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Abstract This chapter introduces an incremental asymptotic stability notion for sets

of hybrid trajectories S . The elements in S are functions defined on hybrid time

domains, which are subsets of R≥0 ×N with a specific structure. For this abstract

system, incremental asymptotic stability is defined as the property of the graphi-

cal distance between every pair of solutions to the system having stable behavior

(incremental graphical stability) and approaching zero asymptotically (incremental

graphical attractivity). Necessary conditions for S to have such properties are pre-

sented. When S is generated by hybrid systems given in terms of hybrid inclusions,

that is, differential equations and difference equations with state constraints, further

necessary conditions on the data are highlighted. In addition, sufficient conditions

for incremental graphical asymptotic stability involving the data of the hybrid in-

clusion are presented. Throughout the chapter, examples illustrate the notions and

results.

1 Introduction

1.1 Motivation

In contrast to asymptotic stability, which can be interpreted as a property of each

system solution relative to a set, incremental stability consists of a property for

every pair of solutions to the system. More precisely, for a continuous-time system

of the form ẋ = f (x), the uniform version of such a property requires every pair of

solutions t 7→ φ1(t) and t 7→ φ2(t) to ẋ = f (x) to satisfy
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|φ1(t)−φ2(t)| ≤ β (|φ1(0)−φ2(0)|, t) (1)

for each t in the domain of definition of φ1 and φ2, where β is a class-K L function;

see, e.g., [1, 2, 3]. The bound (1) implies that the Euclidean distance between two

solutions is upper bounded by a function of the difference between their initial con-

ditions and also decreases as t gets arbitrarily large (when the domain of definition

of the solutions is unbounded to the right).

Unfortunately, the incremental stability notions available in the literature (most

of which are for continuous-time systems) cannot be applied directly to systems

with variables that can change continuously and, at times, jump. These systems,

known as hybrid systems, are capable of modeling a wide range of complex dynam-

ical systems, including robotic, automotive, and power systems as well as natural

processes. Hybrid systems are dynamical systems that exhibit characteristics typi-

cal of both continuous-time and discrete-time behaviors. As a set stability theory in

terms of Lyapunov functions is available (see [4, 5]), the availability of an incre-

mental stability notion for this class of systems would enable the study of similar

properties for them as the current notion for continuous-time systems allows. How-

ever, as we make clear in Section 2, mismatch of jump times and length of domains

of pairs of solutions starting nearby makes characterizing and guaranteeing incre-

mental stability properties in hybrid systems difficult.

1.2 Results in this chapter

In this chapter, we introduce a notion of graphical incremental asymptotic stability

for a set of hybrid trajectories, which we denote S and contains all trajectories that

cannot be further extended (namely, they are maximal). A set of hybrid trajectories

can be considered an abstract system on itself, or can be generated using hybrid

inclusions. For such class of systems, we establish necessary and sufficient condi-

tions for graphical incremental asymptotic stability. More precisely, we establish the

following results:

1. The set S is neither graphically incrementally stable nor graphically incremen-

tally attractive if there exists two elements in S with nearby initial conditions

such that the amount of flow or jump is not the same, as in Proposition 1 and

Proposition 2 and Proposition 3.

2. The set S is not incrementally graphically stable if there exists one element in

S that is not unique, as in Proposition 4.

3. When elements in S are generated by all maximal solutions to a hybrid system

given in terms of a hybrid inclusion with a nonempty jump set D, under mild

assumptions, Theorem 1 reveals that it is necessary to have a finite-time conver-

gence like property from points that are nearby the jump set D. Proposition 6

provides a sufficient condition to guarantee such a property.

4. In Theorem 2, sufficient conditions for a set S consisting of all maximal solu-

tions to a hybrid inclusion to be incrementally graphically asymptotically stable
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are given. A special case of this result (with the jump set D being discrete) is

established in Corollary 1. Both results require the flow map to induce a con-

traction during flows.

5. An extension of the result in Theorem 2 is presented in Theorem 3, where the

jump map is required to be a weak contraction mapping.

To the best of our knowledge, the notion of incremental stability and its properties

for hybrid systems have not been thoroughly studied before, only discussed briefly

in [6] for a class of transition systems in the context of bisimulations, and in [7]

for a particular class of hybrid systems prioritizing ordinary time t; see also related

definitions in [8].

1.3 Organization of the chapter

The remainder of this chapter is organized as follows. Section 2 briefly discusses no-

tions of incremental stability for continuous-time (discrete) systems and introduces

a notion of graphical incremental stability for sets of hybrid trajectories. Section 3

establishes several sufficient and necessary conditions for the proposed notion. Ex-

amples are discussed throughout the chapter to illustrate the results.

Notation: The set B denotes a closed unit ball in Euclidean space with appropri-

ate dimension. Given a set S ⊂ R
n, the closure of S is the intersection of all closed

sets containing S, denoted by S; S is said to be discrete if nonempty and there exists

δ > 0 such that for each x∈ S, (x+δB)∩S = {x}; conS is the closure of the convex

hull of the set S. R≥0 := [0,∞) and N := {0,1,2, . . .}. Given vectors ν ∈R
n, w∈R

m,

|ν| defines the Euclidean vector norm |ν| =
√

ν⊤ν , and [ν⊤ w⊤]⊤ is equivalent to

(ν,w); given a symmetric positive definite matrix P ∈ R
n×n, i.e., P = P⊤ > 0, the

weighted norm |ν|P =
√

ν⊤Pν . Given a function f : Rm →R
n, its domain of defini-

tion is denoted by dom f , i.e., dom f := {x ∈R
m : f (x) is defined}. The range of f

is denoted by rge f , i.e., rge f := { f (x) : x ∈ dom f}. The right limit of the function

f is defined as f+(x) := limν→0+ f (x+ ν) if it exists. Given a point y ∈ R
n and a

closed set A ⊂R
n, |y|A := infx∈A |x−y|. A function α : R≥0 →R≥0 is a class-K∞

function, also written α ∈ K∞, if α is zero at zero, continuous, strictly increasing,

and unbounded; α is positive definite, also written α ∈PD , if α(s)> 0 for all s> 0

and α(0) = 0. A function β : R≥0×R≥0 →R≥0 is a class-K L function, also writ-

ten β ∈ K L , if it is nondecreasing in its first argument, nonincreasing in its sec-

ond argument, limr→0+ β (r,s) = 0 for each s∈R≥0, and lims→∞ β (r,s) = 0 for each

r ∈ R≥0. Given a function f : Rm ×R
n →R

r, ∇x f (x,y) := ∂ f

∂x
(x,y). Given a matrix

A ∈ R
n×n, eig(A) is the set of eigenvalues of A; λ (A) = max{Re(λ ) : λ ∈ eig(A)};

λ (A) = min{Re(λ ) : λ ∈ eig(A)}; |A| := max{|λ | 1
2 : λ ∈ eig(A⊤A)}. Given a

real number x ∈ R, floor(x) is the closest integer to x from below. A function

V : Rn → R≥0 is a Lyapunov function with respect to a set A if V is continuously

differentiable and such that c1(|x|A ) ≤ V (x) ≤ c2(|x|A ) for all x ∈ R
n and some
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functions c1,c2 ∈ K∞. Given a set A ⊂ R
n, a point x ∈ R

n and a metric d on R
n,

the distance |x|d
A

:= supz∈A d(x,z).

2 Definition of Incremental Stability for Hybrid Systems

Informally, incremental stability is typically defined as the property of every pair

of trajectories staying close when they start close (stability) and, as time gets large,

converging to each other (attractivity). To formally state this notion, let the set of

trajectories to a system with state in R
n be denoted by S and the time variable

parameterizing such trajectories be denoted by s. The variable s parameterizes the

trajectories in forward time from s◦ = 0. This parameter takes values fromR≥0 when

the system is a continuous-time system, in which case S is a set of continuous-time

trajectories and every element φ ∈ S has a domain domφ that is a subset of R≥0.

The parameter takes values from N when the system is a discrete-time system, in

which case S is a set of discrete-time trajectories and elements in S have a domain

that is a subset of N. Let the function d denote a metric on R
n ×R

n measuring the

distance between pairs of elements in S . An element φ ∈ S is said to be maximal

if there is no φ ′ ∈ S such that φ is a proper truncation of φ ′ and complete if domφ
is unbounded. Since we are interested in the behavior of maximal elements in S ,

without loss of generality, from now on, it is assumed that S is a set of maximal

hybrid trajectories.

The set of trajectories S is incrementally asymptotically stable with respect to

a metric d if it is incrementally stable, in the sense that for every ε > 0 there exists

δ > 0 such that

φ1,φ2 ∈ S , d(φ1(s◦),φ2(s◦))≤ δ

⇒ domφ1 = domφ2, d(φ1(s),φ2(s))≤ ε ∀s ∈ domφ1(= domφ2)
(2)

and incrementally attractive, in the sense that there exists µ > 0 such that

φ1,φ2 ∈ S , d(φ1(s◦),φ2(s◦))≤ µ

⇒ domφ1 = domφ2 unbounded, lim
s→∞

d(φ1(s),φ2(s)) = 0
(3)

When incremental attractivity holds for any µ > 0, we say that the set of trajectories

S is globally incrementally stable.

The notion defined above captures the nominal version of [2, Definition 2.1]

for continuous-time systems when the elements in S are generated by a nonlinear

continuous-time system of the form ẋ= f (x). It also captures the notion for discrete-

time systems of the form x+ = g(x), see, e.g., [9, 10]. To assess this notion for the

hybrid case, we define hybrid trajectories as functions on hybrid time domains.

Definition 1 (hybrid time domain). A subset E ⊂ R≥0 ×N is a compact hybrid

time domain if
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E =
J−1
⋃

j=0

(

[t j, t j+1], j
)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tJ . It is a hybrid time

domain if for all (T,J) ∈ E , E ∩ ([0,T ]×{0,1, . . . ,J}) is a compact hybrid time

domain.

Given a hybrid time domain E , we define

sup
t

E := sup
(t, j)∈E

t, sup
j

E := sup
(t, j)∈E

j.

Definition 2 (hybrid trajectory). A function φ : domφ → R
n is a hybrid trajec-

tory (or hybrid arc) if domφ is a hybrid time domain and if for each j ∈ N,

the function t 7→ φ(t, j) is locally absolutely continuous on the interval I j :=
{t : (t, j) ∈ domφ }.

Remark 1. When every φ ∈S is such that domφ ⊂R≥0×{0} and domφ has more

than one point, S is a set of continuous-time trajectories, while when every φ ∈ S

is such that domφ ⊂ {0}×N and domφ has more than one point, S is a set of

discrete-time trajectories. Finally, when every φ ∈S is such that φ is either bounded

or domφ is unbounded, S is said to be pre-forward complete.

