0, denoted by
lim infi→∞ Ti, is the set of all points x ∈ Rn for
which there exist points xi ∈ Ti, i ∈ N, such that
limi→∞ xi = x;

• The outer limit of the sequence {Ti}∞i=0, denoted by
lim supi→∞ Ti, is the set of all points x ∈ Rn for
which there exist a subsequence {Tik}∞k=0 of {Ti}∞i=0
and points xk ∈ Tik , for all k ∈ N, such that
limk→∞ xk = x.

The limit of the sequence exists if the outer and the inner
limit sets are equal; namely,

lim
i→∞

Ti = lim inf
i→∞

Ti = lim sup
i→∞

Ti

The inner and outer limits of a sequence always exist and
are closed 2 , although the limit itself might not exist. �

Definition 2.3. (union of a collection of sets). Let C be a
collection of sets. The union of C is

⋃
C = {x : x ∈

X for some X ∈ C}. �

Definition 2.4. (Rockafellar and Wets, 2009, convergence
of a sequence of sets) When the limit of the sequence
{Ti}∞i=0 in Rn exists in the sense of Definition 2.2, and is
equal to T , the sequence of sets {Ti}∞i=0 is said to converge
to the set T . �

3. SET DYNAMICAL SYSTEMS WITH OUTPUTS

We consider set dynamical systems defined by

X+ = G(X)

Y = H(X)

X ⊂ D
(1)

where X is the set-valued state, Y is the system’s output,
G : Rn ⇒ Rn and H : Rn ⇒ Rm are set-valued maps
defining the right-hand side and the output map, respec-
tively, and D ⊂ Rn defines a constraint that solutions to
the system must satisfy. We say that (D, G, H) is the
data of (1). A solution to the system in (1) is defined as
the sequence of nonempty sets {Xj}Jj=0 and its associated

output is defined by the sequence {Yj}Jj=0, J ∈ N ∪ {∞},
satisfying

Xj+1 = G(Xj)

Yj = H(Xj)

Xj ⊂ D
over the domain of definition of the solution {Xj}Jj=0,
which is given by the collection {0, 1, 2, . . . , J} ∩ N, and
denoted by domX. The first entry of the solution, X0, is
the initial set. We assume X0 to be compact. If a solution
has J = 0 then we say that it is trivial, and if it has J > 0
we say that it is nontrivial. If it has J =∞, we say that it
is complete. A solution {Xj}Jj=0 is said to be maximal if it
cannot be further extended. Given an initial set X0 ⊂ Rn,
S(X0) denotes the set of maximal solutions 3 to (1) from
X0.
2 For a sequence of empty sets, the inner and outer limit is the empty
set.
3 By Lemma 3.7, maximal solutions to (1) are unique.



To make notation easier to follow, at times, the sequence
of sets {Xj}Jj=0 is represented as Xj (or even just X). We
make the same notational simplification when referring to
the output Y. The term solution-output pair {X,Y} is
used to represent a solution X and its associated output
Y = H(X). Notation {Xij}∞i=0 refers to the sequence of

solutions Xij indexed by i, where j is the associated discrete
time.

3.1 Definitions and Assumptions

Definition 3.1. (stability of a set). The set A is stable if
for each ε > 0 there exists δ > 0 such that each solution
Xj to (1) with d(X0,A) ≤ δ satisfies d(Xj ,A) ≤ ε for all
j ∈ dom Xj . �

For classical systems, detectability means that when the
output remains at zero, the norm of solutions converges to
zero as time goes to infinity. A related concept is defined
for set dynamical systems next.

Definition 3.2. (detectability). Let the sets A ⊂ Rn, N ⊂
Rm, and M ⊂ Rn be given, where A is closed. For the
system in (1), the distance to A is detectable relative to
N onM if for each complete solution X ∈ S(X0), with Xj
closed for each j ∈ domX, and associated output Y

X ⊂M
Y ⊂ N

}
=⇒ lim

j→∞
d(Xj ,A) = 0

�

In the next sections, results characterizing key dynamical
properties of a set dynamical system as in (1) are proposed.
Those results require the data of (1) to satisfy certain mild
conditions, which are stated in the following assumption.

