
A Zero-crossing Detection Algorithm for Robust Simulation of

Hybrid Systems Jumping on Surfaces

David A. Coppa,∗, Ricardo G. Sanfeliceb,∗∗

aDepartment of Mechanical Engineering, University of California, Santa Barbara, CA 93106-9560, USA
bDepartment of Computer Engineering, University of California, Santa Cruz, CA 95064, USA

Abstract

Hybrid systems are inherently fragile with respect to perturbations when their state experiences jumps on
surfaces. Zero-crossing detection algorithms are capable of robustly detecting the crossing of such surfaces,
but, up to now, the effects of adding such algorithms to the system being simulated are unknown. In this
paper, we propose a mathematical model for hybrid systems that incorporates zero-crossing detection as
well as a hybrid simulator for it. First, we discuss adverse effects that measurement noise and discretization
can have on hybrid systems jumping on surfaces and prove that, under mild regularity conditions, zero-
crossing detection algorithms can robustify the original system. Then, we show that integration schemes
with zero-crossing detection actually compute a robustified version of the fragile nominal model. In this
way, we rigorously characterize their effect on solutions to the simulated system. Finally, we show that
both the model and simulator are not only robust, but also that the hybrid simulator preserves asymptotic
stability properties, semiglobally and practically (on the step size), of the original system. Several examples
throughout the paper illustrate these ideas and results.

Keywords: Hybrid Systems, Zero-crossing Detection, Simulation

1. Introduction

This work considers dynamical systems with a state that experiences instantaneous resets (jumps) when
it hits a switching surface S. A switching surface is typically defined as the zero-level set of a continuously
differentiable function, defining in this way a codimension one submanifold of Rn; see, e.g., [1, 2, 3]. The
state is denoted by x and takes values from a region of operation X ⊂ R

n. When x is away from the surface
S, the continuous dynamics (flows) of the system are given by a differential equation. This can be written
more precisely as

ẋ = f(x) when x ∈ X \ S. (1)

When x hits the surface S while in the region of operation X , the state is reset via a difference equation
which defines the jumps of the system. More precisely, the new value of x after the jump, denoted x+, is
determined by

x+ = g(x) when x ∈ S ∩ X . (2)

In this way, the trajectories are allowed to flow when x ∈ X \ S and are allowed to jump when x ∈ S ∩ X .
This model captures the dynamics of control systems in which a controller makes decisions when certain
variables hit a surface. For instance, in reset control systems (see, e.g., [4], [5], [6], [7]), the output of the
controller is reset to zero whenever its input and output satisfy an algebraic condition. Reset controllers have

∗Principal corresponding author
∗∗Corresponding author

Email addresses: dacopp@engr.ucsb.edu (David A. Copp), ricardo@ucsc.edu (Ricardo G. Sanfelice)
URL: https://hybrid.soe.ucsc.edu (Ricardo G. Sanfelice)

Preprint submitted to Simulation Modelling Practice and Theory May 26, 2016

been found useful in applications as they improve the performance of linear systems [4]. In state-dependent
impulsive control systems, (see, e.g., [1], [8]), jumps occur when the state of the system belongs to a surface
in the state space of the system. Impulsive controllers are widely used in robotics to switch among several
feedback laws when the state of the system reaches a surface [9, 10].

Several difficulties arise when dealing with systems jumping on surfaces. One such difficulty is with
“grazing” of the flowing solution at the boundary of the switching surface S without crossing over it. This
can lead to non-unique solutions and is known as the grazing phenomenon. For a discussion of methods to
handle this phenomenon, see [11]. Further difficulties may be caused by perturbations due to measurement
noise or numerical errors due to discretization. For example, suppose that the value of the state x of the
system is perturbed when nearby S (e.g., due to measurement noise). Letting e denote this perturbation
on x, the perturbed state can be written as x+ e. Suppose that, for a given solution x(t) to system (1)-(2)
(using an appropriate notion of solution), e is zero when x(t) 6= S but equal to a nonzero constant ε when
x(t) = S. Then, when the perturbation e is added, for any nonzero ε, the same solution x(t) will not
satisfy the condition x(t)+ e(t) ∈ S, and therefore, will not jump at the instant that it would without noise.
This suggests that arbitrarily small perturbations to (1)-(2) can generate trajectories that are nowhere close
to the trajectories of the nominal system; see [12] for related discussions. Similarly, issues can arise from
numerical errors introduced by discretization, such as numerical integration errors. In the presence of small
numerical integration errors, which can be made arbitrarily small by adjusting the step size used in the
simulator, trajectories obtained through simulation may never hit the surface, and therefore, never jump.

One way to resolve the issue of the numerical solution never hitting the switching surface, which is widely
used in simulation packages, is to include zero-crossing detection (ZCD) algorithms to detect crossing of the
surface S. For instance, in MATLAB/Simulink, a block called Hit Crossing detects when the input of the
block u reaches a specified offset parameter value u∗ (other blocks and local ZCD options are also available
in MATLAB/Simulink). The output of the block equals 1 when the value of the input has hit or crossed
the offset parameter, or 0 otherwise. In fact, MATLAB/Simulink help files note the following [13]:

“if the input signal is exactly the value of the offset value after the hit crossing is detected, the
block continues to output a value of 1. If the input signals at two adjacent points bracket the
offset value (but neither value is exactly equal to the offset), the block outputs a value of 1 at
the second time step.”

More precisely, denoting the step size by s, this block determines if the sign of u−u∗ at the integration time
t has changed with respect to its value at the previous integration time t− s, i.e., it determines whether

(u(t)− u∗)(u(t− s)− u∗) ≤ 0. (3)

In order to determine whether this condition holds, a memory state must be added to keep track of the
sign (relative to u∗) of the previous input to the block. While zero-crossing detection might be a remedy to
detect the crossings of S, a simulator utilizing ZCD actually modifies the original system by incorporating
an extra mechanism for the detection of zero crossings. On the other hand, the relationship between the
simulations obtained with ZCD and the true solutions of a system is not well understood.

The purpose of this paper is to introduce a mathematical framework for theoretical study of such algo-
rithms and their effect in simulation of hybrid systems. To that end, the effect of perturbations to hybrid
systems jumping on surfaces is highlighted. In particular, we point out that measurement noise and dis-
cretization due to numerical integration can lead to simulations that do not hit the surface and never jump.
Following the ideas discussed above in zero-crossing detection algorithms used in software packages, we pro-
pose a mathematical model of a hybrid system incorporating a zero-crossing algorithm. We prove that, under
mild regularity conditions, such a resulting hybrid system not only includes all of the nominal solutions (no
perturbations) to the original system but is also robust to measurement noise. We argue that, rather than
computing the solutions to the discretization of the fragile nominal model (1)-(2), integration schemes with
zero-crossing detection actually compute the solutions of a robustified version of the fragile nominal model.
Finally, we propose a hybrid simulator for the hybrid system with incorporated zero-crossing detection. As
a difference to [14, 15, 16], we focus on detection of zero-crossing rather than accurate location, which is

2

another important issue in simulating systems like (1)-(2). Even though we do not discuss finding accurate
locations of zero-crossings, we show that our proposed hybrid simulator enjoys the following properties,
which are illustrated in examples throughout the paper:

1) Trajectories obtained with the proposed simulator with zero-crossing detection approximate the solu-
tions to the original hybrid system with arbitrary precision. See Theorem 5.8.

2) The proposed simulator with zero-crossing detection preserves the asymptotic stability properties of
the original hybrid system. Furthermore, the proposed simulator with zero-crossing detection has
an asymptotically stable compact set that converges to the asymptotically stable compact set of the
original hybrid system. See Theorems 5.10 and 5.11.

An important feature of the proposed hybrid simulator is that it confers the above properties to the
simulation of the original hybrid system by minimally affecting the original system. In fact, the only addition
to the original system consists of a scalar variable with appropriately defined dynamics for robust triggering
of jumps; cf. the thickening of the switching surfaces proposed in [12] and the domain relaxations proposed
in [17]. Furthermore, the proposed hybrid simulator is designed to guarantee stability and robustness
properties when implemented numerically through the use of well-known solvers, which makes it suitable
for the simulation of complex systems, such as hybrid and cyber-physical systems.

The remainder of this paper is organized as follows. Section 2 introduces notation used throughout the
paper. Section 3 presents a mathematical model of hybrid systems with dynamics (1)-(2), a hybrid simulator
for it, as well as issues with perturbations. A model of a hybrid system with added zero-crossing detection
and a hybrid simulator for it are given in Section 4. Our main results appear in Section 5. A preliminary
version of the results in this paper appeared without proof in [18].