For the case when the elements in S are hybrid trajectories, it is natural to con-

sider an extension of the notion above when s takes values from R≥0 ×N and is

written as s = (t, j), and s◦ = (0,0). Unfortunately, there are several subtleties that

make such extension of the notion above limiting for hybrid systems, some of which

we illustrate next in simple examples. The first example illustrates issues measuring

the distance between a pair of trajectories for a system that one would expect to be

incrementally stable (but not incrementally attractive). The second example illus-

trates issues in measuring such distance for pairs of trajectories with dramatically

different hybrid time domains.

Example 1 (mismatch of event times). Let S be the set of hybrid trajectories with

(maximal and complete) elements φ defined as

φ(t, j) =φ(0,0)− (t− j)

∀(t, j) : t ∈
[

max{ j− 1,0}+ ceil

(

j

j+ 1

)

φ(0,0), j+φ(0,0)

]

, j ∈ N

with φ(0,0)≥ 0. (This set of trajectories can be generated using the hybrid inclusion

given in Example 7.) Each trajectory in S reaches zero in finite flow time, at which

event is reset to one instantaneously and from where it periodically reaches zero and

gets reset to one. Figure 1(a) shows two trajectories with initial values within δ =
0.3. This figure appears to suggest that trajectories from S starting close stay close.

However, condition (2) does not hold unless φ1(0,0) = φ2(0,0). In fact, consider

two such trajectories, φ1 and φ2, with initial values satisfying |φ1(0,0)−φ2(0,0)| ≤
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(a) The projections of two hybrid trajectories

from φ1(0,0) = 0.5 and φ2(0,0) = 0.3 on the t

direction.
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(b) Euclidean distance between φ1 and φ2.

Fig. 1 Two elements φ1 and φ2 from the set S given in Example 1. The Euclidean distance, which,

precisely, is given by |φ1(t, j1(t))−φ2(t, j2(t))| for all (t, ji(t)) ∈ dom φi, ji(t) = min(t , j′i)∈domφi
j′i,

assumes the value 0.7 for 0.3 seconds periodically. On the other hand, the “graphical distance”

from φ1 to φ2 is zero for ε = 0.3, while the “graphical distance” from φ2 to φ1 converges to zero in

0.3 seconds.

δ and φ1(0,0) 6= φ2(0,0). First, domφ1 6= domφ2 since (φ1(0,0),1) ∈ domφ1 and

(φ2(0,0),1) ∈ domφ2 but φ1(0,0) 6= φ2(0,0). Without loss of generality, assume

0 < φ1(0,0)< φ2(0,0). Then, even when the condition of equal domains is omitted,

we have

|φ1(t1,1)−φ2(t1,0)|= |1−φ2(t1,0)|= |1−φ2(0,0)+φ1(0,0)|,

where we used the fact that t1 = φ1(0,0). No matter how small δ ∈ (0,1) is chosen,

|φ1(t1,1)− φ2(t1,0)| ≥ 1− δ . This property makes it impossible for the Euclidean

distance between φ1 and φ2 to satisfy the ε-δ criterion in (2). In such case, the

Euclidean distance (or any other metric d) may not be a good candidate of a distance

function for the study of incremental properties. △

Example 1 suggests that a notion of incremental stability for hybrid systems has

to allow for a mismatch of the jump times of two hybrid trajectories. This example

also highlights that the pointwise (in s = (t, j)) distance is not appropriate for the

purposes of defining incremental stability for sets of hybrid trajectories.

Example 2 (mismatch of length of domains). Let S be the set of hybrid trajectories

with elements φ defined as

φ(t, j) =

[

− γ
2
(t − t j)

2 +φ2(t j, j)(t − t j)+φ1(t j , j)
−γ(t − t j)+φ2(t j, j)

]

∀(t, j) ∈
⋃

i∈N
([ti, ti+1]×{i})

with φ(0,0) ∈ R≥0 ×R, where t0 = 0, t1 =
φ2(0,0)+

√
φ2(0,0)2+2γφ1(0,0)

γ ,
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(a) The first component (height φi,1) of hy-

brid trajectories starting at φ1(0,0) = (5,0)
and φ2(0,0) = (0,3).
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(b) The projection of the second component

(velocity φi,2) of hybrid trajectories from

φ1(0,0) = (3,3) and φ2(0,0) = (3,3.1) on

the t direction.

Fig. 2 Hybrid trajectories in Example 2. The Euclidean distance, which is |φ1,2(t, j1(t)) −
φ2,2(t, j2(t))| for all (t, ji(t)) ∈ domφi, has repetitive large peaks, where ji(t) = min(t , ji)∈domφi

ji.

t j = t1 +
2(γt1 −φ2(0,0))

γ

j−1

∑
i=1

λ i ∀ j ∈ N\ {0,1}

φ2(t j+1, j+ 1) =−λ φ2(t j+1, j) ∀ j ∈N

γ > 0, and λ ∈ (0,1). These trajectories capture the evolution of the height (φ1)

and vertical velocity (φ2) of a ball bouncing on a ground at zero height, where γ
represents the gravity constant and λ the restitution coefficient. A hybrid inclusion

generating this set of hybrid trajectories is given in [4, Example 1.1 and 2.12]. Each

element φ ∈ S is such that

sup
t

domφ =
φ2(0,0)

γ
+

1+λ

γ(1−λ )

√

φ2(0,0)2 + 2γφ1(0,0) (4)

Figure 2(a) shows the position (first) component of two hybrid trajectories (φi =
(φi,1,φi,2) for i ∈ {1,2}) from initial conditions φ1(0,0) = (5,0) (ball starting at a

positive height with zero velocity) and φ2(0,0) = (0,3) (ball starting at the ground

with a positive velocity). As Figure 2(a) shows, the jumps in φ2 accumulate at about

t = 6sec while φ1 is still describing the motion of the ball bouncing.

Given two elements φ1,φ2 ∈ S with φ1(0,0) 6= φ2(0,0), according to (4),

supt domφ1 6= supt domφ2. Without loss of generality, assuming that supt domφ2 <
supt domφ1, then we have that φ2 is not defined at points (t ′, j′) ∈ domφ1 with

t ′+ j′ ≥ supt domφ2. Hence, at such points, it is not possible to measure the distance

between φ1 and φ2. Note that for such points (t ′, j′) we have that (t ′, j) 6∈ domφ2 for

any j ∈ N, which indicates that it is not possible to relax the incremental stability

notion by instead requiring that the distance between the trajectories be small for

each common t and potentially different values of the jump parameter j. Even when

we omit such points, for points (t, j) ∈ domφ2 with t close to supt domφ2 and points
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(t, j′′) ∈ domφ1, we have that j is much larger than j′′ since j grows unbounded as t

approaches supt domφ2. This fact makes comparing trajectories using the graphical

distance in this particular set of hybrid solutions very difficult. A similar situation is

encountered if, instead, the pointwise distance is used. As shown in Figure 2(b), the

pointwise distance between velocity (second) components of two solutions (φi,2 for

i ∈ {1,2}) has repetitive large peaks, even though they are initialized very close to

each other. △

While Example 1 already has elements in S with different domains, Example 2

pinpoints a key difficulty in measuring the distance between solutions with jump

times that accumulate, namely, Zeno solutions. In fact, when accumulation of events

occur in finite time t, determining the appropriate distance function to certify incre-

mental stability is rather difficult since, when the accumulation time depends on the

initial condition as in Example 2, the distance between the trajectories may not be

quantifiable over an unbounded set. On the other hand, a notion of incremental sta-

bility for a set of continuous-time trajectories or for a set of discrete-time trajectories

with elements having different time domains can be formulated by only requiring

the stability condition to hold over the intersection of the domains of definition of

every pair of trajectories starting nearby.

Motivated by the issues mentioned above, we propose a notion of incremental

asymptotic stability that employs the graphical distance between the graphs defined

by the hybrid trajectories.

Definition 3 ([4, Definition 5.20]). The graph of a hybrid trajectory φ : domφ →R
n

is a set in R
n+2 given by

gphφ = {(t, j,x) : (t, j) ∈ domφ , x = φ(t, j)}. (5)

To measure the distance between the graphs of two hybrid trajectories, given a met-

ric d, we use the following graphical distance notion for hybrid trajectories.

Definition 4 ([4, Definition 4.11]). Given ε > 0, two hybrid trajectories φ1 and φ2

are graphically ε-close with respect to d if

(a) for each (t, j) ∈ domφ1 there exists s such that (s, j) ∈ domφ2, |t − s| ≤ ε , and

d(φ1(t, j),φ2(s, j)) ≤ ε,

(b) for each (t, j) ∈ domφ2 there exists s such that (s, j) ∈ domφ1, |t − s| ≤ ε , and

d(φ2(t, j),φ1(s, j)) ≤ ε.

To characterize the distance between the graphs of two hybrid arcs over a finite hori-

zon, we use the following graphical (τ,ε)-closeness notion for hybrid trajectories.

Definition 5 ([4, Definition 5.23]). Given τ,ε > 0, two hybrid trajectories φ1 and

φ2 are graphically (τ,ε)-close with respect to d if
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(a) for each (t, j) ∈ domφ1 with t + j ≤ τ there exists s such that (s, j) ∈ domφ2,

|t − s| ≤ ε , and

d(φ1(t, j),φ2(s, j)) ≤ ε,

(b) for each (t, j) ∈ domφ2 with t + j ≤ τ there exists s such that (s, j) ∈ domφ1,

|t − s| ≤ ε , and

d(φ2(t, j),φ1(s, j)) ≤ ε.

To characterize the property of hybrid trajectories graphically converging to each

other, we introduce the following notion.

Definition 6. Given ε > 0, two hybrid trajectories φ1 and φ2 are eventually graphi-

cally ε-close with respect to d if

(a) there exists T > 0 such that for each (t, j) ∈ domφ1 and t + j ≥ T , there exists

(s, j) ∈ domφ2 satisfying |t − s| ≤ ε and

d(φ1(t, j),φ2(s, j)) ≤ ε, (6)

(b) there exists T > 0 such that for each (t, j) ∈ domφ2 and t + j ≥ T , there exists

(s, j) ∈ domφ1 satisfying |t − s| ≤ ε and

d(φ2(t, j),φ1(s, j)) ≤ ε. (7)

Remark 2. If two hybrid trajectories φ1 and φ2 are not complete, then, the property in

Definition 6 holds for free. In particular, the property would hold vacuously for T >
max{T1 + J1,T2 + J2}, where T1 = supt domφ1, J1 = sup j domφ1, T2 = supt domφ2

and J2 = sup j domφ2.