Definition 3.3. (outer semicontinuity). The set-valued map
G : Rn ⇒ Rn is outer semicontinuous at x ∈ Rn if for
each sequence {xi}∞i=0 converging to a point x ∈ Rn and
each sequence {yi}∞i=0 such that yi ∈ G(xi) for each i,
converging to a point y, it holds that y ∈ G(x). It is outer
semicontinuous if G(x) is outer semicontinuous at each
x ∈ Rn. �

Assumption 3.4. The set dynamical system defined in (1),
with data (D, G, H) satisfies the following properties:

(A0) The set-valued map G : Rn ⇒ Rn is outer semicon-
tinuous, locally bounded 4 , and, for each x ∈ D, G(x)
is a nonempty subset of Rn.

(A1) The set D ⊂ Rn is closed.
(A2) The set-valued map H : Rn ⇒ Rm is outer semicon-

tinuous, locally bounded, and, for each x ∈ D, H(x)
is a nonempty subset of Rn.

3.2 Preliminary results

The following result establishes a structural property of
the state and output trajectory of (1). A similar result
appeared in (Sanfelice, 2014, Proposition 4.6).

Proposition 3.5. (basic properties of solutions) The follow-
ing properties hold for system (1):

4 The map G is locally bounded if for each compact set K ⊂ Rn

there exists a compact set K′ ⊂ Rn such that G(K) ⊂ K′.

(B1) For any solution X to (1) and any ĵ ∈ domX, we

have that X̂ given by X̂j = Xj+ĵ for each j ∈ dom X̂ ={
j : j + ĵ ∈ domX

}
is a solution to (1).

(B2) Suppose the data (D,G) of (1) satisfies (A0) and
(A1) of Assumption 3.4. Let {Xi0}∞i=0 be an eventually
bounded (with respect to Rn) sequence of sets converg-
ing to a compact set X0 and suppose {Xi}∞i=0 is such
that Xi ∈ S(Xi0). Then, there exists a subsequence of
{Xi}∞i=0 converging to some X ∈ S(X0).

(B3) Suppose the data (D,G,H) of (1) satisfies Assump-
tion 3.4. Let {Xij}∞i=0 and {Yij}∞i=0 be a solution-

output pair to (1), such that {Yij}∞i=0 is bounded.

Then, there exists a subsequence of {Yij}∞i=0 that con-
verges to a closed set.

Theorem 3.6. (Rockafellar and Wets, 2009, Theorem 4.18)
Every sequence of nonempty sets {Ti}∞i=0 in Rn either
escapes to the horizon or has a subsequence converging to
a nonempty set T ⊂ Rn, i.e., there exists a subsequence
{Tik}∞k=0 of {Ti}∞i=0 such that limk→∞ Tik = T .

Lemma 3.7. Given a solution {Xj}Jj=0 to (1) and any

subsequence {ji}Ii=0 of {j}Jj=0, we have

Xji = Gji(X0) ∀i ∈ {0, 1, . . . , I} ∩ N (2)

Moreover, every maximal solution to (1) is unique.

Now, we define the notion of ω-limit set. This notion is
used later to establish convergence properties of solutions.

Definition 3.8. (ω-limit set). The ω-limit set of a solution
{Xj}Jj=0 to (1) is given by

ω̃(Xj) = {Y ⊂ Rn : ∃{ji}∞i=0, lim
i→∞

ji =∞, Y = lim
i→∞

Xji}
(3)

Note that ω̃(Xj) is a collection of sets. �

Theorem 3.9. (Sanfelice, 2014, Theorem 4.13) Suppose
the data (D,G) of (1) satisfies Assumption 3.4 and that
V : Rn → R is a Lyapunov-like function. Then, every
solution {Xj}Jj=0, J ∈ N ∪ {∞} to (1) from X0 ⊂ D
satisfies [

0, sup
x∈Xj+1

V (x)

]
⊂

[
0, sup
x∈Xj

V (x)

]
(4)

for all j ∈ {0, 1, . . . , J − 1} ∩ N. Moreover, if J =∞ then

lim
j→∞

[
0, sup
x∈Xj

V (x)

]
=
⋂
j∈N

[
0, sup
x∈Xj

V (x)

]
(5)

and if, furthermore, {Xj}∞j=0 is bounded then there exists
r ∈ R≥0 such that

V (ω̃ (Xj)) ⊂ [0, r] (6)

4. DETECTABILITY AND AN INVARIANCE
PRINCIPLE

This section pertains to the study of convergence and
invariance properties of set dynamical systems. Notions
and results on detectability and convergence are presented
in Section 4.1. In Section 4.2, invariance properties of set



dynamical systems are characterized and then used to
prove an invariance principle, which corresponds to the
main result in this paper. The proofs of some of the results
borrow ideas from variational analysis in Rockafellar and
Wets (2009) and the results for discrete-time systems in
LaSalle (1967) and Teel (2006).