2. Notation

The following notation will be used throughout the paper.

• R
n denotes the n-dimensional Euclidean space.

• R denotes the real numbers.

• R≥0 denotes the nonnegative real numbers, i.e., R≥0 = [0,∞).

• N denotes the natural numbers including 0, i.e., N = {0, 1, ...}.

• int S denotes the interior of the set S.

• sgn denotes the sign function defined as sgn(ξ) = 1 if ξ > 0, sgn(ξ) = −1 if ξ < 0, and sgn(ξ) = 0
if ξ = 0.

• B denotes the closed unit ball centered at the origin in Euclidean space.

• x+ εB denotes a closed ball of radius ε centered at x.

• Given a set S, S denotes its closure.

• TS(x) denotes the tangent cone of the surface of S at x (i.e., the collection of vectors that are tangent
to the surface).

• Given a set S, coS denotes the convex hull of S, and coS the closure of the convex hull.

• Given sets As and A, dH(As,A) denotes the Hausdorff distance between sets As and A.

• Given a set K ⊂ R
n and a point x ∈ R

n, |x|K := infy∈K |x− y|.

3

3. Hybrid Systems Jumping on Surfaces

Throughout this paper, we model systems and their simulators within the hybrid systems framework of
[19] and [20]. In this way, we write the system (1)-(2) as

H :

{
ẋ = f(x) x ∈ X \ S =: C
x+ = g(x) x ∈ S ∩ X =: D.

(4)

Following [19], a solution to a hybrid system is a function defined on a hybrid time domain satisfying certain
conditions. A set E ⊂ R≥0 × N is a compact hybrid time domain if

E =

J−1⋃

j=0

([tj , tj+1]× {j})

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2... ≤ tJ . The set E is a hybrid time domain if for all
(T, J) ∈ E, E ∩ ([0, T] × 0, 1, ...J) is a compact hybrid domain. By hybrid arc or hybrid trajectory we
understand a pair consisting of a hybrid time domain domx and a function x : domx → R

n such that, for
each j, t 7→ x(t, j) is locally absolutely continuous for (t, j) ∈ domx. A hybrid arc φ : domφ → R

n is a
solution to a hybrid system H with data (C, f,D, g) if

(S0) φ(0, 0) ∈ C ∪D;

(S1) For each j ∈ N and each Ij := {t : (t, j) ∈ domφ } with nonempty interior int Ij ,

φ(t, j) ∈ C for all t ∈ int Ij
φ̇(t, j) = f(φ(t, j)) for almost all t ∈ int Ij ;

(S2) For each (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

φ(t, j) ∈ D, φ(t, j + 1) = g(φ(t, j)).

Now we introduce a few examples that will be revisited throughout the paper.

Example 3.1. (bouncing ball) Consider a bouncing ball as a point mass vertically bouncing on a horizontal
surface. The ball is dropped from some initial height and experiences acceleration due to gravity. At each
impact with the surface, the velocity can be approximated as instantaneously reversing direction and possibly
decreasing in magnitude due to energy dissipation. If we denote the state of the system as x = [x1 x2]

⊤

where the height above the surface is x1 and the vertical velocity is x2, then we can write the bouncing ball
system in our hybrid systems framework as

X ⊂ R
2,

f(x) =

[
x2

−M(x1)−N(x1)x2

]
, g(x) =

[
0

−λx2

]
,

S = {x ∈ X : x1 = 0, x2 ≤ −δ } ,

(5)

where M and N are given as

M(x1) =

{
γ
ε
x1 for x1 < ε

γ for x1 ≥ ε
, N(x1) =

{
−x1 + ε for x1 < ε

0 for x1 ≥ ε
,

γ > 0 is the gravitational constant, λ ∈ [0, 1) is the restitution coefficient, and δ and ε are positive constants.
This model comes from the non-Zeno bouncing ball model described in [21, Example 4.2]. In this model,
the functions M and N are used to capture compression of the ball at impacts with the surface. When
x1 ≥ ε > 0, this model is equivalent to a Zeno bouncing ball model. △

4

Example 3.2. (unicycle avoiding obstacle) Consider a mobile robot of the unicycle type being steered to-
wards a target while avoiding a circular obstacle [2]. Let ξ = [ξ1 ξ2 ξ3]

⊤, where [ξ1 ξ2]
⊤ denotes the robot’s

position and ξ3 the robot’s orientation. Let q be the controller state, q ∈ {1, 2}, where q = 1 means travelling
towards the target, and q = 2 means travelling away from the obstacle. The value of q is chosen depending
on the robot’s radial distance from the obstacle. Two circular surfaces, Sq, with radii aq, a2 > a1, are defined
around the obstacle for this purpose. When the robot enters one of these surfaces, the continuous dynamics
of the system do not change, but if a change in direction is desired, the controller state must be updated from
q = 1 to q = 2, or vice versa, according to the update law q+ = 3− q. The current orientation of the robot
depends on the value of a function defining a local mode-based controller.

Denoting the state of the system by x = [ξ1 ξ2 ξ3 q]
⊤, the closed-loop system can be written as

X ⊂ R
3 × {1, 2},

f(x) =






v cos(ξ3)
v sin(ξ3)
κ(q, ξ)




0


 , g(x) =

[
ξ

3− q

]
,

S = ∪q∈{1,2}(Sq × {q}),

Sq =
{
x ∈ X : (ξ◦1 − ξ1)

2 + (ξ◦2 − ξ2)
2 = a2q

}
,

(6)

where v is the tangential velocity of the robot, the function κ(q, ξ) defines the mode-based controller which
the robot should use in order to steer the robot to the target (q = 1) or away from the obstacle (q = 2), and
(ξ◦1 , ξ

◦
2) denotes the obstacle’s location. △

Example 3.3. (unicycle on a track) Consider a mobile robot of the unicycle type being steered to travel
along a given track with state ξ as in Example 3.2. Let q be the controller state, q ∈ {1, 2}, where q = 1
means traveling to the left, and q = 2 means traveling to the right.1 The value of q is chosen depending on
whether the robot crosses the left or right boundaries of the track. The boundaries are given by surfaces Sq.

Denoting the state of the system by x = [ξ1 ξ2 ξ3 q]
⊤, the closed-loop system is given by

X ⊂ R
3 × {1, 2},

f(x) =






v cos(ξ3)
v sin(ξ3)
κ(q, ξ)




0


 , g(x) =

[
ξ

3− q

]
,

S = ∪q∈{1,2}(Sq × {q}),

S1 = {x ∈ X : ξ1 = 1, q = 1 } ,

S2 = {x ∈ X : ξ1 = −1, q = 2 } ,

(7)

where v is the tangential velocity of the robot, and the function κ(q, ξ) defines the mode-based controller
which the robot should use in order to stay within the track. △

3.1. Nonrobustness to measurement noise

As pointed out in Section 1, if the measurements of the state x are noisy, solutions to H may fail to
jump due to never belonging to S. In fact, for every nominal solution to H, it is possible to construct an

1A control mode to keep the vehicle within the track could also be incorporated.

5

arbitrarily small measurement noise signal e so that x + e ∈ S never holds. A hybrid system H with data
(C, f,D, g) and measurement noise e : dom e→ R

n is denoted He and is given by

He :

{
ẋ = f(x+ e) x+ e ∈ C

x+ = g(x+ e) x+ e ∈ D.

A solution to He, that is, a solution to H for a given measurement noise e, consists of a hybrid arc φe :
domφe → R

n satisfying

(S0e) φe(0, 0) + e(0, 0) ∈ C ∪D;

(S1e) For each j ∈ N and each Ij = {t : (t, j) ∈ domφe } with nonempty interior int Ij ,

φe(t, j) + e(t, j) ∈ C for all t ∈ int Ij
φ̇e(t, j) = f(φe(t, j) + e(t, j)) for almost all t ∈ int Ij ;

(S2e) For each (t, j) ∈ domφe such that (t, j + 1) ∈ domφe,

φe(t, j) + e(t, j) ∈ D, φe(t, j + 1) = g(φe(t, j) + e(t, j)).

The following proposition formalizes the fact that arbitrarily small measurement noise may prevent
solutions to H from jumping on S. We say that a function ℓ : Rn → R

n is locally bounded on an open set
O if for each compact set K ⊂ O there exists a compact set K ′ ⊂ R

n such that ℓ(K) ⊂ K ′. Also, we say
that a set K is a codimension one submanifold of Rn if K ⊂ R

n and n− dim(K) = 1.