Now, we are ready to define incremental asymptotic stability for sets of hybrid

trajectories.

Definition 7 (incremental graphical asymptotic stability). The set of hybrid tra-

jectories S is said to be

1. incrementally graphically stable (δS) with respect to d if for every ε > 0 there

exists δ > 0 such that

φ1,φ2 ∈ S , d(φ1(0,0),φ2(0,0))≤ δ

⇒ φ1 and φ2 are graphically ε-close with respect to d
(8)

2. incrementally graphically locally attractive (δLA) with respect to d if there

exists µ > 0 such that for every ε > 0

φ1,φ2 ∈ S , d(φ1(0,0),φ2(0,0))≤ µ

⇒ φ1 and φ2 are eventually graphically ε-close with respect to d
(9)
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3. incrementally graphically locally asymptotically stable (δLAS) with respect to

d if it is both δS and δLA.

When δLA holds for every µ > 0, we say that the set of hybrid trajectories S is

incrementally graphically globally attractive (δGA).

Remark 3. The notion in Definition 7 covers the special cases of S being a set of

continuous-time trajectories or a set of discrete-time trajectories. In particular, when

S is a set of complete discrete-time trajectories, condition (8) reduces to

φ1,φ2 ∈ S , d(φ1(0,0),φ2(0,0))≤ δ

⇒ d(φ1(0, j),φ2(0, j))≤ ε ∀ j ∈ N.
(10)

Due to requiring a property for every possible pair of trajectories, incremental graph-

ical global attractivity only holds when S is either a set of continuous-time trajecto-

ries or of discrete-time trajectories (see [8]). As a difference to those in [8, Definition

3], both the δS and δLA notions in Definition 7 exploit the graphically ε-closeness

notion in [4, Definition 4.11], which in [4] is shown to be a structural property of

solutions to well-posed hybrid systems.

Note that unboundedness of the domain of the elements in a generic set S is

not required, but when there are elements with dramatically different domains, in-

cremental stability may not hold – in particular, the set of solutions in Example 2

would not be δLA. The following results formalizes this fact.

Proposition 1. Let S be a set of hybrid trajectories. Suppose that no matter how

small δ ′ > 0 is, there exist complete φ1,φ2 ∈ S with |φ1(0,0)−φ2(0,0)| ≤ δ ′ such

that supt domφ2 < supt domφ1 < ∞. Then, S is neither δS nor δLA with respect to

any metric d.

Proof. We proceed by contradiction. Let d be any metric, tz
1 = supt domφ1, and

tz
2 = supt domφ2. Since domφ1 and domφ2 are unbounded and supt domφ2 <

supt domφ1, there exists T ∈ (tz
2, t

z
1). Pick ε ∈ (0,min{T − tz

2, t
z
1−T}). By continuity

of d and the fact that d(x,x) = 0 for all x ∈ R
n,

for each ρ > 0 there exists δ ′′ > 0 such that

d(x′,y′)≤ ρ for all x′,y′ such that |x′− y′| ≤ δ ′′.
(11)

Now, suppose that S is δS with respect to d. With ε as above, let δ be such that

(8) holds. Pick ρ ≤ δ and let δ ′′ be generated by the continuity property of d in

(11). Using δ ′ such that δ ′ ≤ δ ′′ in the assumption of the claim, in which φ1 and

φ2 start within δ ′ in terms of the Euclidean distance, in particular, we have that

d(φ1(0,0),φ2(0,0)) ≤ δ and φ1 and φ2 are graphically ε-close with respect to d.

However, since supt domφ2 < T , there exists (t, j) ∈ domφ1 with t > T such that

(t ′, j′) 6∈ domφ2 for each t ′ satisfying |t − t ′| < ε and for some j′ ∈ N. This fact

contradicts graphical ε-closeness with respect to d guaranteed by (8). The case when

S is δLA follows similarly. ⊓⊔
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Next, we revisit Example 1 and show that the set of hybrid trajectories therein is

δS. More examples illustrating the proposed notions will be given in Section 3, in

which sets of solutions S are generated by hybrid inclusions.

Example 3. We show that S given in Example 1 is δS. For a given ε > 0, let

0 < δ < ε and assume |φ1(0,0)− φ2(0,0)| < δ and pick corresponding trajec-

tories φ1,φ2 ∈ S . Without loss of generality, we further suppose 0 ≤ φ1(0,0) ≤
φ2(0,0) and pick corresponding trajectories φ1,φ2 ∈ S . Then, the hybrid trajec-

tory φ1 jumps before φ2. For each j ∈ N \ {0}, let t̄ j = max(t, j−1)∈domφ1∩domφ2
t

and t̄ ′j = min(t, j)∈domφ1∩domφ2
t. Then, we have that for each t ∈ [0, t̄1], there exists

(s,0) ∈ domφ2 such that s = t and

|φ1(t,0)−φ2(t,0)|= |φ1(0,0)− t−φ2(0,0)+ t| ≤ δ < ε. (12)

For each t ∈ [t̄1, t̄
′
1],

|φ1(t̄1,0)−φ2(t,0)|= |φ2(0,0)− t|
≤ |φ2(0,0)− t̄1|= |φ2(0,0)−φ1(0,0)| ≤ δ < ε,

(13)

where we used the fact that φ1(t̄1,0) = φ1(0,0)− t̄1 = 0. Moreover, φ2(t̄
′
1,0) =

φ2(0,0)− t̄ ′1 = 0. Then, |t̄ ′1 − t̄1|= |φ2(0,0)−φ1(0,0)| ≤ δ < ε . Therefore, for each

t ∈ [t̄1, t̄
′
1],

|φ1(t,1)−φ2(t̄
′
1,1)|= |1− (t− t̄1)− 1| ≤ δ < ε. (14)

Proceeding similarly and using (14), for each t ∈ [t̄ ′i−1, t̄i], where i ∈ N\ {0,1},

|φ1(t, i− 1)−φ2(t, i− 1)|= |φ1(t̄
′
i−1, i− 1)−φ2(t̄

′
i−1, i− 1)| ≤ δ < ε.

Moreover, since φ1(t̄i, i− 1) = 0, for each t ∈ [t̄i, t̄
′
i ], where i ∈ N\ {0,1},

|φ1(t̄i, i− 1)−φ2(t, i− 1)|= |φ1(t̄i, i− 1)−φ2(t̄i, i− 1)+ (t− t̄i)|
≤ |φ2(t̄i, i− 1)−φ1(t̄i, i− 1)| ≤ δ < ε,

and |φ1(t, i)− φ2(t̄
′
i , i)| = |1− (t − t̄i)− 1| ≤ δ < ε. Therefore, the set S is δS1.

On the other hand, since the distance between φ1 and φ2 does not converge to zero,

φ1,φ2 are not eventually ε-close and thus the set S is neither δLA nor δGA. △

To further illustrate the notion in Definition 7, the following example shows that

a set S is δLAS.

Example 4. Let S be the set of hybrid trajectories with elements φ

φ(t, j) =
(

φ(t j , j)− ceil
(

j
j+1

))

exp(−t + t j) (15)

1 Using the ideas in [11], it may be possible to construct an alternative distance function that is

decreasing along trajectories.
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for all (t, j)∈⋃

i∈N,i<J ([ti, ti+1]×{i})⋃([tJ,∞)×{J})with φ(0,0)⊂⋃

i∈{2k:k∈N}[i, i+

1], where J = 1
2

floor(φ(0,0)), t0 = 0, and, for J > 0, tJ = tJ−1 and

t j = ln(φ(0,0))− ln(floor(φ(0,0)))

+
j−1

∑
k=1

(ln(floor(φ(0,0))− k)− ln(floor(φ(0,0))− k− 1)) ∀ j ∈ N\ {0}, j ≤ J.

(This set of trajectories can be generated using the hybrid inclusion given in Ex-

ample 6.) Given ε > 0, consider two elements φ1,φ2 ∈ S such that |φ1(0,0)−
φ2(0,0)| ≤ δ , where 0≤ δ <min{1,ε}. Then, it is guaranteed that J̄ := sup j domφ =
sup j domφ2 < ∞ since floor(φ1(0,0)) = floor(φ2(0,0)). For each j ∈ N \ {0}, let

t̄ j = max(t, j−1)∈domφ1∩domφ2
t and t̄ ′j = min(t, j)∈domφ1∩domφ2

t. Without loss of gen-

erality, assume φ2(0,0) > φ1(0,0) ≥ 2, then φ1 jumps first. Then, we have that for

each t ∈ [0, t̄1], there exists (s,0) ∈ domφ2 such that s = t and

|φ1(t,0)−φ2(t,0)|= |φ1(0,0)exp(−t)−φ2(0,0)exp(−t)| ≤ δ < ε. (16)

For each t ∈ [t̄1, t̄
′
1],

|φ1(t̄1,0)−φ2(t,0)|= |exp(−t̄1)φ1(0,0)− exp(−t)φ2(0,0)|
≤ |exp(−t̄1)φ1(0,0)− exp(−t̄1)φ2(0,0)| ≤ δ < ε,

(17)

where we used the property exp(−t̄1)φ1(0,0) = floor(φ1(0,0)) = floor(φ2(0,0)) =
exp(−t̄ ′1)φ2(0,0). Note that t̄1 = ln(φ1(0,0))− ln(floor(φ1(0,0))) and t̄ ′1 = ln(φ2(0,0))−
ln(floor(φ2(0,0))). Therefore, t̄ ′1 − t̄1 = ln(φ2(0,0))− ln(φ1(0,0)). Furthermore, by

the mean value theorem, there exists φ⋆
0 ∈ [φ1(0,0),φ2(0,0)] such that |t̄ ′1 − t̄1| =

1
φ⋆

0
|φ1(0,0)−φ2(0,0)| ≤ |φ1(0,0)−φ2(0,0)| ≤ δ < ε . Similarly, for each t ∈ [t̄1, t̄

′
1],

|φ1(t,1)−φ2(t̄
′
1,1)|= |exp(−t + t̄1)φ1(t̄1,1)−φ2(t̄

′
1,1)|

= φ2(t̄
′
1,1)− exp(−t + t̄1)φ1(t̄1,1)

≤ φ2(t̄
′
1,1)− exp(−t̄ ′1 + t̄1)φ1(t̄1,1)

≤ φ2(t̄
′
1,1)− exp(− ln(φ2(0,0))+ ln(φ1(0,0)))φ1(t̄1,1)

≤ floor(φ2(0,0))

(

1− exp

(

ln
φ1(0,0)

φ2(0,0)

))

≤ floor(φ2(0,0))

φ2(0,0)
(φ2(0,0)−φ1(0,0))

≤ φ2(0,0)−φ1(0,0)≤ δ .