4.1 Detectability and Convergence

Structural properties of the solutions to set dynamical
systems are used in this section, along with detectability,
to conclude convergence of solutions to compact sets.

Theorem 4.1. Let A and M be compact subsets of Rn.
Suppose system (1) satisfies Assumption 3.4, the set A
is stable, and the distance to A is detectable relative to N .
Let X ∈ S(X0) be complete and Y be the associated output.
If X ⊂M and limj→∞ Yj = N then

lim
j→∞

d(Xj ,A) = 0

Example 4.2. (illustration of Theorem 4.1) Consider the
set dynamical system in (1) with G(X) = {g(x) : x ∈
X}, and H(X) = {h(x) : x ∈ X} where g(x) =[
x21
x1x2

]
, h(x) = 0.5 − 1

1 + e−x1
, and D = {x ∈ R2 :

|x|1 ≤ cD}, with cD > 0. This system satisfies Assumption
3.4 since both g and h are continuous and D is compact.
Consider the compact sets M = {x ∈ R2 : |x|1 ≤ cM}
with cM ≥ 0, A = {(0, 0)} and N = {0}. Let Xj be a
complete solution from X0 = {x ∈ R2 : |x|1 ≤ c0} with
c0 < 1 and let Yj be its associated output. For cM < 1
and c0 ≤ cM , Xj ⊂ M for all j ∈ domXj since g is
contractive on M in the sense that |g1(x)| < |x1| < 1 and
|g2(x)| < 1 for each x ∈ M. To establish stability of A,
let ε > 0. For δ = ε, the solution Xj from X0 is such that
d(Xj−1,A) ≤ d(Xj ,A) ≤ δ < 1, since g is contractive on
X ⊂ M, so d(Xj ,A) ≤ ε for all j ∈ domXj . We have
that Y = N if and only if X ⊂ {x ∈ R2 : x1 = 0}. So any
solution with X ⊂M and Y = N is such that Yj = {0} for
all j ∈ domXj , which implies that X0 ⊂ {x ∈ R2 : x1 = 0}
and X1 = G(X0) = {(0, 0)}. Then, limj→∞ d(Xj ,A) = 0.
Thus, the distance to A is detectable relative to N on
M. The assumptions in Theorem 4.1 are satisfied, which
implies that the set-valued solution converges to A. A
solution from the initial set X0 with c0 = 0.6, cM = 0.8,
and cD = 0.9 is presented in Figure 1, where convergence
to A can be observed.

Theorem 4.3. Let A and M be compact subsets of Rn.
Suppose system (1) satisfies Assumption 3.4, the set A
is stable for system (1), and A is detectable relative to N
onM. Then, for each ε > 0, there exists j∗ ∈ N such that,
for each solution-output pair (X,Y) with X ∈ S(X0),

X ⊂M
Y = N

}
=⇒ d(Xj ,A) ≤ ε ∀j ≥ j∗, j ∈ domX

4.2 Invariance Properties

In this section we formulate a convergence result based on
invariant sets involving the output map. We introduce the
concept of Lyapunov-like functions in the sense of Sanfelice
(2014), and use such functions to locate invariant sets for

j

x1x2

X0

X1

X2

X3

Fig. 1. Solution to the set dynamical system in Example
4.2 from initial set X0 = {x : |x|1 ≤ 0.6} (blue). As j
increases, the solution converges to A = {(0, 0)}.

solutions to set dynamical systems. We start by defining
the concept of invariance for set dynamical systems.

Definition 4.4. (forward and backward invariance).
A set M ⊂ Rn is said to be forward invariant for (1) if
for every set T ⊂ M∩D we have G(T ) ⊂ M∩D. A set
M ⊂ Rn is said to be backward invariant for (1) if for
every set T ′ ⊂M∩D for which there exists a set T with
the property T ′ = G(T ), we have T ⊂ M ∩ D for every
such set T . A set M ⊂ Rn is said to be invariant if it is
both forward and backward invariant. �

Recall that, according to the definition of solution, we have
that all maximal solutions to (1) are unique. The following
result from Sanfelice (2014) characterizes properties of the
omega limit sets of solutions to set dynamical systems.