Proposition 3.4. (no jumps due to measurement noise) Suppose H = (C, f,D, g) as in (4) is such that

1. f : Rn → R
n and g : Rn → R

n are locally bounded on an open set containing X ;

2. S ∩ X is a codimension one submanifold of Rn.

Then, for each ε > 0, T > 0, and x0 ∈ X , every solution φe to H with measurement noise e and φe(0, 0) = x0
satisfies domφe ⊂ [0, T]× {0}, for some measurable function e : dom e→ εB.

Proof. Following [12, Definition 2.12], the Krasovskii regularization of H is given by Ĥ = (Ĉ, f̂ , D̂, ĝ),

where Ĉ = C, D̂ = D while f̂ : Ĉ ⇒ R
n, ĝ : D̂ ⇒ R

n are defined by

∀x ∈ Ĉ f̂(x) :=
⋂

δ>0

cof((x+ δB) ∩ C), ∀x ∈ D̂ ĝ(x) :=
⋂

δ>0

g((x+ δB) ∩D).

Using item 2 of the assumptions, the flow set C = X \ S is such that C = X . Then, Ĉ = X . It follows

that for every x0 ∈ X there exists a maximal solution φ̂ to Ĥ that only flows, i.e., dom φ̂ ⊂ R≥0 × {0}.
Using item 1 of the assumptions, [12, Theorem 3.1] implies that every Krasovskii solution to H is a Hermes

solution to H, in particular, the solution φ̂ is a Hermes solution to H. Then, for every compact hybrid time
domain E := [0, T] × {0} ⊂ dom φ̂, there exists a sequence of solutions φ̂i to H with measurement noise

ei : dom ei → εiB, εi ց 0, with domains dom φ̂i = dom ei graphically converging to the truncation of φ̂ to
E. Picking i such that that εi < ε, the claim follows with φe = φ̂i and e = ei. �

3.2. Properties of numerical simulations of H

The simulation of H can be interpreted as the numerical computation of the solutions to the discretized
version of H, defining a simulator. A hybrid simulator for H is given by the family of systems Hs param-
eterized by step size s satisfying s ∈ (0, s∗], with the maximum step size s∗ > 0. The data of the hybrid

6

simulator Hs is denoted by (Cs, f s, Ds, gs). For simplicity, we will assume that the region of operation X is
not discretized. Following [20], a hybrid simulator Hs for the hybrid system H is written as

Hs

{
x+s = f s(xs) xs ∈ X \ Ss =: Cs

x+s = gs(xs) xs ∈ Ss ∩ X =: Ds.

Comparing H with Hs, the dynamics for the flows of H have been replaced by the integration scheme
x+s = f s(xs), where f

s is constructed from f . The jump map of H has been replaced by the discretized map
gs, and the flow and jump sets C and D have been replaced by the discretized sets Cs and Ds, where Ss is
the discretization of S.

The dynamics of the hybrid simulator Hs are purely discrete, so the solutions to Hs are given on discrete
versions of hybrid time domains. Following the definition of hybrid time domain, a subset E ⊂ N × N is a
compact discrete time domain if

E =

J−1⋃

j=0

Kj+1⋃

k=Kj

(k, j)

for some finite sequence 0 = K0 ≤ K1 ≤ K2... ≤ KJ , Kj ∈ N for every j ≤ J , j ∈ N. It is a discrete time
domain if ∀(K, J) ∈ E, E ∩ ({0, 1, . . .K} × {0, 1, . . . J}) is a compact discrete time domain. Solutions to
Hs are given by discrete arcs φs : domφs → R

n, where domφs is a discrete time domain. Then, a discrete
arc φs : domφs → R

n is a solution to the hybrid system H with a hybrid simulator Hs, s > 0, if

(S1s) for all k, j ∈ N such that (k, j), (k + 1, j) ∈ domφs,

φs(k, j) ∈ Cs, φs(k + 1, j) = f s(φs(k, j));

(S2s) for all k, j ∈ N such that (k, j), (k, j + 1) ∈ domφs,

φs(k, j) ∈ Ds, φs(k, j + 1) = gs(φs(k, j)).

Similar to the lack of robustness to measurement noise highlighted in Proposition 3.4, numerical simu-
lations of hybrid systems are susceptible to problems due to numerical approximations. For example, when
implementing the hybrid system H in a simulator, the discretization in time produced by the ODE solver
may prevent jumps from being triggered since the condition xs ∈ Ss may not hold. To illustrate this,
consider the flow map f discretized with an Euler integration scheme, i.e. f s(x) = x+ s. It follows that for
every s∗ > 0 and each x0 ∈ X , every solution φs to Hs with some step size s ∈ (0, s∗] and φs(0, 0) = x0 has
less jumps than the original solution. In fact, fix the initial condition x0 ∈ X , and suppose that for each
s ∈ (0, s∗] and every solution φs to Hs, we have φs(k∗, 0) ∈ Ss for some k∗ ∈ N (depending on s and φs).
Then, by the definition of solution to Hs, we have φs(k, 0) = f s(φs(k − 1, 0)) for each k = 1, 2, . . . , k∗ with
φs(0, 0) = x0. Equivalently, we can write that φs(k∗, 0) = f s ◦ f s ◦ . . . ◦ f s(x0) =: (f s)k

∗

(x0), where (f s)k
∗

denotes k∗ compositions of f s. By continuity in s of the resulting map, we have that φs(k∗, 0) cannot be in
Ss for each s.

Now, we illustrate this issue in the three examples of hybrid systems jumping on surfaces introduced
earlier. Throughout this paper, all numerical examples are simulated using the Hybrid Equations (HyEQ)
Toolbox as described in [22].

Example 3.5. (bouncing ball (revisited)) Consider a hybrid simulator Hs for the system in Example 3.1
with gs = g, Ss = S, and f s given by the Euler integration scheme, i.e., f s(x) = x + sf(x) = x +

s
[
x2, −M(x1)−N(x1)x2

]⊤
. The type of solutions to Hs depend on the definition of X . For the choice

X =
{
x ∈ R

2 : x1 ≥ 0
}
∪
{
x ∈ R

2 : x2 ≤ −δ
}
, Hs has solutions that only flow and step over S (for some

step size s), which corresponds to the ball passing through the surface on which it is supposed to bounce.
For the choice X =

{
x ∈ R

2 : x1 ≥ 0
}
, Hs has solutions that may flow and step over the surface S

(because x1 may never be identically equal to 0), leaving X after a finite number of steps. In other words,
the simulation stops prematurely because solutions are not in X or S.

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
x
1

t

(a) Height of a bouncing ball with solutions that
pass through S. The region of operation is X =
{

x ∈ R2 : x1 ≥ 0
}

∪
{

x ∈ R2 : x2 ≤ −δ
}

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
1

t

(b) Height of a bouncing ball with solutions that
stop prematurely. The region of operation is X =
{

x ∈ R2 : x1 ≥ 0
}

.

Figure 1: Solutions to the bouncing ball system in Example 3.5.

Figures 1(a) and 1(b) show simulation results with this simulator for γ = 9.81, λ = 0.8, δ = 0.1, ε = 1,
and step size s = 0.02. The ball is dropped from an initial height of 1, and the step size is such that the
solution continues flowing and passes through S. In the simulation shown in Figure 1(b), the integration
stops prematurely due to the simulated solution leaving X . In each case, the results obtained from the
simulations do not represent the behavior of the physical system because, due to discretization, the system
does not jump, i.e., solutions to Hs never satisfy the condition x ∈ S. △

Example 3.6. (unicycle avoiding obstacle (revisited)) Consider a hybrid simulator Hs for the system in
Example 3.2 with gs = g, Ss = ∪q∈{1,2}(Sq × {q}), and f s given by the Euler integration scheme, i.e.,

f s(x) = x + sf(x) = x + s
[
v cos(ξ3), v sin(ξ3), κ(q, ξ), 0

]⊤
. The robot changes steering modes when it

crosses the surface Sq in order to maneuver around the obstacle and towards the target. As pointed out in
Section 1, arbitrarily small measurement noise can prevent the robot from switching modes when reaching a
boundary. This could lead the robot to collide with the obstacle or move away from the target.

Figure 2 shows a solution to Hs starting at (ξ1, ξ2) = (0, 0) moving towards the green target at (ξ∗1 , ξ
∗
2) =

(50, 90) while operating in mode q = 1. The obstacle is at (ξ◦1 , ξ
◦
2) = (35, 35) with radius smaller than a1.