(18)

Note that the derivation in (18) can be repeated for J̄ times.

If φ1(0,0),φ2(0,0)∈ [0,1], we have that |φ1(t,0)−φ2(t,0)| ≤ exp(−t)|φ1(0,0)−
φ2(0,0)| ≤ δ for all (t,0) ∈ domφ1 = domφ2. In fact, limt→∞,(t,0)∈dom φ1

|φ1(t,0)−
φ2(t,0)|= 0. Therefore, the set S is δLAS.
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Fig. 3 Two maximal elements φ1 and φ2. Unlike the Euclidean distance, which is |φ1(t, j1(t))−
φ2(t, j2(t))| for all (t, ji(t)) ∈ dom φi and ji(t) = min(t , ji)∈domφi

ji, which does not decrease along

hybrid trajectories, the “graphical distance” from φ1 to φ2 is zero for ε = 0.3 and the “graphical

distance” from φ2 to φ1 converges to zero.

As shown in Figure 3(a), the domains of two elements in the set S may be

different from each other. The Euclidean distance between φ1 and φ2 has peaks

during the mismatch part of the hybrid time domain, i.e., the time instances (t) when

two solutions have different values of j, as shown in Figure 3(b). △

While the notion introduced in Definition 7 appears to be suitable for the study of

incremental stability properties of sets of hybrid trajectories, in particular, for those

generated using hybrid inclusions, conditions guaranteeing it are not obvious due to

the noncausality nature of the notion. Necessary and sufficient conditions for this

notion are proposed in the next section, both for sets of hybrid trajectories as well

as hybrid inclusions.

3 Necessary and Sufficient Conditions for Incremental

Graphical Stability Notions

In this section, we explore several necessary and sufficient conditions of incremental

graphical stability properties for hybrid systems that satisfy certain assumptions. In

particular, Proposition 2 implies a basic necessary condition for two hybrid arcs to

be ε-close and eventually ε-close, respectively. Proposition 4 shows that maximal

elements in a set S are unique if S is δS. In Theorem 2, a sufficient condition

for H to be δLAS is presented for a hybrid system with generic jump sets. When

D is a discrete set, Corollary 1 provides sufficient conditions for H to be δLAS.

Moreover, Proposition 6 establishes Lyapunov-like sufficient conditions for item 2)
of Corollary 1. Then, a finite-time stability property is shown to be necessary for
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H to be δS or δLA in Theorem 1. Furthermore, Theorem 3 studies conditions for

which H is δLAS when the jump map is Lipschitz.

For them to be constructive, some of the necessary and sufficient conditions are

stated for sets of hybrid trajectories generated by hybrid system given by hybrid

inclusions. A hybrid system H has data (C, f ,D,g) and is defined by

ż = f (z) z ∈C,

z+ = g(z) z ∈ D,
(19)

where z ∈R
n is the state, f defines the flow map capturing the continuous dynamics

and C defines the flow set on which f is effective. The map g defines the jump map

and models the discrete behavior, while D defines the jump set, which is the set of

points from where jumps are allowed. A solution φ to H is hybrid trajectory that

satisfies the dynamics of (19). A solution is Zeno if it is complete and its domain is

bounded in the t direction. A solution is precompact if it is complete and bounded.

The set of hybrid trajectories SH contains all maximal solutions to H , and the

set SH (ξ ) contains all maximal solutions to H from ξ . Note the use of single-

valued maps f and g in (19) are necessary when studying incremental stability; see

Proposition 4.

Definition 8. A hybrid system H = (C, f ,D,g) is said to satisfy the hybrid basic

conditions if

(a) the sets C and D are closed;

(b) the functions f : Rn → R
n and g : Rn →R

n are continuous.

We refer the reader to [4] and [5] for more details on these notions and the hybrid

systems framework.

3.1 Necessary Conditions

The following result highlights a necessary property of the hybrid time domains of

two hybrid arcs that are graphically close. In particular, it holds for every pair of

elements in a set S that is δS, δLA, or δGA.

Proposition 2. Given ε > 0 and two elements φ1,φ2 ∈ S , the following hold:

1. if φ1 and φ2 are graphically ε-close, or

2. if φ1 and φ2 are complete and graphically eventually ε-close,

then

sup
j

domφ1 = sup
j

domφ2. (20)

Proof. We proceed by contradiction. Given ε > 0, consider two hybrid arcs φ1,φ2

that are graphically ε-close. Suppose that J1 = sup j domφ1, J2 = sup j domφ2 and
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J1 6= J2. Moreover, without loss of generality, assume that J1 and J2 are both finite

and J1 > J2 . Then, J1 > 0. Let (tJ1
,J1) ∈ domφ1 be such that (tJ1

,J1 −1) ∈ domφ1.

Then, (t,J1) /∈ domφ2 for any t ∈ R≥0, which implies that there does not exists

(t,J1) ∈ domφ2 such that |t − tJ1
| ≤ ε and d(φ1(tJ1

,J1),φ2(t,J1)) ≤ ε . This contra-

dicts the fact that φ1 and φ2 are graphically ε-close. The situation where either J1 or

J2 is ∞ follows similarly.

When φ1 and φ2 are complete and eventually graphically ε-close, given ε > 0,

there exists T > 0 such that φ1 and φ2 satisfy (6) and (7) for all (t1, j1) ∈ domφ1 and

(t2, j2) ∈ domφ2 such that t1 + j1 > T and t2 + j2 > T . Proceeding by contradiction,

suppose that J1 = sup j domφ1, J2 = sup j domφ2 and J1 6= J2. Moreover, without

loss of generality, assume that J1 and J2 are both finite and J1 > J2 . Then, J1 > 0.

Let (tJ1
,J1) ∈ domφ1 be such that (tJ1

,J1 − 1) ∈ domφ1. Pick (t,J1) ∈ domφ1 and

t + J1 > T , which is always possible since φ1 is complete. Then, (t,J1) /∈ domφ2

which implies that there does not exists (t,J1) ∈ domφ2 such that |t − tJ1
| ≤ ε and

d(φ1(tJ1
,J1),φ2(t,J1)) ≤ ε . This contradicts the fact that φ1 and φ2 are eventually

graphically ε-close. The situation where either J1 or J2 is ∞ follows similarly. ⊓⊔
Example 5. Consider the set S given in Example 4, and two elements φ1 and φ2

with φ1(0,0) = 4.5 and φ2(0,0) = 1, respectively. The hybrid trajectory φ1 jumps

twice while the hybrid trajectory φ2 never jumps. Therefore, φ1 and φ2 are not graph-

ically eventually ε-close according to Proposition 2. This property prevents the set

S from being δGA while Example 4 shows that this set is δLAS. △
Proposition 3. Let S be a set of hybrid trajectories.

1. If S is δS or δLA with respect to a metric d, there exists δ > 0 such that

φ1,φ2 ∈ S complete, d(φ1(0,0),φ2(0,0))≤ δ ⇒ sup
t

domφ1 = sup
t

domφ2.

(21)

2. If S is δGA with respect to a metric d, for each φ1,φ2 ∈ S complete

sup
t

domφ1 = sup
t

domφ2. (22)

Proof. Proceeding by contradiction, suppose S is δS and, no matter how small

δ > 0 is chosen, there exist φ1,φ2 ∈ S such that d(φ1(0,0),φ2(0,0)) < δ and

supt domφ1 6= supt domφ2. Then, by Proposition 1, S is neither δS nor δLA. The

argument follows similarly when S is δGA. ⊓⊔
The following result establishes that uniqueness is a necessary condition for δS.

In turn, according to Proposition 4, it justifies the choice of using single-valued flow

and jump maps in the definition of H in (19).

Proposition 4. (uniqueness of elements in S ) Let S be a set of hybrid trajectories.

Suppose S is δS with respect to a metric d. Then, every complete element of S is

unique.

Proof. We proceed by contradiction. Assume that there exist two elements φ1,φ2 ∈
S such that φ1(0,0) = φ2(0,0) but φ1 6≡ φ2. We have the following cases:
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1. domφ1 6= domφ2. If sup j domφ1 6= sup j domφ2, by Proposition 2, φ1 and φ2

cannot be graphically ε-close, which contradicts that S is δS. While if

sup
t

domφ1 6= sup
t

domφ2,

according to Proposition 3, φ1 and φ2 cannot be graphically ε-close, which

contradicts that S is δS. If sup j domφ1 = sup j domφ2 and supt domφ1 =
supt domφ2, since domφ1 6= domφ2, there exists (t⋆, j⋆) ∈ domφ1 such that

(t⋆, j⋆) /∈ domφ2. Without loss of generality, assume the φ1 and φ2 have their do-

mains of definition unbounded in the t direction. It must be one of the following

cases:

a. (t⋆, j̄) ∈ domφ2 for some j⋆ 6= j̄ ∈ N. Then,

i. if j̄ < j⋆, it follows that there exists t̄ > t⋆ such that (t̄, j⋆) ∈ domφ2.

Moreover, (t, j⋆) /∈ domφ2 for all t ∈ [t⋆ − 1
2
(t̄ − t⋆), t⋆ + 1

2
(t̄ − t⋆)].

Then, for ε = 1
2
(t̄ − t⋆), there does not exists (t, j⋆) ∈ domφ2 such that

|t−t⋆| ≤ ε and d(φ1(t
⋆, j⋆),φ2(t, j⋆))≤ ε . This contradicts the fact that

φ1 and φ2 are graphically ε-close due to the set S being δS.

ii. the case when j̄ > j⋆ follows similarly.

b. (t̄, j⋆) ∈ domφ2 for some t̄ 6= t⋆ and t̄ ∈R≥0. Then,

i. if t̄ < t⋆, let t̄ ′ =max{t : (t, j⋆)∈ domφ2, t ≤ t⋆}. Then, t̄ ′ < t⋆. Further-

more, either j⋆ = sup j domφ2 or (t̄ ′, j⋆ + 1) ∈ domφ2. In either case,

pick ε = 1
2
(t⋆− t̄ ′), and note it is not possible to find (t, j⋆) ∈ domφ2

such that |t − t⋆| ≤ ε and d(φ2(t, j⋆),φ1(t
⋆, j⋆)) ≤ ε . This contradicts

the fact that φ1 and φ2 are graphically ε-close.

ii. the case when t̄ > t⋆ follows similarly.