Proposition 4.5. (Sanfelice, 2014, Proposition 4.9) Sup-
pose the data (D,G) in (1) satisfies (A0) and (A1) in
Assumption 3.4. Let Xj be a bounded and complete solution
to (1). Then, ω̃ (Xj) is nonempty, compact, and invariant.

Given a set dynamical system as in (1) and a set N , we
define

Y∗ := {x ∈ D : H(x) ⊂ N}
which will be used in the formulation of the next results.

Theorem 4.6. Let M be compact and let X ∈ S(X0)
be a complete solution to the system in (1) satisfying
Assumption 3.4. If X ⊂ M and its associated output Y
satisfies limj→∞ Yj = N , then the solution X converges to
the largest invariant set contained in M∩Y∗ ∩D.

Proof Sketch: Since X remains in M for all j ∈ domX,
the solution is bounded and by Proposition 4.5, the omega
limit set is nonempty, compact, and invariant. Since the
system satisfies Assumption 3.4, from the definition of Yj
we have that lim

j→∞
Yj = lim

j→∞
H(Xj) = N . If X∗ is an

element of ω̃(X), there is a subsequence of Xj indexed by
ji such that lim

i→∞
H(Xji) = H(X∗) = N . Moreover, for

each X∗ ∈ ω̃(X), X∗ ⊂ {x ∈ D : H(x) ⊂ N} = Y∗.



Theorem 4.6 is later used in proving our invariance princi-
ple, which is in Theorem 4.9. Before that, we make a link
between detectability and stability.

Theorem 4.7. Let A and M be compact subsets of Rn and
suppose, for the system described in (1), that the set A is
stable. Then, the following statements are equivalent:

(1) The distance to A is detectable relative to N on M.
(2) The largest invariant set contained in M ∩ Y∗ is a

subset of A.

The following definition introduces the notion of Lyapunov-
like functions for set dynamical systems.

Definition 4.8. (Lyapunov-like function). A continuous func-
tion V : Rn → R is called a Lyapunov-like function for
system (1) if it satisfies

V (x) ≥ 0 ∀x ∈ D ∪G(D)

V (η)− V (x) ≤ 0 ∀x ∈ D, η ∈ G(x)

�

Now we are ready to present our main result.

Theorem 4.9. (invariance principle) Suppose system (1)
satisfies Assumption 3.4. Let V be a Lyapunov-like func-
tion for (1). Let Xj be a bounded and complete solution
to (1). Then, there is a number r ∈ R≥0 such that Xj
converges to the largest invariant set contained in⋃

E ∩ LV (r) ∩D

where

E :=
{
X ⊂ D : sup

η∈G(X)

V (η) = sup
x∈X

V (x)
}

and LV (r) :=
{
x ∈ D : V (x) ≤ r

}
.

Proof Sketch: Since Xj is bounded and complete, ω̃ (Xj)
is nonempty, compact, and invariant. Using Theorem 3.9,
since Assumption 3.4 holds for system (1), V (ω̃ (Xj)) ⊂
[0, r] for some r ∈ R≥0. Consider the set dynamical system
in (1) with Y = (Y1,Y2) = H(X) = (H1(X), H2(X)), where

H1(X) =

[
0, sup
x∈X

V (x)− sup
η∈G(X)

V (η)

]

H2(X) =

[
0, sup
x∈X

V (x)

]
to which the given Xj is a solution. We can apply Theorem
4.6, defining the sets N = N1 × N2, N1 = {0}, N2 =
{x ∈ D : V (x) ≤ r} and M = {x ∈ D : V (η) ≤ V (x)}.
We have Xj ⊂ M for all j ∈ domX. Using Theorem
3.9 we have that supx∈G(Xj) V (x) ≤ supx∈G(Xj−1) V (x)

for each j ∈ domXj \ {0} and the sequence of points
{supx∈Xj

V (x)}∞j=0 converges to a real number b ∈ [0, r],

with b = limj→∞ supx∈Xj
V (x). Furthermore, we have

that limj→∞

(
supx∈G(Xj) V (x)− supx∈G(Xj−1) V (x)

)
=

0. Then, for the first component of the output, Y1,
limj→∞ Y1j = N1. The second output Y2 satisfies
limj→∞ Y2j = N2. Then, since limj→∞ Yj = N , using
Theorem 4.6 for this system, we have that the solution Xj
converges to the largest invariant set inM∩Y∗∩D, which
corresponds to