The radii of the surfaces around the obstacle are a1 = 15 and a2 = 20. The control law is chosen as (see
[2]) κ(1, ξ) = 0.9(arctan 90−ξ2

50−ξ1
− ξ3) and κ(2, ξ) = 0.2(ξ3 − arctan 35−ξ2

35−ξ1
). Figure 2(a) shows a solution to

Hs where the robot crosses the surface S1, changes mode to q = 2 to move away from the obstacle, and
then, due to discretization effects, steps over S2 and fails to change mode back to q = 1. On the other hand,
Figure 2(b) shows the situation where a jump to mode q = 2 is not triggered. Both of these cases can occur
due to numerical error in the simulation. △

Example 3.7. (unicycle on a track (revisited)) Consider a hybrid simulator Hs for the system in Ex-
ample 3.3 with gs = g, Ss = ∪q∈{1,2}(Sq × {q}), and f s given by the Euler integration scheme, i.e.,

f s(x) = x + sf(x) = x + s
[
v cos(ξ3), v sin(ξ3), κ(q, ξ), 0

]⊤
. The robot changes steering modes when it

crosses the surface Sq in order to steer the robot back inside the track. Figure 3 shows a solution to Hs when
the tangential velocity of the vehicle is v = 1, the control law is κ(1, ξ) = π

4 − ξ3 and κ(2, ξ) = 3π
4 − ξ3, the

initial position in the plane is (ξ1, ξ2) = (0, 0), and the initial orientation angle is ξ3 = π
4 radians. With an

arbitrarily small step size, discretization effects cause the solution to step over the surface S and miss the
mode change. △

8

−20 0 20 40 60
−10

0

10

20

30

40

50

60

70

80

90

100

target

obstacle

ξ1

ξ 2

S1

S2

(a) Solution of robot missing second mode change
and never reaching target.

�20 0 20 40 60
�10

0

10

20

30

40

50

60

70

80

90

100

target

obstacle

ξ1

ξ 2

S1

S2

(b) Solution of robot missing first mode change and
potentially colliding with obstacle.

Figure 2: Solutions to the unicycle system in Example 3.6 that do not capture mode changes. The target is located at
(ξ∗

1
, ξ∗

2
) = (50, 90) and the obstacle at (ξ◦

1
, ξ◦

2
) = (35, 35).

0 0.5 1 1.5 2 2.5 3 3.5 4
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

t

ξ 1

Figure 3: Solution for Example 3.7 that steps over S.

4. A hybrid model for hybrid systems jumping on surfaces with zero-crossing detection

4.1. A hybrid system model of H with zero-crossing detection

For the simulation of nonlinear systems, software packages use special algorithms to capture when solu-
tions hit a surface. As pointed out in Section 1, a memory state variable can be added to evaluate condition
(3) and determine when the state should jump.

For example, when using the Hit Crossing block in MATLAB/Simulink, shown in Figure 4, to detect
the jumps of system (4) with scalar state x and S := {x ∈ R : x = x∗ }, the input u would be equal to the
state of the system x, and the output of the block would be equal to a value {0, 1}, where 0 corresponds to
flowing and 1 corresponds to a hit on or crossing of x∗ ∈ R. Denoting the memory state by z and initializing
it to a value with the same sign as x(0)− x∗, which determines which “side” of S the state starts from, the
operation of the Hit Crossing block might be described as follows:

when (x(t) − x∗)z(t) > 0 ⇒ keep flowing (8)

when (x(t) − x∗)z(t) ≤ 0 ⇒ jump. (9)

9

HitHit Crossing

Figure 4: Hit Crossing block in MATLAB/Simulink.

In general, this mechanism can be captured by a function that changes sign according to the location of
x with respect to S. We call such a function a zero-crossing function (cf. [23, Chapter 3]).

Definition 4.1 (zero-crossing function). A zero-crossing function on a set X ⊂ R
n for a switching

surface S is given by a function h : X → R that implicitly characterizes S and splits X into two sets
X1,X2 ⊂ R

n as follows:

S ∩ X = {x ∈ X : h(x) = 0},

X1 = {x ∈ X : h(x) < 0},

X2 = {x ∈ X : h(x) > 0}.

For Example 3.1, a zero-crossing function h on X =
{
x ∈ R

2 : x1 ≥ 0
}
∪
{
x ∈ R

2 : x2 ≤ −δ
}
, for S

as in (5), is given by
h(x) := c1(x)x

2
1 + c2(x2)x

2
2 ∀x ∈ X (10)

with c1(x)x
2
1 continuously differentiable and such that c1(x) = 1 if x1 ≥ 0 and c1(x) = −1 if x1 < 0 and

x2 ≤ −δ, while c2 is such that c2(x2) = 1 if x2 > −δ and c2(x2) = 0 otherwise. The sets X1 and X2 become

X1 = {x ∈ X : x1 < 0, x2 ≤ −δ } ,

X2 = {x ∈ X : x1 > 0 } ∪ {x ∈ X : x1 = 0, x2 > −δ } .

For Example 3.2, a zero-crossing function h on X = R
3 × {1, 2} for S as in (6) is given by

h(x) = hq(ξ) := (ξ◦1 − ξ1)
2 + (ξ◦2 − ξ2)

2 − a2q ∀x ∈ X , (11)

and the sets X1 and X2 become

X1 =
({
ξ ∈ R

3 : h1(ξ) < 0
}
× {1}

)
∪
({
ξ ∈ R

3 : h2(ξ) < 0
}
× {2}

)
,

X2 =
({
ξ ∈ R

3 : h1(ξ) > 0
}
× {1}

)
∪
({
ξ ∈ R

3 : h2(ξ) > 0
}
× {2}

)
.

For Example 3.3, a zero-crossing function h on X = R
3 × {1, 2} for S as in (7) is given by

h(x) = h(ξ) :=

{
1− |ξ1| |ξ1| < 1 or |ξ1| > 1

0 |ξ1| = 1
∀x ∈ X , (12)

and the sets X1 and X2 become

X1 =
{
ξ ∈ R

3 : |ξ1| > 1
}

X2 =
{
ξ ∈ R

3 : |ξ1| < 1
}
.

A version of the hybrid system H with zero-crossing detection capabilities is denoted
HZCD = (CZCD, fZCD, DZCD, gZCD) and is given by

[
ẋ

ż

]
=

[
f(x)
0

]
=: fZCD(x) (x, z) ∈ CZCD

[
x+

z+

]
=

[
g(x)

h(g(x))

]
=: gZCD(x) (x, z) ∈ DZCD,

(13)

10

where z ∈ R is a memory state, h is a zero-crossing function on X for S, and

CZCD := {(x, z) ∈ X × R : h(x)z ≥ 0 } ,

DZCD := {(x, z) ∈ X × R : h(x)z ≤ 0 } .

The memory state z is added to keep track of whether the state x is in the side of S with h negative (x ∈ X1)
or in the side of S with h positive (x ∈ X2). At jumps, if g(x) ∈ X1, then h(g(x)) < 0. Similarly if g(x) ∈ X2,
then h(g(x)) > 0. The value of z is always reset to h(g(x)) so that after each jump x is in the flow set. In
this way, solutions flow when h(x) and z have the same sign (i.e., h(x)z ≥ 0) and jump when h(x) evaluated
along the solution attempts to take a different sign from that of z (h(x)z ≤ 0).

Note that h(x) captures the term x(t)− x∗ in (8) and (9) (see also (3)). Furthermore, CZCD corresponds
to the condition (8) while DZCD corresponds to (9). The equality included in CZCD does not affect solutions
when the flow map f is not tangent to S.

4.2. A numerical simulation model of HZCD

Given a hybrid system H as in (4) and its augmentation with zero-crossing detection
HZCD = (CZCD, fZCD, DZCD, gZCD) as in (13), a hybrid simulator for HZCD is given by the family of systems
Hs

ZCD
parameterized by step size s satisfying s ∈ (0, s∗], s∗ > 0. The data of the hybrid simulator Hs

ZCD
is

given by (Cs
ZCD

, f s
ZCD

, Ds
ZCD

, gs
ZCD

). The hybrid simulator Hs
ZCD

is given by
[
x+s
z+s

]
=

[
f s(xs)

0

]
=: f s

ZCD
(xs, zs) (xs, zs) ∈ Cs

ZCD
,

[
x+s
z+s

]
=

[
gs(xs)

hs(gs(xs))

]
=: gs

ZCD
(xs, zs) (xs, zs) ∈ Ds

ZCD
,

Cs
ZCD

:= {(xs, zs) ∈ X × R : hs(xs)zs ≥ 0 } ,

Ds
ZCD

:= {(xs, zs) ∈ X × R : hs(xs)zs ≤ 0 } .