2. domφ1 = domφ2 but there exists (t⋆, j⋆)∈ domφ1 such that φ1(t
⋆, j⋆) 6= φ2(t

⋆, j⋆).
Suppose (t⋆, j⋆) is not an “end point”, i.e., (t⋆, j⋆ − 1) /∈ domφ1 and (t⋆, j⋆ +
1) /∈ domφ1. Denote ε̄ = d(φ1(t

⋆, j⋆),φ2(t
⋆, j⋆)) > 0. Since t 7→ φ1(t, j⋆) and

t 7→ φ2(t, j⋆) are locally absolutely continuous for all t such that (t, j⋆)∈ domφ1

and (t, j⋆) ∈ domφ2 according to Definition 2, there exists δ > 0 such that |t −
t⋆| ≤ δ implies that d(φ1(t, j⋆),φ1(t

⋆, j⋆)) ≤ 1
2
ε̄ and d(φ2(t, j⋆),φ2(t

⋆, j⋆)) ≤
1
2
ε̄ . Therefore, by triangle inequality,

d(φ1(t, j⋆),φ2(t
⋆, j⋆))≥ d(φ1(t

⋆, j⋆),φ2(t
⋆, j⋆))− d(φ1(t, j⋆),φ1(t

⋆, j⋆))

≥ ε̄ − 1

2
ε̄ =

1

2
ε̄.

Thus, for ε = 1
4
ε̄ , no matter how small δ is chosen, we have that

d(φ1(0,0),φ2(0,0)) = 0 < δ

and φ1 and φ2 are not graphically ε-close which contradicts the assumption that

the set S is δS with respect to d. The situation where (t⋆, j⋆) is an “end point”

can be proved similarly. ⊓⊔
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When the set S is generated by solutions to a hybrid system H = (C, f ,D,g),
a sufficient condition for guaranteeing uniqueness of maximal solutions requires f

to be locally Lipschitz and no flow from C∩D – a rigorous statement is given in [4,

Proposition 2.11]. According to Proposition 4, assuming uniqueness of solutions to

H is not at all restrictive, in fact, when studying incremental graphical stability, it

is necessary. Hence, in the following results we impose the following uniqueness of

solutions assumption.

Assumption 3.1 The hybrid system H = (C, f ,D,g) is such that each maximal

solution φ to H is unique.

Next, we show that, to have δS or δLA, a finite-time convergence property within

a neighborhood of the jump set D is a necessary condition for a set of hybrid trajec-

tories generated by hybrid system H . Indeed, without the finite-time convergence

property nearby D and g(D), the graphs of the solutions would not be graphically

close.

Theorem 1. (necessary condition for δS and δLA) Consider a hybrid system H =
(C, f ,D,g) with state z ∈ R

n satisfying Assumption 3.1 and the hybrid basic con-

ditions. Suppose D 6= /0 and g(D) ⊂ C∪D. If SH is δS or δLA with respect to a

metric d, then there exists δ0 > 0 such that each maximal solution φ to H from

φ(0,0) satisfying |φ(0,0)|dD ≤ δ0 and φ(0,0) ∈C converges to D within finite time,

i.e., there exists s > 0 such that |φ(s,0)|dD = 0.

Proof. Let ε > 0 be given. Proceeding by contradiction, for all δ0 > 0, there exists

φ ∈ SH satisfying

φ(0,0) ∈C, |φ(0,0)|dD ≤ δ0 (23)

and |φ(t,0)|dD > 0 for all (t,0) ∈ domφ . Let z⋆ ∈ D be such that |φ(0,0)|dD =
d(φ(0,0),z⋆) = δ0. Consider a solution φ1 ∈ SH from z⋆. Then, we have that

d(φ1(0,0),φ(0,0)) ≤ δ0 which implies that φ1 and φ are graphically ε-close due

to S being δS with respect to d (using δ = δ0 in the definition). Since each maxi-

mal solution to H is unique under Assumption 3.1, (0,1) ∈ domφ1. Then, since

φ(t,0) /∈ D for all (t,0) ∈ domφ , there does not exist (s,1) ∈ domφ such that

d(φ1(0,1),φ(s,1)) < ε with |s| ≤ ε . This contradicts the assumption that φ and

φ1 are graphically ε-close. Now suppose S is δLA. For any T > 0, t + j ≥ T

and (t, j) ∈ domφ1, there does not exists (s, j) ∈ domφ with |s− t| ≤ ε such that

d(φ1(t, j),φ(s, j)) ≤ ε . This contradicts the fact that φ1 and φ are graphically even-

tually ε-close. ⊓⊔

The δS property leads to the following necessary condition pertaining to depen-

dence of solutions with respect to initial conditions.

Proposition 5. (necessary condition for δS) Consider a hybrid system H =(C, f ,D,g)
with state z ∈ R

n satisfying Assumption 3.1. Suppose SH is δS with respect to a

metric d. Then, SH satisfies the following property: for every φ ∈ SH , and for
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every ε > 0, there exists δ > 0 such that for every solution φ̄ ∈ SH (φ(0,0)+δB),
φ̄ and φ are graphically ε-close with respect to d.

Proof. Since the set SH is δS, for a given ε > 0, there exists δ̄ > 0 such that for

φ1,φ2 ∈ SH ,

d(φ1(0,0),φ2(0,0))≤ δ̄ =⇒ φ1,φ2 are graphically ε-close.

Let δ > 0 be small enough such that |φ1(0,0)−φ2(0,0)| ≤ δ implies that

d(φ1(0,0),φ2(0,0))≤ δ̄ .

Then, for any φ and φ̄ picked as in the theorem, |φ(0,0)− φ̄(0,0)| ≤ δ implies that

d(φ̄ (0,0),φ(0,0)) ≤ δ̄ . Therefore, by using the δS property of the set SH , φ̄ and

φ are graphically ε-close. ⊓⊔

3.2 Sufficient Conditions

To establish sufficient conditions for δLAS, we impose the following assumptions.

The first assumption is that each maximal solution to H has its domain of definition

unbounded in the t direction. The second assumption enables each maximal solution

to H to flow for sufficient amount of time in between jumps. A sufficient condition

for Assumption 3.3 can be found in [12, Lemma 2.7].

Assumption 3.2 The hybrid system H = (C, f ,D,g) is such that every φ ∈ SH

satisfies supt domφ = ∞.

Assumption 3.3 The hybrid system H = (C, f ,D,g) is such that there exists γ > 0

such that for each φ ∈ SH , the flow time between two consecutive jumps is lower

bounded by γ .

Moreover, we will use the following forward invariance notion.

Definition 9. (forward invariance from away of D) A set A ⊂ R
n is said to be

forward invariant for H from away of D if for each solution φ to H from

φ(0,0) ∈ A \D, φ(t,0) ∈ A for all (t,0) ∈ domφ .

Remark 4. Note that the standard forward invariance notion for a set captures the

property that every solution from the set stays within the set for all time, see, e.g.,

[4, Definition 6.25].

Now, we are ready to present the sufficient condition.

Theorem 2. (δLAS through flow for generic D) Consider a hybrid system H =
(C, f ,D,g) with state z ∈R

n. Suppose H satisfies Assumption 3.1, Assumption 3.2,

Assumption 3.3, and the hybrid basic conditions. Let γ be generated from Assump-

tion 3.3. If there exist P = P⊤ > 0, β > 0, and δ0 > 0 such that H satisfies
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1) ∇ f⊤(z)P+P∇ f (z)≤−2βP for all z ∈ conC;

2) for each δ ∈ [0,δ0], each φ ∈ SH from φ(0,0) satisfying

φ(0,0) ∈C, |φ(0,0)|D = δ (24)

is such that there exists s ∈ [0,δ ] for which we have

|φ(s,0)|D = 0 (25)

and the set φ(s,0) + δB is forward invariant from away of D, and each φ̄ ∈
SH (g(φ(s,0))+ δB) satisfies

φ̄ (t,0) ∈ g(φ(s,0))+ δB (26)

for all t ∈ [0,s];
3) the jump map g is locally Lipschitz on D with Lipschitz constant L1 ∈ [0,1], 2

i.e., |g(z1)− g(z2)| ≤ L1|z1 − z2| for all z1,z2 ∈ D such that |z1 − z2| ≤ δ0; and

4) c < exp(β γ), where c =

√

λ (P)
λ (P) ;

then, the set SH is δLAS with d being the Euclidean distance.

Proof. Given ε > 0, and using δ0,γ as in the assumption, consider φ1,φ2 ∈ SH

such that |φ1(0,0)−φ2(0,0)|< δ , where δ is chosen such that

0 < δ ≤ min

{

ε

c
,

δ0

c
,γ − 1

β
lnc

}

.

First, we show that SH is δS for the case when φ1(0,0),φ2(0,0) ∈ C and

sup j domφ1 = sup j domφ2 = 0, i.e., no jump occurs to either φ1 or φ2. By the gen-

eralized mean value theorem (for vector-valued functions), for almost all (t,0) ∈
domφ1(= domφ2 = [0,∞)×{0}), we have that

φ̇1(t,0)− φ̇2(t,0) = f (φ1(t,0))− f (φ2(t,0))

=

∫ 1

0
∇ f (η(t,s))ds(φ1(t,0)−φ2(t,0)),

where η(t,s) = φ1(t,0)+ s(φ2(t,0)− φ1(t,0)). Then, using item 1), for almost all

t ∈ [0,∞), we have

2 Such g is also known as a weak contraction map.
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d

dt
|φ1(t,0)−φ2(t,0)|2P

= (φ1(t,0)−φ2(t,0))
⊤
(

∫ 1

0

(

∇ f⊤(η(t,s))P+P∇ f (η(t,s))
)

ds

)

(φ1(t,0)−φ2(t,0))

≤−
∫ 1

0
2β (φ1(t,0)−φ2(t,0))

⊤P(φ1(t,0)−φ2(t,0))ds

≤−2β |φ1(t,0)−φ2(t,0)|2P, (27)

where we used the property that η(t,s)∈ conC for all t ∈ [0,∞) and s∈ [0,1]. There-

fore, by the comparison lemma, we have, for all t ∈ [0,∞),

|φ1(t,0)−φ2(t,0)|P ≤ exp(−β t)|φ1(0,0)−φ2(0,0)|P. (28)

Then, using the property

λ (P)|z|2 ≤ |z|2P = z⊤Pz ≤ λ (P)|z|2 ∀z ∈ R
n (29)

and the choice of δ , we obtain

|φ1(t,0)−φ2(t,0)| ≤
1

√

λ (P)
|φ1(t,0)−φ2(t,0)|P

≤ cexp(−β t)|φ1(0,0)−φ2(0,0)| ≤ ε. (30)

Next, we show SH is δS for the case when either φ1 or φ2 jump. By the

choice of δ and item 2), sup j domφ1 = sup j domφ2 =: J. Without loss of gen-

erality, assume φ1 jumps first and J = ∞. Furthermore, for each j ∈ N \ {0}, let

t̄ j = max(t, j−1)∈domφ1∩domφ2
t and t̄ ′j = min(t, j)∈domφ1∩domφ2

t, and t̄ ′0 = 0, where t̄ j

denotes the minimum time when one of the two solutions φ1,φ2 jumps j times,

while t̄ ′j denotes the minimum time when both solutions have jumped j times. In

fact, [t̄ ′j, t̄ j+1]×{ j} ⊂ domφ1 ∩domφ2 for all j ∈N. For simplicity, assume that the

time when j-th jump occurs to φ1 is always smaller than or equal to that of φ2 for

j ∈ N.