⋃
E ∩ LV (r) ∩D. �

Remark 4.10. If, for the set dynamical system in (1), we
have that G = g, with g : Rn → Rn, then Theorem 4.9
reduces to the original invariance principle for discrete-
time systems given in LaSalle (1967), with a sublevel set
of V instead of a level set as stated in the original principle.
�

Example 4.11. (illustration of Theorem 4.9) Consider the
set dynamical as defined in (1) in R2 with G(X) =

{g(x) : x ∈ X } and g(x) =


αx2

1 + x21
βx1

1 + x22

,

D = [0, p] × [0, q], with p, q real positive numbers and
α, β ≥ 0. The set dynamical system data satisfies Assump-
tion 3.4 since g is continuous and D is compact. Consider
as the Lyapunov-like function V (x) = x21 + x22, which, for
each x ∈ D and η = G(x), leads to

V (η)− V (x) =

(
β2

(1 + x22)2
− 1

)
x21 +

(
α2

(1 + x21)2
− 1

)
x22

≤ (β2 − 1)x21 + (α2 − 1)x22
For α2 < 1 and β2 < 1, V (η)−V (x) ≤ 0 for all x ∈ X, with
X ⊂ D, η ∈ G(X), and V is a valid Lyapunov-like function
for the set dynamical system. For each x ∈ D ∪G(D), we
have V (x) ≥ 0. Moreover, let Xj be a complete solution
from X0 ⊂ D. Since D is compact, X is bounded. The
assumptions in Theorem 4.9 are satisfied and the solution
converges to the largest invariant set in

⋃
E∩LV (r)∩D for

some r ≥ 0. Since supη∈G(X) V (η) = supx∈X V (x) only for

X = {(0, 0)}, the set E contains only the element {(0, 0)},
and the largest invariant set is the origin. A solution from
the initial set X0 = [0.5, 2] × [0.5, 2], with p = 5, q = 4,
α = β = 0.75 is presented in Figure 2.

For α2 = β2 = 1, condition V (η)−V (x) ≤ 0 still holds, for
all x ∈ X, with X ⊂ D, η ∈ G(X), so V is a Lyapunov-
like function for the set dynamical system. In this case,
condition supη∈G(X) V (η) = supx∈X V (x) is satisfied for
X with elements x such that(

1

(1 + x22)2
− 1

)
x21 +

(
1

(1 + x21)2
− 1

)
x22 = 0

which holds for each x in X = {x ∈ D : x1 = 0, x2 ≥ 0} ∪
{x ∈ D : x2 = 0, x1 ≥ 0}. Since this set of points belongs
to the boundary of D and is invariant for G, we have
that it defines the set E as well, namely, E = {x ∈
D : x1 = 0, x2 ≥ 0} ∪ {x ∈ D : x2 = 0, x1 ≥ 0}.
Since the assumptions in Theorem 4.9 are satisfied, the
set-valued solution converges to the largest invariant set
in
⋃
E ∩ LV (r) ∩D, in this case

E ∩ LV (r) (7)

for some r ≥ 0. For a solution from the initial set
X0 = [0, 1] × [0, 1], with p = 5, q = 4, the set-valued
state converges to {x ∈ R2 : x1 = 0, x2 ≤ 1} ∪ {x ∈
R2 : x2 = 0, x1 ≤ 1} which is the set in (7) with
r = maxx∈X0

V (x) = 1. Figure 3 shows the set-valued
solution up to j = 6.

5. CONCLUSION

Convergence and invariance properties for set dynami-
cal systems with outputs are studied in this paper. The



(a) Set-valued state evolution.

(b) Set-valued state convergence in the plane x1 − x2.

Fig. 2. Solution to the set dynamical system in Example
4.11, with α = β = 0.75 and X0 = [0.5, 2] × [0.5, 2],
for j = 0 to 6.

mathematical framework in Sanfelice (2014) was extended
to systems with outputs and notions of stability and de-
tectability for these systems were defined. Then, under the
assumption of bounded solutions and outer semicontinuity,
results relating stability, detectability and state trajectory
convergence were developed. Invariance properties for set
dynamical systems were characterized and an invariance
principle, involving the use of Lyapunov-like functions to
locate invariant sets, under assumption of bounded solu-
tions and outer semicontinuity of the set-valued map that
defines the system dynamics, was presented.
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