The dynamics of the x component for the flows of HZCD have been replaced by the integration scheme
x+s = f s(xs), where f

s is constructed from f . The jump map of HZCD has been replaced by gs
ZCD

, and the
flow and jump sets CZCD and DZCD have been replaced by the sets Cs

ZCD
and Ds

ZCD
, respectively. The function

hs is the discretization of the switching function h, and the memory state variable z has been replaced by
zs. The operation of zs is the discretized equivalent to that of z in HZCD. Because the dynamics of the
hybrid simulator Hs

ZCD
are purely discrete, the solutions to Hs

ZCD
are given on discrete versions of hybrid

time domains as previously described.
Now we revisit the examples and add zero-crossing detection to the models.

Example 4.2. (bouncing ball (revisited)) Consider again the bouncing ball model in Example 3.1 with X ={
x ∈ R

2 : x1 ≥ 0
}
∪
{
x ∈ R

2 : x2 ≤ −δ
}
. When adding zero-crossing detection to the model in (5), we

obtain the hybrid system

fZCD(x, z) =




x2
−M(x1)−N(x1)x2

0


 , gZCD(x, z) =




0
−λx2
h(g(x))




S = {x ∈ X : x1 = 0, x2 ≤ −δ } ,

where g is the jump map of the hybrid system in Example 3.1, and the functions M and N are also given
in Example 3.1. Now consider a hybrid simulator with zero-crossing detection Hs

ZCD
with gs

ZCD
= gZCD,

hs = h, Ss = S, and f s
ZCD

given by the Euler integration scheme, i.e., fs
ZCD

(x, z) = [x⊤z]⊤ + sf(x, z) =

[x⊤z]⊤ + s
[
x2, −M(x1)−N(x1)x2, 0

]⊤
.

Figure 5(a) shows the solution to Hs
ZCD

when γ = 9.81, λ = 0.8, δ = 0.3, ε = 0.15, the initial state is
[x⊤ z]⊤ = [1, 0, 1]⊤, and the step size is s = 0.01. In contrast to the simulator in Example 3.5, notice that
this time the correct results are produced. Figure 5(b) shows a plot of h(x)z, with h as in (10), as a function
of t. Notice that the value of h(x)z switches sign at the same instant that the solution to Hs

ZCD
jumps because

that is the instant where the memory state z changes sign. △

11

0 1 2 3 4 5 6 7 8
-0.2

0

0.2

0.4

0.6

0.8

1
x
1

t

(a) Height of the bouncing ball.

0 1 2 3 4 5 6 7 8
-20

0

20

40

60

80

100

120

140

160

h
(x
)z

t

(b) h(x)z

Figure 5: Solution for Example 4.2 using Hs

ZCD framework.

Example 4.3. (unicycle avoiding obstacle (revisited)) Consider again the unicycle model in Example 3.2.
Adding zero-crossing detection to the model in (6), we obtain the hybrid system

X ⊂ R
3 × {1, 2},

fZCD(x, z) =






v cos(ξ3)
v sin(ξ3)
κ(q, ξ)




0
0



, gZCD(x, z) =




ξ

3− q

h(g(x))




S = ∪q∈{1,2}(Sq × {q})

Sq =
{
ξ ∈ X : (ξ◦1 − ξ1)

2 + (ξ◦2 − ξ2)
2 = a2q

}
,

where g is the jump map of the hybrid system in Example 3.2. Now consider a hybrid simulator with
zero-crossing detection Hs

ZCD
with gs

ZCD
= gZCD, h

s = h, Ss = ∪q∈1,2(Sq × q), and f s
ZCD

given by the Euler

integration, i.e., f s
ZCD

(x, z) = x+ sfZCD(x, z) = x+ s
[
v cos(ξ3), v sin(ξ3), κ(q, ξ), 0, 0

]⊤
.

Figure 6(a) shows a solution to Hs
ZCD

with the control modes given in Example 3.6 when the initial state
is [ξ1 ξ2 ξ3 q z]

⊤ = [0, 0, 0, 1, 1]⊤, and the step size is s = 0.1. Figure 6(b) shows a plot of h(x)z, with
h as in (11), as a function of t. In contrast to the simulation in Example 3.6, the mode changes are made
successfully, and the unicycle reaches the target. △

Example 4.4. (unicycle on a track (revisited)) Consider again the unicycle model in Example 3.3. When
adding zero-crossing detection to the model in (7), we obtain the hybrid system HZCD given by

X ⊂ R
3 × {1, 2},

fZCD(x, z) =






v cos(ξ3)
v sin(ξ3)
κ(q, ξ)




0
0



, gZCD(x, z) =




ξ

3− q

h(g(x))




S = ∪q∈{1,2}(Sq × {q})

S1 = {x ∈ X : ξ1 = 1, q = 1 }

S2 = {x ∈ X : ξ1 = −1, q = 2 } ,

12

�20 0 20 40 60 80
�10

0

10

20

30

40

50

60

70

80

90

100

target

obstacle

ξ1

ξ 2

S1

S2

(a) Solution to unicycle avoiding obstacle example.
Solution starts from (0, 0). The location where jumps
(mode changes) occur are labeled with red circles.

0 2 4 6 8 10 12 14 16 18

×105

-1

0

1

2

3

4

5

6

7

h
(x
)z

t

(b) h(x)z

Figure 6: Solution for Example 4.3 using Hs

ZCD framework.

where g is the jump map of the hybrid system in Example 3.3. Now consider a hybrid simulator for this
system, denoted Hs

ZCD
, with gs

ZCD
= gZCD, h

s = h, Ss = ∪q∈{1,2}(Sq×{q}), and f s
ZCD

given by Euler integration,

i.e., f s
ZCD

(x, z) = x + sfZCD(x, z) = x + s
[
v cos(ξ3), v sin(ξ3), −ξ3 + κ(q, ξ), 0, 0

]⊤
. Figure 7(a) shows a

solution to Hs
ZCD

with the control law κ(1, ξ) = π
4 − ξ3 and κ(2, ξ) = 3π

4 − ξ3 when the initial state is
[ξ1 ξ2 ξ3 q z]

⊤ = [0, 0, π
4 , 1, 1]

⊤, and the step size is s = 0.1. In contrast to the simulation in Example 3.7,
the mode changes are made successfully. In fact, when the unicycle encounters the boundary, the solution
jumps, and, with some overshoot, the unicycle is steered back inside the track. Figure 7(b) shows a plot of
h(x)z, with h(x) as in (12), as a function of t. △

0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5

t

ξ 1

(a) Solution of unicycle on track example. Solution
starts from (ξ1, ξ2, ξ3) = (0, 0, π/4).

2 4 6 8 10 12 14

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

h
(x
)z

t

(b) h(x)z

Figure 7: Solution for Example 4.4 using Hs

ZCD framework.

13

5. Main Results

In this section, we investigate properties of HZCD, state results addressing the previous concerns of
measurement noise and robustness, and give properties of the simulation framework for hybrid systems
incorporating zero-crossing detection.

5.1. Nominal Properties of HZCD

Given H as in (4), we are interested in conditions on the data of a hybrid system H under which HZCD

has basic regularity properties leading to robustness to perturbations. For this reason, the following mild
conditions are imposed on the data of H.

Assumption 5.1. Given a hybrid system H = (C, f,D, g) as in (4) with associated sets X and S, the
following conditions hold:

1. X is closed (relative to R
n);

2. f : Rn → R
n is continuous on X ;

3. g : Rn → R
n is continuous on X ;

4. There exists a continuous zero-crossing function h on X for S.

The following lemma shows that, under these assumptions, HZCD has regular data by construction.

Lemma 5.2. (regularity of data of HZCD) Suppose that a hybrid system H = (C, f,D, g) as in (4) with
associated sets X and S satisfies Assumption 5.1. Then, the data of HZCD is such that CZCD and DZCD are
closed, and fZCD and gZCD are continuous.

Proof. For every sequence (ui, vi) ∈ CZCD with limi→∞(ui, vi) = (u∗, v∗), we have, by definition of CZCD,
h(ui)vi ≥ 0. Using the continuity of h, limi→∞ h(ui) = h(u∗). Then, 0 ≤ limi→∞ h(ui) limi→∞ vi = h(u∗)v∗.
This implies that (u∗, v∗) ∈ CZCD and, hence, that CZCD is closed. It follows similarly that DZCD is closed.
Continuity of fZCD and of gZCD follows directly from their definition and the continuity of f , h, and g. �

When the flows of the hybrid system are transverse to the switching surface and the jump map does
not map points back to the switching surface, the construction of HZCD is such that it captures all of the
solutions to H (and vice versa). The following proposition states this transversality condition.