(I) If φ1(0,0),φ2(0,0) ∈C. Similarly as in (30), for all t ∈ [0, t̄1], we have that

|φ1(t,0)−φ2(t,0)| ≤ cexp(−β t)|φ1(0,0)−φ2(0,0)| ≤ ε. (31)

When t = t̄1, since φ1 jumps first, φ1(t̄1,0)∈D and φ1(t̄1,1) = g(φ1(t̄1,0)). Note

that under item 3) of Assumption 3.3, g(D)∩D = /0. Then,

a. if φ2(t̄1,0) ∈ D, i.e., t̄1 = t̄ ′1, by (31), |φ1(t̄1,0)−φ2(t̄1,0)| ≤ δ and

φ1(t̄1,0),φ2(t̄1,0) ∈ D.

Then, we can apply the argument in item (II);

b. If φ2(t̄1,0) /∈D, i.e., t̄1 < t̄ ′1, by (31), it follows that φ2(t̄1,0)∈ (D+δB)\D.

For each t ∈ [t̄1, t̄
′
1], since, |φ2(t̄1,0)|D ≤ |φ2(t̄1,0)−φ1(t̄1,0)|= δ̄1 for some
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δ̄1 ∈ [0,δ ], by (24) and (25) in item 2), it follows that t̄ ′1 − t̄1 ≤ δ . Since the

set φ(t̄1,0)+ δ̄1B is forward invariant from away of D according to item 2),
we obtain, for each t ∈ [t̄1, t̄

′
1],

|φ2(t,0)−φ1(t̄1,0)| ≤ |φ2(t̄1,0)−φ1(t̄1,0)|. (32)

Furthermore, since φ1(t̄1,0),φ2(t̄
′
1,0) ∈ D, by item 3),

|φ2(t̄
′
1,1)−φ1(t̄1,1)| ≤ |φ2(t̄

′
1,0)− g(φ1(t̄1,0))|

≤ |φ2(t̄
′
1,0)−φ1(t̄1,0)|.

Then, since φ1(t̄1,1) ∈ φ2(t̄
′
1,1) + δ̄1B according to (32), by item 2), for

each t ∈ [t̄1, t̄
′
1],

|φ1(t,1)−φ2(t̄
′
1,1)| ≤ |φ1(t̄1,1)−φ2(t̄

′
1,1)|

≤ |φ1(t̄1,0)−φ2(t̄
′
1,0)|.

(33)

In general, for each j ∈ N and t ∈ [t̄ ′j, t̄ j+1], since φ1(t̄
′
j, j),φ2(t̄

′
j, j) ∈ C,

similarly as for (31), we have

|φ1(t, j)−φ2(t, j)| ≤ cexp(−β (t − t̄ ′j))|φ1(t̄
′
j , j)−φ2(t̄

′
j , j)|. (34)

While for j ∈N\{0} and t ∈ [t̄ j, t̄
′
j ], we have [t̄ j, t̄

′
j]×{ j}⊂ domφ1, [t̄ j, t̄

′
j]×

{ j−1} ⊂ domφ2 and |t̄ ′j − t̄ j| ≤ δ . Then, similarly as for (32) and (33), we

obtain

i. for each j ∈ N\ {0} and each t ∈ [t̄ j, t̄
′
j]:

|φ2(t, j− 1)−φ1(t̄ j, j− 1)| ≤ |φ2(t̄ j, j− 1)−φ1(t̄ j, j− 1)|, (35)

ii. for each j ∈ N\ {0} and each t ∈ [t̄ j, t̄
′
j]:

|φ1(t, j)−φ2(t̄
′
j, j)| ≤ |φ1(t̄ j, j− 1)−φ2(t̄ j, j− 1)|, (36)

Therefore, by using (34), (35), (36) and |φ1(0,0)−φ2(0,0)| ≤ δ , it follows

that

i. for each j ∈ N\ {0} and each t ∈ [t̄ ′j, t̄ j+1]:

|φ1(t, j)−φ2(t, j)| ≤ cexp(−β (t − t̄ ′j))|φ1(t̄
′
j , j)−φ2(t̄

′
j , j)|

≤ cexp(−β (t − t̄ ′j))|φ1(t̄ j, j− 1)−φ2(t̄ j, j− 1)|
≤ c2 exp(−β (t − t̄ ′j))exp(−β (t̄ j − t̄ ′j−1))

×|φ1(t̄
′
j−1, j− 1)−φ2(t̄

′
j−1, j− 1)|

...

≤ c j+1 exp(−β (t − t̄ ′j−1 +∆ j))|φ1(0,0)−φ2(0,0)| ≤ ε,

(37)
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where ∆ j := ∑
j
k=1(t̄k − t̄ ′k−1). In particular, the first inequality in (37)

uses (34) with t ∈ [t̄ ′j, t̄ j+1], the second inequality in (37) uses (36) with

t = t̄ ′j, and the third inequality in (37) uses (34) with t = t̄ j.

ii. for each j ∈ N\ {0} and each t ∈ [t̄ j, t̄
′
j]:

|φ2(t, j− 1)−φ1(t̄ j , j− 1)| ≤ |φ2(t̄ j, j− 1)−φ1(t̄ j, j− 1)|
≤ cexp(−β (t̄ j − t̄ ′j−1))|φ1(t̄

′
j−1, j− 1)−φ2(t̄

′
j−1, j− 1)|

...

≤ c j exp(−β ∆ j)|φ1(0,0)−φ2(0,0)|
≤ exp(−(β (γ − δ )− lnc) j)|φ1(0,0)−φ2(0,0)| ≤ ε,

(38)

where the first inequality follows from (35) with t ∈ [t̄ j, t̄
′
j], and the

second inequality follows from (34) with t = t̄ j.

iii. for each j ∈ N\ {0} and each t ∈ [t̄ j, t̄
′
j]:

|φ1(t, j)−φ2(t̄
′
j , j)| ≤ |φ1(t̄ j, j− 1)−φ2(t̄ j, j− 1)|

≤ cexp(−β (t̄ j − t̄ ′j−1))|φ1(t̄
′
j−1, j− 1)−φ2(t̄

′
j−1, j− 1)|

...

≤ c j exp(−β ∆ j)|φ1(0,0)−φ2(0,0)|
≤ exp(−(β (γ − δ )− lnc) j)|φ1(0,0)−φ2(0,0)| ≤ ε.

(39)

In particular, the first inequality in (39) uses (36) with t ∈ [t̄ j, t̄
′
j], and

the second inequality in (39) uses (34) with t = t̄ j.

Therefore, φ1 and φ2 are ε-close.

(II) If φ1(0,0),φ2(0,0) ∈ D, by condition 3) that the jump map is locally Lipschitz

on D with Lipschitz constant L1 ≤ 1, we obtain

|φ1(1,0)−φ2(1,0)|= |g(φ1(0,0))− g(φ2(0,0))| ≤ |φ1(0,0)−φ2(0,0)|. (40)

Note that after the jump, φ1(1,0),φ2(1,0) ∈C, we can apply the arguments in

item (I).

(III) If φ1(0,0) ∈C,φ2(0,0) ∈ D, the arguments follows similarly as in item (I).

Therefore, by combining arguments in items (I), (II), (III), it is proved that φ1 and

φ2 are ε-close. Note that the case when J < ∞ follows similarly. Therefore, SH is

δS with respect to Euclidean distance.

Now, we show that SH is δLA. consider the case in item (I) (the other cases

follow similarly). Note that
⋃∞

j=1[t̄
′
j, t̄ j+1] =∞ if J =∞ (or

⋃J−1
j=1[t̄

′
j, t̄ j+1]

⋃

[t̄ ′J,∞) =∞

if J < ∞ respectively). Moreover, since [t̄ ′j, t̄ j+1]×{ j} ⊂ domφ1 ∩ domφ2 for all

j ∈ N. Then, on each interval [t̄ ′j, t̄ j+1], we have that |φ1(t, j+ 1)− φ2(t, j + 1)| ≤
exp(−β (t − t̄ ′j))|φ1(t̄

′
j, j)−φ2(t̄

′
j, j)| for all t ∈ [t̄ ′j, t̄ j+1]. In particular, pick
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µ = δ < min

{

δ0

c
,γ − 1

β
lnc

}

,

for a given ε ′ > 0, pick

T =− 1

β (γ − δ )
ln

(

min

{

1,
ε ′

cδ

})

.

Then, by using (37), (38) and (39), we obtain

1. for (t, j) such that j ≥ T and t ∈ [t̄ ′j, t̄ j+1]:

|φ1(t, j)−φ2(t, j)| ≤ cexp(−(β (γ − δ )− lnc) j)|φ1(0,0)−φ2(0,0)|
≤ cexp(−(β (γ − δ )− lnc)T )|φ1(0,0)−φ2(0,0)|

≤ min

{

1,
ε ′

cδ

}

c|φ1(0,0)−φ2(0,0)| ≤ ε ′,

2. for (t, j) such that j ≥ T and t ∈ [t̄ j, t̄
′
j]:

|φ2(t, j− 1)−φ1(t̄ j, j− 1)| ≤ exp(−(β (γ − δ )− lnc) j)|φ1(0,0)−φ2(0,0)| ≤ ε ′,

3. for (t, j) such that j ≥ T and t ∈ [t̄ j, t̄
′
j]:

|φ1(t, j)−φ2(t̄
′
j, j)| ≤ exp(−(β (γ − δ )− lnc) j)|φ1(0,0)−φ2(0,0)| ≤ ε ′.

Therefore, for φ1,φ2 such that |φ1(0,0)−φ2(0,0)| ≤ µ , φ1,φ2 are eventually ε-close

and SH is δLA. ⊓⊔

When the jump set D is discrete, the conditions in Theorem 2 simplify and we

obtain the following result.

Corollary 1. (δLAS through flow with D being a discrete set) Consider a hybrid

system H = (C, f ,D,g) with state z ∈ R
n and D being a discrete set. Suppose H

satisfies Assumption 3.1, Assumption 3.2, Assumption 3.3, and the hybrid basic con-

ditions. Let γ be generated from Assumption 3.3. If there exist P = P⊤ > 0, β > 0,

and δ0 > 0 such that H satisfies

1) ∇ f⊤(z)P+P∇ f (z)≤−2βP for all z ∈ conC;

2) for each δ ∈ [0,δ0], each φ ∈ SH from φ(0,0) satisfying

φ(0,0) ∈C, |φ(0,0)|D = δ (41)

is such that there exists s ∈ [0,δ ] for which we have

|φ(s,0)|D = 0, |φ(t,0)|D ≤ δ ∀t ∈ [0,s], (42)

and
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|φ̄(t,0)− g(φ(s,0))| ≤ δ ∀t ∈ [0,s], (43)

where φ̄ ∈ SH (g(φ(s,0))); and

3) c < exp(β γ), where c :=

√

λ (P)
λ (P)

;

then, the set SH is δLAS with d being the Euclidean distance.

The proof of this corollary is in Section 5.1.

Remark 5. Item 1) in Corollary 1 guarantees strict decrease of the distance between

every pair of maximal solutions to H on the intersections of their hybrid time do-

mains. In fact, these conditions guarantee a contraction property of the nonlinear

system with right-hand side given by f ; see, e.g., [9]. The second item in Corol-

lary 1 implies that, over the mismatch parts of their hybrid time domains, the graph-

ical distance between them does not grow. The third item in Corollary 1 ensures that

every pair of maximal solutions can flow for enough time to overcome the possible

overshoot on the distance between them. When P = I, the third condition is satisfied

for free.

The necessity of item 2) of Corollary 1 is justified in Theorem 1. This condition

is guaranteed by the following sufficient condition.

Proposition 6. Consider a hybrid system H = (C, f ,D,g) with state z ∈ R
n and D

being a discrete set. Suppose H satisfies the hybrid basic conditions. Then, item 2)
of Corollary 1 holds if there exists δ0 > 0 such that, for any z⋆ ∈ D, the following

hold: there exist c1,c2 > 0, c2 ∈ (0,c1], and α ∈ (0,1) such that

1) the function V1(z) := |z− z⋆|2 satisfies 〈∇V1(z), f (z)〉+ c1V α
1 (z) ≤ 0 and |z−

z⋆|1−2α ≤ c1(1−α) for all z ∈C
⋂

((z⋆+ δ0B)\D),
2) the function V2(z) := |z− g(z⋆)|2 satisfies 〈∇V2(z), f (z)〉− c2V

α
2 (z) ≤ 0 for all

z ∈C
⋂

(g(z⋆)+ δ0B).

Proof. Let δ be such that 0 < δ ≤ δ0 and for each z ∈ D, (z+δB)∩D = {z}. Given

z⋆ ∈ D, consider φ ∈ SH (C
⋂

((z⋆+ δB)\D)). By item 1) in Proposition 6 and by

integrating t 7→ dV 1−α
1
dt

(φ(t,0)) over [0, t1]×{0} ⊂ domφ , it follows that

V1(φ(t,0))
1−α ≤−c1(1−α)t+V1(φ(0,0))

1−α ∀(t,0) ∈ domφ . (44)

Note that, since V1 is a positive definite function with respect to z⋆, by using the

property that |z− z⋆|1−2α ≤ c1(1−α) for all z ∈C
⋂

((z⋆+ δ0B)\D), φ converges

to z⋆ within t⋆ seconds, where

t⋆ =
V1(φ(0,0))

1−α

c1(1−α)
=

|φ(0,0)− z⋆|2−2α

c1(1−α)
(45)

=⇒ t⋆ ≤ c1(1−α)|φ(0,0)− z⋆|
c1(1−α)

= |φ(0,0)− z⋆|. (46)
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Moreover, by (44) and the fact that V1(φ(t,0)) = |φ(t,0)− z⋆|2,

|φ(t,0)− z⋆|=
√

V1(φ(t,0)) ≤
√

V1(φ(0,0)) = |φ(0,0)− z⋆| ∀(t,0) ∈ domφ .
(47)

It is implied from (46) that there exists s ∈ [0, |φ(0,0)− z⋆|] such that φ(s,0) = z⋆

and, from (47), |φ(t,0)|D ≤ δ for all t ∈ [0,s]. Now using item 2) of the assumptions

and proceeding similarly to arrive to (44), the maximal solution φ̄ ∈SH (g(φ(s,0)))
satisfies

V2(φ̄ (t,0))
1−α ≤ c2(1−α)t+V2(φ̄(0,0))

1−α ∀(t,0) ∈ dom φ̄ . (48)

Since V2(φ̄ (0,0)) = |g(φ(s,0))− g(z⋆)|2 = 0, by using (45), (47), and (48), we ob-

tain that for all t ∈ [0,s],

|φ̄(t,0)− g(φ(s,0))|= |φ̄ (t,0)− g(z⋆)|=
√

V2(φ̄ (t,0))≤
√

(c2(1−α)t)
1

1−α

≤

√

√

√

√

(

c2(1−α)
V1(φ(0,0))1−α

c1(1−α)

)
1

1−α

≤

√

(

c2

c1

)
1

1−α

|φ(0,0)− z⋆| ≤ |φ(0,0)− z⋆| ≤ δ ,

where we used the property 0 < c2 ≤ c1. ⊓⊔

Remark 6. In item 1) of Proposition 6, if c1 and α can be chosen as c1 ≥ 2 and

α = 1
2
, then, for any z⋆ ∈ D, the condition |z− z⋆|1−2α ≤ c1(1−α) is true for any

z ∈ R
n since |z− z⋆|1−2α = |z− z⋆|0 = 1 ≤ 1

2
c1.

The following example illustrates the sufficient condition in Corollary 1, for which

Proposition 6 is used to guarantee that item 2) in Corollary 1 holds.

Example 6. Consider the following hybrid system H = (C, f ,D,g) with state z ∈R

and data given by

f (z) =−z ∀ z ∈ R

C :=
⋃

i∈{2k:k∈N}
[i, i+ 1]

g(z) = z− 1 ∀ z ∈ D := {2k : k ∈N\ {0}},

where f : R → R and g : N → N. The conditions in Corollary 1 can be verified as

follows. Each φ ∈ SH is complete and its domain is unbounded in the t direction.

Moreover, the flow map is continuously differentiable on conC. Furthermore, for

any φ ∈ SH from φ(0,0) ∈ (C∪D), denote ρ⋆ := max{x : x ∈ C,x ≤ φ(0,0)}. If

ρ⋆ ≤ 1, then φ never jumps and the jump time between two consecutive jumps is

bounded below by ∞. If ρ⋆ ≥ 2, the flow time between two consecutive jumps of
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φ is bounded below by ρ̄ := ln
ρ⋆

ρ⋆−1
. For all z ∈ conC, ∇ f (z)+∇ f (z)⊤ = −2, so

item 1) in Corollary 1 is satisfied with β = 1 and P = I. Moreover, given z⋆ ∈ D, the

function V1(z) = |z− z⋆|2 satisfies 〈∇V1(z), f (z)〉 = 2(z− z⋆)(−z)≤−2z⋆(z− z⋆) =

−2z⋆V
1
2

1 (z) for z ∈C
⋂

((z⋆+ ρ̄B) \D), where we used the property that z ≥ z⋆ for

all z ∈ C
⋂

((z⋆+ ρ̄B) \D). Furthermore, the function V2(z) = |z− g(z⋆)|2 satisfies

〈∇V2(z), f (z)〉 = 2(z−g(z⋆))(−z)≤ 2z⋆(g(z⋆)− z) = 2g(z⋆)V
1
2

2 (z) for z ∈ (g(z⋆)+
ρ̄B)

⋂

C, where we used the property that z ≤ g(z⋆) for all z ∈ (g(z⋆)+ ρ̄B)
⋂

C and

g(z⋆) = z⋆ − 1 < z⋆. Then, Proposition 6 is satisfied with c1 = 2z⋆, α = 1/2, and

c2 = 2(z⋆− 1) ∈ (0,c1]. Thus, the condition 2) in Corollary 1 is verified. Note that

the condition 3) in Corollary 1 holds for free since β = 1, c = 1 and γ = ρ̄ > 0.

Then, by Corollary 1, we have that H is δLAS. △

The following result establishes a sufficient condition for a set SH to be δLAS

“through jumps.” In particular, under such conditions, the graphical distance be-

tween any two maximal solutions to a hybrid system H strictly decreases during

jumps. Due to such requirement, we need to impose the following assumption to

guarantee that every maximal solution to H jumps infinitely many times.

Assumption 3.4 The hybrid system H = (C, f ,D,g) is such that every φ ∈ SH

satisfies sup j domφ = ∞.

Theorem 3. (δLAS through jump for generic D) Consider a hybrid system H =
(C, f ,D,g) with state z ∈R

n. Suppose H satisfies Assumption 3.1, Assumption 3.3,

and the hybrid basic conditions. If there exist δ0,L1,L2 > 0,P = P⊤ > 0 such that

1) ∇ f (z)⊤P+P∇ f (z)≤ 0 for all z ∈ conC;

2) for each δ ∈ [0,δ0], each maximal solution φ to H from φ(0,0) satisfying

φ(0,0) ∈C, |φ(0,0)|D = δ

satisfies |φ(s,0)|D = 0 for some s ∈ [0,δ ];
3) for each z ∈ D and each δ ∈ [0,δ0], the set z+ δB is forward invariant for H

from away of D;

4) the jump map g is locally Lipschitz on D with Lipschitz constant L1, i.e., |g(z1)−
g(z2)| ≤ L1|z1 − z2| for all z1,z2 ∈ D such that |z1 − z2| ≤ δ0;

5) f is bounded on conC with bound L2, i.e., | f (z)| ≤ L2 for all z ∈ conC;

6) c(L1 +L2)≤ 1 where c =

√

λ (P)
λ (P)

;

then, the set SH is δS with d being the Euclidean distance. Furthermore, if L1 and

L2 can be chosen such that c(L1 +L2) < 1 and H satisfies Assumption 3.4, then,

SH is δLAS with d being the Euclidean distance.

Proof. Given ε > 0 and using δ0 as in the item 2)-5) of assumption and γ as in

Assumption 3.3, consider φ1,φ2 ∈ SH such that |φ1(0,0)−φ2(0,0)|< δ , where δ
is chosen such that
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0 < δ ≤ min

{

ε

c
,

δ0

c
,γ

}

.