Proposition 5.3. (properties of solutions to HZCD) Given a hybrid system H = (C, f,D, g) as in (4) with
associated sets X and S, assume the following:

1. f : Rn → R
n is continuous on X ;

2. Every maximal solution from D to

ẋ = f(x) x ∈ C (14)

is trivial, i.e., each maximal solution φ to (14) with φ(0, 0) ∈ D is such that domφ = {(0, 0)}.

3. The jump map g satisfies g(x) 6∈ D for all x ∈ D.

Then, for every solution φ to H, there exists a solution ψ to HZCD such that φ ≡ ψx, where ψx denotes
the x component of ψ. Furthermore, for every solution ψ to HZCD there exists a solution φ to H such that2

ψx ≡ φ.

2 There exist solutions ψ′ to HZCD that start from D and initially jump due to the value of z, that is, (0, 1) is an element
of domψ′. For such solutions, the equivalence ψx ≡ φ holds for the solution to HZCD defined as ψ(t, j) = ψ′(t, j + 1) for each
(t, j) ∈ domψ′.

14

Proof. Let φ be a solution to H starting from X \ S, which exists due to item 1, and let {tj+1}
jmax

j=0 ,
jmax = supj{domφ} − 1, be the sequence determining the jump instants (tj+1, j) of φ. First, fix j = 0. By
definition of solutions to H, we have φ(t, 0) ∈ X \ S for all t ∈ (0, t1). Without loss of generality, using
the definition of h, we can assume that, for all t ∈ (0, t1), we have φ(t, 0) ∈ X2, i.e., h(φ(t, 0)) > 0. By
definition of the jump set of H, we have h(φ(t1, 0)) = 0. By item 2, flows are not possible for t > t1. Then,
the function ψ = [ψ⊤

x ψz]
⊤ defined for all t ∈ [0, t1] as ψx(t, 0) = φ(t, 0), ψz(t, 0) = h(φ(0, 0)) is a maximal

solution to
ẋ = f(x)
ż = 0

}
(x, z) ∈ CZCD.

Now, let j = 1 and note that by the condition on g and S in item 3 of the assumptions we have φ(t1, 1) =
g(φ(t1, 0)) 6∈ D. If φ(t1, 1) 6∈ X or φ(t1, 1) is a point in the boundary of X from where flowing into X \ S is
not possible, then the augmentation of ψ by ψx(t1, 1) = φ(t1, 1), ψz(t1, 1) = h(φ(t1, 1)) finishes the proof.
Otherwise, there exists t2 > t1 such that φ(t, 1) ∈ X \ S for all t ∈ (t1, t2). The argument for j = 0 can
be applied again (and successively) to augment ψ and construct a solution ψ. The other direction follows
using a similar construction. �

The properties in Proposition 5.3 guarantee that solutions to HZCD do not get repeatedly mapped to nor
“slide” along (tangent to) the switching surface S. We now check these properties for Examples 3.1, 3.2,
and 3.3. Considering item 1, it is easy to see that f in each of the Examples 3.1, 3.2, and 3.3 is continuous
on X by inspection. Satisfaction of item 2 for Examples 3.1, 3.2, and 3.3 can be confirmed by noting that
f on D points outward of C (see also Figures 5, 6, and 7).

To check item 3, we first compute g(D) and then show that g(D)∩D = ∅ for each example. For Example
3.1, g(D) =

{
x ∈ R

2 : x1 = 0, x2 ≥ λδ
}
. Therefore, g(D) ∩D = ∅ because λδ > −δ, so item 3 is satisfied

for Example 3.1. For Example 3.2,

g(D) =
{
(ξ, q) ∈ R

3 × {1, 2} : (ξo1 − ξ1)
2 + (ξo2 − ξ2)

2 = a1, q = 2
}
∪

{
(ξ, q) ∈ R

3 × {1, 2} : (ξo1 − ξ1)
2 + (ξo2 − ξ2)

2 = a2, q = 1
}
.

The value of q always switches thereby ensuring that g(D) ∩D = ∅, so item 3 is satisfied for Example 3.2.
For Example 3.3,

g(D) =
{
(ξ, q) ∈ R

3 × {1, 2} : ξ1 = 1, q = 2
}
∪
{
(ξ, q) ∈ R

3 × {1, 2} : ξ1 = −1, q = 1
}
.

Again, g(D) ∩D = ∅ because of the same reasoning as that for Example 3.2. Therefore, items 1, 2, and 3
in Proposition 5.3 are satisfied in Examples 3.1, 3.2, and 3.3.

5.2. Robustness to measurement noise of HZCD

Next we show that HZCD is robust to measurement noise. This is proven by embedding the hybrid
system HZCD with measurement noise e, denoted He

ZCD
, into an inflated version of HZCD. More precisely,

given ε1 > 0, HZCD is inflated via an outer perturbation giving the perturbed hybrid system

Hε1
ZCD

:

{
ẋ ∈ cofZCD(x+ ε1B) x ∈ Cε1

ZCD

x+ ∈ gZCD(x+ ε1B) x ∈ Dε1
ZCD

,
(15)

where co denotes the closed convex hull operation, and

Cε1
ZCD

:= {x ∈ R
n : (x+ ε1B) ∩ CZCD 6= ∅ }

Dε1
ZCD

:= {x ∈ R
n : (x+ ε1B) ∩DZCD 6= ∅ } .

(16)

This perturbed hybrid system is such that it captures all of the solutions to He
ZCD

with measurement noise
e : dom e→ ε1B. Under the conditions in Assumption 5.1, it follows that every solution to Hε1

ZCD
is close (in

an appropriate sense and on compact hybrid time domains) to an unperturbed solution to HZCD. Then, the
equivalence result in Proposition 5.3 permits relating these solutions to those of H.

15

Before presenting the robustness result, we introduce a notion of closeness of hybrid arcs from [19]. The
same property can be defined for two discrete arcs as well as for a hybrid arc and a discrete arc; see [20] for
more details.

Definition 5.4. ((T, J, µ)-closeness) Given T, J ≥ 0 and µ > 0, two hybrid arcs x1 : domx1 → R
n and

x2 : domx2 → R
n are (T, J, µ)-close if

(a) for all (t, j) ∈ domx1 with t ≤ T, j ≤ J there exists s such that (s, j) ∈ domx2, |t− s| < µ, and

|x1(t, j)− x2(s, j)| < µ,

(b) for all (t, j) ∈ domx2 with t ≤ T, j ≤ J there exists s such that (s, j) ∈ domx1, |t− s| < µ, and

|x2(t, j)− x1(s, j)| < µ.

Theorem 5.5. (robustness of HZCD to measurement noise) Suppose that a hybrid system H = (C, f,D, g)
as in (4) with associated sets X and S satisfy Assumption 5.1 and items 2 and 3 of Proposition 5.3. Let
K ⊂ R

n be a compact set such that every maximal solution φ to H with φ(0, 0) ∈ K is either bounded or
complete. Then, for every µ > 0 and (T, J) ∈ R≥0 × N there exists ε∗ > 0 such that, for every measurable
signal e : dom e→ εB, 0 < ε ≤ ε∗, every solution ψe to He

ZCD
with3 ψe

x(0, 0) ∈ K+εB, ψe
z(0, 0) = h(ψe

x(0, 0)),
is such that there exists a solution φ to H with φ(0, 0) ∈ K such that ψe

x and φ are (T, J, µ) close.

Proof. Using Assumption 5.1, by Lemma 5.2, HZCD is such that CZCD and DZCD are closed, and fZCD and
gZCD are continuous. Let e : dom e → ε1B, with ε1 > 0 to be specified later, and consider the inflation of
HZCD given by (15)-(16). By construction, each solution to He

ZCD
is a solution to Hε1

ZCD
. Using [20, Theorem

3.4], we have that, for every µ1 > 0 and given (T, J), there exists ε∗1 such that, for each ε1 ∈ (0, ε∗1], for each
solution ψε1 to Hε1

ZCD
with ψε1

x (0, 0) ∈ K + ε1B (in particular, those that are solutions to He
ZCD

) there exists
a solution ψ to HZCD with ψx(0, 0) ∈ K that is (T, J, µ1)-close to ψ

ε1 (and, in particular, since each solution
to He

ZCD
is a solution to Hε1

ZCD
, to the associated solution ψe). Using Assumption 5.1 and items 2 and 3 of

Proposition 5.3, the claim follows with ε∗ = ε∗1 and µ = µ1 using the second result in Proposition 5.3, which
implies that there exists a solution φ to H with the property ψe

x ≡ φ. �

5.3. Properties of Hs
ZCD

As pointed out in Section 3.2, a hybrid simulator for H that simply discretizes its dynamics may not be
capable of reproducing the jumps of the solutions to H; see, e.g., [15, 16]. As a consequence, solutions to H
cannot be reproduced by Hs with arbitrary precision. In this section, we present conditions on the data of
Hs that guarantee that when zero-crossing detection is incorporated, which results in the hybrid simulator
Hs

ZCD
, solutions to H can be reproduced with arbitrary precision. To this end, the following conditions on

the data of Hs are imposed.

Assumption 5.6. The data f s and gs of the hybrid simulator Hs = (Cs, f s, Ds, gs) for the hybrid system
H = (C, f,D, g) and the associated zero-crossing function hs satisfy the following:

(B0) f s is such that, for each compact set K ⊂ R
n, there exists ρ ∈ K∞ and s∗ > 0 such that for each

x ∈ Cs ∩K and each s ∈ (0, s∗],

f s(x) ∈ x+ s co f(x+ ρ(s)B) + sρ(s)B;

3ψe

x
denotes the x component of ψ and ψe

z
the z component.

16

(B1) gs is such that for any positive sequence {si}∞i=1, si ց 0,

lim
siց0

gsi(x) = g(x) ∀x ∈ R
n;

(B2) hs is such that for any positive sequence {si}∞i=1, si ց 0,

lim
siց0

hsi(x) = h(x) ∀x ∈ R
n.

Integration schemes such as Euler, as in Examples 3.5, 3.6, and 3.7, and Runge-Kutta satisfy condition (B0).
Conditions (B1) and (B2) hold when the perturbed functions are continuous in the step size; see also [20,
Examples 4.8 and 4.9].

When the data of the simulator Hs and zero-crossing function associated with H satisfy Assumption 5.6,
the data of Hs

ZCD
have regularity properties guaranteeing closeness between the solutions to H and its

simulations obtained via Hs
ZCD

. The next lemma formalizes this fact.

Lemma 5.7. (regularity of data of Hs
ZCD

) AssumeHs = (Cs, f s, Ds, gs) and hs are such that Assumption 5.6
hold. Then, Hs

ZCD
= (Cs

ZCD
, f s

ZCD
, Ds

ZCD
, gs

ZCD
) is such that f s

ZCD
and gs

ZCD
satisfy (B0) and (B1), respectively, in

Assumption 5.6, and Cs and Ds are such that

(B3) for any positive sequence {si}∞i=1 such that si ց 0, lim supi→∞ Csi ⊂ C, lim supi→∞Dsi ⊂ D,
where lim supi→∞ Csi , lim supi→∞Dsi are the outer limits of the sequence of sets Csi , Dsi , respec-
tively.

Proof. Since f s and gs satisfy (B0) and (B1), by construction, the functions f s
ZCD

and gs
ZCD

also satisfy
(B0) and (B1). Let si ց 0 be a positive sequence and take (x′, z′) ∈ Csi = {(x, z) : hsi(x)z ≥ 0 }. Since
hs satisfies (B2), we have that there exists δi > 0, δi ց 0, and N > 0 such that hsi(x′) ∈ h(x′) + δiB for all
i > N . It follows that Csi ⊂ C ∪ δiB for all i > N . Then, using [24, Proposition 5.12], Csi satisfies (B3).
Similar arguments show that Dsi satisfies (B3). �

As pointed out in Section 3.2, solutions to H cannot be approximated by Hs with arbitrary precision.
However, on finite simulation horizons (T, J), the solutions to hybrid simulators Hs

ZCD
, with data satisfying

(B0)-(B3), can approximate the solutions to H with arbitrary precision, and this key relationship between
the solutions to H and its simulations via Hs

ZCD
is stated in the following result.

Theorem 5.8. (closeness between solutions to H and Hs
ZCD

) Suppose that a hybrid system H = (C, f,D, g)
as in (4) with associated sets X and S satisfies Assumption 5.1 and items 2 and 3 of Proposition 5.3.
Furthermore, suppose Hs

ZCD
satisfies Assumption 5.6. Then, for every compact set K ⊂ R

n, µ > 0, and
simulation horizon (T, J) ∈ R≥0 × N there exists s∗ > 0 with the following property: for any s ∈ (0, s∗]
and any solution ψs

x(0, 0) ∈ K there exists a solution φ to H with φ(0, 0) ∈ K such that ψs
x and φ are

(T, J, µ)-close.

Proof. Using Assumption 5.1, by Lemma 5.2, HZCD is such that CZCD and DZCD are closed, and fZCD and
gZCD are continuous. Using Assumption 5.6, by Lemma 5.7, Hs

ZCD
is such that f s

ZCD
and gs

ZCD
satisfy (B0) and

(B1) in Assumption 5.6, and Cs and Ds satisfy (B3). Using [20, Theorem 5.2], it follows that for every K,
µ > 0, and (T, J) as in the statement, there exists s∗ > 0 with the following property: for every s ∈ (0, s∗]
and every solution ψs to Hs

ZCD
with ψs

x(0, 0) ∈ K there exists a solution ψ to HZCD with ψx(0, 0) ∈ K such
that ψs and ψ are (T, J, µ)-close. The proof of the claim is complete after an application of Proposition 5.3,
which permits obtaining a solution φ to H that is equivalent to ψx. �

17

Example 5.9. (unicycle avoiding obstacle (revisited)) Consider the unicycle model with zero-crossing de-
tection in Example 4.3. The results of Theorem 5.8 are illustrated by plotting the solutions of Hs

ZCD
from

Example 4.3 for different step sizes. Figure 8 shows the exact solution (in black) and simulated solutions
(in blue) in the same plot. Figure 8(b) shows a zoomed in version of Figure 8(a). Similarly, Figure 9 shows
the hybrid arc solution and closeness of the simulated solution to the exact solution in a finite simulation
horizon (T, J). Figure 9(b) shows a zoomed in version of Figure 9(a). Notice that the simulated solutions
converge to the exact solution as the step size is decreased. △

�20 0 20 40 60 80
�10

0

10

20

30

40

50

60

70

80

90

100

obstacle

target

ξ1

ξ 2

S1

S2

(a) Exact solution (in black), and simulated solutions
with decreasing step size (in blue *).

5 10 15 20 25 30 35 40

35

40

45

50

55

60

65

obstacle

ξ1

ξ 2 S1

S2

(b) Zoomed in version showing closeness. Exact so-
lution shown as solid black line.

Figure 8: Closeness between exact solution and simulated solutions of Example 3.2. Solutions start from (0, 0).

0
1
2

0
5

10
15

0

10

20

30

40

50

ξ 1

t j

(a) Discrete arc (blue *), exact hybrid arc solution
(black), and exact hybrid time domain (red) are
shown.

(b) Zoomed in version showing closeness.

Figure 9: Closeness between exact hybrid arc solution and simulated solutions of Example 3.2.

5.4. Application to hybrid systems H with asymptotically stable compact sets

In this section, we consider the setting when a compact set is asymptotically stable for the hybrid system
H in (4). This is the case when there exists a compact set A ⊂ R

n with the following properties:

18

• stable if for each ε > 0 there exists δ > 0 such that each solution φ to H with |φ(0, 0)|A ≤ δ satisfies
|φ(t, j)|A ≤ ε for all (t, j) ∈ domφ;

• attractive if there exists µ > 0 such that every solution φ to H with |φ(0, 0)|A ≤ µ is bounded and if
it is complete satisfies lim(t,j)∈domφ,t+j→∞ |φ(t, j)|A = 0;

• asymptotically stable if stable and attractive.

When the attractivity property holds for every solution starting from C ∪D, a stable compact set A is said
to be globally asymptotically stable.

Whether or not a hybrid simulator preserves the asymptotic stability properties of H depends on the
effect of perturbations. Therefore, in light of the lack of robustness of H to measurement noise pointed out
in Proposition 3.4, it is not expected for Hs to preserve asymptotic stability because numerical integration
can be interpreted similarly as a perturbation. In spite of this, the simulator with zero-crossing detection
given by Hs

ZCD
, when designed with regular data, does, in fact, preserve stability as stated in the following

result.

Theorem 5.10. (semiglobal practical stability) Suppose that a hybrid system H = (C, f,D, g) as in (4)
with associated sets X and S satisfies Assumption 5.1 and items 2 and 3 of Proposition 5.3. Furthermore,
suppose that A is a globally asymptotically stable compact set for H and that Hs

ZCD
satisfies Assumption 5.6.