First, we show that SH is δS for the case when φ1(0,0),φ2(0,0) ∈ C and

sup j φ1 = sup j domφ2 = 0. Similarly as derived in (27), by using item 1) and the

comparison lemma, we have, for all t ∈ [0,∞),

|φ1(t,0)−φ2(t,0)| ≤ c|φ1(0,0)−φ2(0,0)| ≤ ε.

Next, we show SH is δS for the case when either φ1 or φ2 jump. By the

choice of δ and item 2), sup j domφ1 = sup j domφ2 =: J. Without loss of gen-

erality, assume φ1 jumps first and J = ∞. Furthermore, for each j ∈ N \ {0}, let

t̄ j = max(t, j−1)∈domφ1∩domφ2
t and t̄ ′j = min(t, j)∈domφ1∩domφ2

t, and t̄ ′0 = 0. For sim-

plicity, assume that the time when j-th jump occurs to φ1 is always smaller than or

equal to that of φ2 for j ∈N.

(I) If φ1(0,0),φ2(0,0) ∈C, by using item 1) and similar derivations in Theorem 2,

we obtain for all t ∈ [0, t̄1],

|φ1(t,0)−φ2(t,0)| ≤ c|φ1(0,0)−φ2(0,0)| ≤ ε. (49)

When t = t̄1, since φ1 jumps first, φ1(t̄1,0)∈D and φ1(t̄1,1) = g(φ1(t̄1,0)). Note

that under Assumption 3.3, g(D)∩D = /0. Then,

a. if φ2(t̄1,0) ∈ D, i.e., t̄1 = t̄ ′1, by (49) and the choice of δ , |φ1(t̄1,0)−
φ2(t̄1,0)| ≤ δ and φ1(t̄1,0),φ2(t̄1,0) ∈ D. By condition 4) and (49),

|φ1(t̄1,1)−φ2(t̄1,1)| ≤ L1|φ1(t̄1,0)−φ2(t̄1,0)| ≤ ε. (50)

Since φ1(t̄1,1),φ2(t̄1,1) ∈C, we can recursively apply the arguments in (I)

b. If φ2(t̄1,0) /∈D, i.e., t̄1 < t̄ ′1, by (49), it follows that φ2(t̄1,0)∈ (D+δB)\D.

For each t ∈ [t̄1, t̄
′
1], since, φ1(t̄1,0) ∈ D and |φ2(t̄1,0)− φ1(t̄1,0)| = δ̄1 for

some δ̄1 ∈ [0,δ ], by item 2) and item 3), we obtain

i. for each j ∈ N\ {0} and each t ∈ [t̄ ′j, t̄ j+1]:

|φ1(t, j)−φ2(t, j)| ≤ (L1 +L2)
jc j+1|φ1(0,0)−φ2(0,0)| ≤ ε. (51)

ii. for each j ∈ N\ {0} and each t ∈ [t̄ j, t̄
′
j]:

|φ2(t, j− 1)−φ1(t̄ j, j− 1)| ≤ (L1 +L2)
j−1c j|φ1(0,0)−φ2(0,0)| ≤ ε.

(52)

iii. for each j ∈ N\ {0} and each t ∈ [t̄ j, t̄
′
j]:

|φ1(t, j)−φ2(t̄
′
j , j)| ≤ (L1 +L2)

j−1c j|φ1(0,0)−φ2(0,0)| ≤ ε. (53)

Therefore, φ1 and φ2 are ε-close.
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The other cases follow similarly. Therefore, SH is δS with respect to Euclidean

distance.

When the domain of each φ ∈ SH is unbounded in the j direction and c(L1 +

L2)< 1, the δLA property can be established by picking 0 < µ ≤ min
{

δ0
c
,γ
}

, for

a given ε ′ > 0, pick T = max
{

1, logc(L1+L2)
ε ′
cµ

}

+ 1. ⊓⊔

The following example illustrates the conditions in Theorem 3.

Example 7. Consider a timer system H with state z ∈ R and data given by

ż =−1 z ≥ 0,

z+ = 1 z = 0.

Each maximal solution φ to it has a domain that is unbounded in the t and j di-

rection. Moreover, the flow time between two consecutive jumps of φ is lower

bounded by 1. The condition in item 1) of Theorem 3 can be verified with P = I

as ∇ f (z)+∇ f (z)⊤ = 0 for all z ∈ conC. The condition in item 2) can be verified

according to Proposition 6. Consider δ0 ∈ (0,1) and the function V (z) = |z|2D = z2.

For each z ∈ (D+ δ0B)∩C \D, we have 〈∇V (z), f (z)〉 = −2z = −2V
1
2 (z), where

we used the property that z ∈ [0,1]. Item 3) of Theorem 3 follows from the fact

D = {0} is a singleton and 〈∇V (z), f (z)〉 = −2z < 0 for all z ∈ (D+ δ0B)∩C \D.

Item 4) of Theorem 3 is satisfied with L1 = 0, and item 5) of Theorem 3 is satisfied

with L2 = 1. Item 6) of Theorem 3 holds for free since c= 1. Therefore, the set SH

is δS with d being the Euclidean distance. △

4 Final Remarks

In this chapter, we introduced and studied several notions of graphical incremental

stability for hybrid systems. When compared to the pointwise distance, the proposed

graphical notion can be applied to systems with “peaking phenomenon,” which is

a typical behavior in tracking and observer design for hybrid systems. Graphical

incremental stability involves a convergence property where solutions converge to

each other. Several sufficient and necessary conditions for a hybrid system to be

graphically incrementally stable and graphically incrementally attractive were pro-

vided and illustrated in examples.

An alternative approach to using the graphical distance is to prioritize ordinary

time. When one prioritizes ordinary time t, i.e., studying the incremental property

of solutions’ projection to the t direction, it leads to the result as in [7]. Note that

the notion defined therein imposes the incremental stability property in some of the

state components. This is due to the fact that when studying the incremental stability

for certain hybrid systems, such as mechanical systems and dynamical systems that

are dominated by continuous-time behavior, one may not be interested in having
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state components pertaining to variables such as timers, logic variables, and memory

states to have the incremental stability property.

The results in [7] cover results for continuous-time system as in [2]. In [2], sev-

eral sufficient and necessary conditions for continuous-time systems to be incre-

mentally stable are provided. For continuous-time systems, incremental stability

has also been studied in more general spaces and using general distance notions,

such as the Riemannian distance in the context of contraction theory; see, e.g., the

study of contracting and nonexpansive flows in [13, 14], the local arguments in [9],

and the regional results in [15] in the context of observer design. Due to often being

misinterpreted as a property of convergent systems [16], the authors in [17] provide

a rigorous comparison between incremental stability and the property of convergent

systems, and conclude that neither implies the other.

Following the ideas in [7, 18], one could alternatively define a notion that pri-

oritizes jumps and mimics the case of purely discrete-time systems. Unfortunately,

such a notion would only apply to a narrow class of hybrid system due to the gen-

eral aforementioned difficulty. For instance, for the rather elementary set of hybrid

trajectories in Example 1, the pointwise distance between every pair of trajectories

with different initial conditions is clearly nondrecreasing as a function of t, while the

graphical distance between them is small and, as shown in Example 3, the system

is graphically incrementally stable. As argued in this chapter, for hybrid systems

that exhibit a “peaking phenomenon,” see, e.g., [19, 20], approaches that prioritize

ordinary time t or jump time j in the incremental stability notion do not have broad

applicability in the analysis of incremental stability for hybrid dynamical systems.
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5 Appendix

5.1 Proof of Corollary 1

Given ε > 0, and using δ0,γ as in the assumption, consider φ1,φ2 ∈ SH such that

|φ1(0,0)−φ2(0,0)|< δ , where δ is chosen such that

0 < δ ≤ min

{

ε

c
,

δ0

c
,γ − 1

β
lnc

}

and, for each z ∈ D, (z+ δB)∩D = {z}; namely z+ δB is a small neighborhood

around z that does not intersect D. Note that from condition 3), γ − 1
β lnc > 0.
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First, we show that SH is δS for the case when φ1(0,0),φ2(0,0) ∈ C and

sup j domφ1 = sup j domφ2 = 0, i.e., no jump occurs to either φ1 or φ2. Similarly

as derived in (27), by using condition 1) and the comparison lemma, we obtain for

all (t,0) ∈ domφ1(= domφ2 = [0,∞)×{0}),

|φ1(t,0)−φ2(t,0)|P ≤ cexp(−β t)|φ1(0,0)−φ2(0,0)| ≤ ε. (54)

Next, we show SH is δS for the case when either φ1 or φ2 jump. By the choice

of δ and item 2), sup j domφ1 = sup j domφ2 =: J. This can be verified as follows.

When φ1 flows to the jump set D, φ2 is within the δ neighborhood of φ1, then,

by item 2), φ2 flows into the jump set D within δ time. Furthermore, since γ ≥ δ ,

therefore, φ1 will not jump again before φ2 jumps. Without loss of generality, as-

sume φ1 jumps first and J = ∞ (Alternatively, we could pick J large enough, but

∞ suffices). Furthermore, for each j ∈ N \ {0}, let t̄ j = max(t, j−1)∈domφ1∩domφ2
t

and t̄ ′j = min(t, j)∈domφ1∩domφ2
t, and t̄ ′0 = 0, where t̄ j denotes the minimum time

in domφ1 ∩ domφ2 when at least one of the two solutions φ1,φ2 has jumped j

times (note that t̄ j and t̄ ′j are not necessarily jump times of both solutions), while

t̄ ′j denotes the minimum time when both solutions have jumped j times. In fact,

[t̄ ′j, t̄ j+1]×{ j} ⊂ domφ1 ∩domφ2 for all j ∈ N. Note that with Assumption 3.3 and

the choice of δ , φ1(t̄1,0) = φ2(t̄
′
1,0) and t̄ ′1 > t̄1. By the uniqueness of solutions,

φ1(t̄1,1) = φ2(t̄
′
1,1) and φ2 is “following” the trajectory of φ1 after that, which im-

plies that φ1 and φ2 jumps one after another. In particular, after the j-th jump occurs

to φ1, the j-th jump occurs to φ2 before the ( j+1)-th jump occurs to φ1. The deriva-

tion follows the steps as in Theorem 2. The main difference is that in the derivation

of (32) and (33), instead of using the condition 2) in Theorem 2, we use condition

2) of Corollary 1.

The proof for δLA follows similarly as that in Theorem 2 with µ > 0 and µ <

min
{

δ0
c
,γ − 1

β lnc
}

.