Then, A is semiglobally practically asymptotically stable for Hs
ZCD

, i.e., there exists β ∈ KL such that, for
every compact set K ⊂ R

n, ε > 0, and simulation horizon (T, J) ∈ R≥0 × N there exists s∗ > 0 such that,
for each s ∈ (0, s∗], every solution φs to Hs

ZCD
with φs(0, 0) ∈ K satisfies for all (k, j) ∈ domφs

|φs(k, j)|A ≤ β(|φs(0, 0)|A, ks+ j) + ε.

Proof. By the equivalence of solutions in Proposition 5.3, A is globally asymptotically stable for HZCD.
Using the assumptions, Lemma 5.2 and Lemma 5.7 imply that HZCD and Hs

ZCD
have regular data. It follows

that the conditions in the semiglobal practical asymptotic stability result for general simulators in [20,
Theorem 5.3] hold for these systems, which establishes the claim. �

The semiglobal practical asymptotic stability property established in the result above holds for sufficiently
small step size. The bound s∗ on the step size s decreases with ε, which defines the level of closeness to A
that solutions to Hs should arrive at.

Our final result follows directly from [20, Theorem 5.4], Proposition 5.3, Lemma 5.2, and Lemma 5.7. It
establishes that the semiglobally asymptotically stable set for Hs

ZCD
, denoted As, converges to A as the step

size s becomes smaller. In other words, the set As depends continuously on the step size.

Theorem 5.11. (continuity of asymptotically stable sets) Suppose the assumptions of Theorem 5.10 hold.
Then, there exists s∗ > 0 such that for each s ∈ (0, s∗], the hybrid simulator Hs

ZCD
has a semiglobally

asymptotically stable compact set As satisfying dH(As,A) → 0 as sց 0.

Example 5.12. (bouncing ball (revisited)) Recall Example 3.5 where the solutions to a bouncing ball example
pass through the surface on which it is supposed to bounce. We know that the origin, i.e., the compact set
A = {(0, 0)}, is globally asymptotically stable for HZCD, but when solutions pass through S, this stability
property no longer holds. This means that in Example 3.5, the origin is not globally asymptotically stable
for Hs because every solution does not converge to the origin. This can be seen in Figure 1(a). However,
if we instead simulate the bouncing ball example with the Hs

ZCD
framework, the stability property holds.

This property is highlighted in Figure 10 which shows the tail of a simulated solution to Hs
ZCD

as given in
Example 4.2 with γ = 9.81, λ = 0.8, δ = 0.3, ε = 0.15, the initial state [x⊤ z]⊤ = [1, 0, 1]⊤, and step size
s = 0.001. As a result of the non-Zeno bouncing ball model, the tail of this simulated solution shows the
height of the ball oscillating between positive and negative values. In this way, the solution is asymptotically
converging to the compact set A = {(0, 0)}, which follows from Theorem 5.10. △

19

112 113 114 115 116 117 118 119 120

×10 -3

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x
1
,x

2

t

Figure 10: Tail of a solution to the bouncing ball in Example 4.2. Height (x1) is denoted in blue, and velocity (x2) is denoted
in red. Following Theorem 5.10, the solution is asymptotically converging to the compact set A = {(0, 0)}.

6. Conclusion

A mathematical framework for hybrid systems incorporating zero-crossing detection algorithms was
introduced. Unlike previous work in the literature, the proposed framework allows for analytical study of
the effects of zero-crossing detection algorithms in the simulation of hybrid systems. Adverse effects of
perturbations in hybrid systems jumping on surfaces was highlighted, and a hybrid model and simulator
incorporating zero-crossing detection were proposed. We established that the resulting system with zero-
crossing detection is robust to measurement noise and to discretization effects in numerical simulation.
Our results suggest that integration schemes with zero-crossing detection algorithms actually compute the
solutions of a robustified version of the fragile nominal model. These results are assured when the simulator
is implemented numerically using standard available solvers, so this approach is suitable for simulation of
complex systems, e.g. hybrid and cyber-physical systems. These results were illustrated in several numerical
examples throughout the paper.

7. Acknowledgements

This research has been partially supported by the National Science Foundation under CAREER Grant
no. ECS-1150306 and by the Air Force Office of Scientific Research under Grant no. FA9550-12-1-0366.

References

[1] D. D. Bainov and P. S. Simeonov. Systems with Impulse Effect: Stability, Theory, and Applications. Ellis Horwood
Limited, 1989.

[2] M. Boccadoro, Y. Wardi, M. Egerstedt, and E. Verriest. Optimal control of switching surfaces in hybrid dynamical
systems. Discrete Event Dynamic Systems-Theory and Applications, 15(4):433–448, 2005.

[3] B. Morris and J. W. Grizzle. Hybrid invariant manifolds in systems with impulse effects with application to periodic
locomotion in bipedal robots. IEEE Trans. Aut. Control, 54(8):1751–1764, 2009.

[4] J. C. Clegg. A nonlinear integrator for servomechanisms. Transactions A.I.E.E., 77(Part II):41–42, 1958.
[5] K. R. Krishnan and I. M. Horowitz. Synthesis of a non-linear feedback system with significant plant-ignorance for prescribed

system tolerances. International Journal of Control, 19:689–706, 1974.
[6] O. Beker, C. V. Hollot, Y. Chait, and H. Han. Fundamental properties of reset control systems. Automatica, 40(6):905–915,

2004.
[7] L. Zaccarian, D. Nesic, and A. R. Teel. First order reset elements and the clegg integrator revisited. Proc. 24th American

Control Conference, pages 563–568, 2005.
[8] V. Chellaboina, S. P. Bhat, and W. H. Haddad. An invariance principle for nonlinear hybrid and impulsive dynamical

systems. Nonlinear Analysis, Theory, Methods and Applications, 53:527–550, 2003.

20

[9] R. C. Arkin. Behavior Based Robotics. The MIT Press, 1998.
[10] M. Egerstedt. Behavior based robotics using hybrid automata. Hybrid Systems: Computation and Control Lecture Notes

in Computer Science, 1790:103–116, 2000.
[11] V. Donde and I. A. Hiskens. Shooting methods for locating grazing phenomena in hybrid systems. International Journal

of Bifurcation and Chaos, 16(03):671–692, 2006.
[12] R. G. Sanfelice, R. Goebel, and A. R. Teel. Generalized solutions to hybrid dynamical systems. ESAIM: Control,

Optimisation and Calculus of Variations, 14(4):699–724, 2008.
[13] The Mathworks, Inc. Hit Crossing. http://www.mathworks.com/help/simulink/slref/hitcrossing.html, 1984-2015.
[14] L. Shampine, I. Gladwell, and R. Brankin. Reliable solution of special event location problems for ODEs. ACM Transac-

tions on Mathematical Software, 17(1):11–25, 1991.
[15] J. M. Esposito, V. Kumar, and G. J. Pappas. Accurate event detection for simulating hybrid systems. In Hybrid Systems:

Computation and Control: 4th International Workshop, pages 204–217, 2001.
[16] F. Zhang, M. Yeddanapudi, and P. J. Mosterman. Zero-crossing location and detection algorithms for hybrid system

simulation. In 17th IFAC World Congress, pages 7967–7972, 2008.
[17] S. Burden, H. Gonzalez, R. Vasudevan, R. Bajcsy, and S. S. Sastry. Numerical integration of hybrid dynamical systems

via domain relaxation. In 50th IEEE Conference on Decision and Control, pages 3958–3965, December 2011.
[18] D. A. Copp and R. G. Sanfelice. On the effect and robustness of zero-crossing detection algorithms in simulation of hybrid

systems jumping on surfaces. In Proc. 31st American Control Conference, pages 2449–2454, 2012.
[19] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dynamical systems. IEEE Control Systems Magazine, pages 28–93,

2009.
[20] R. G. Sanfelice and A. R. Teel. Dynamical properties of hybrid systems simulators. Automatica, 46(2):239–248, 2010.
[21] R. G. Sanfelice and A. R. Teel. A nested matrosov theorem for hybrid systems. In Proc. 27th American Control Conference,

pages 2915–2920, 2008.
[22] R. G. Sanfelice, D. A. Copp, and P. Ñañez. A toolbox for simulation of hybrid systems in Matlab/Simulink: Hybrid

equations (HyEQ) Toolbox. In 16th International Conference on Hybrid Systems: Computation and Control, pages
101–106, 2013.

[23] R. I. Leine and H. Nijmeijer. Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer, 2004.
[24] R. T. Rockafellar and R. J-B Wets. Variational Analysis. Springer, 1998.

21

	Introduction
	Notation
	Hybrid Systems Jumping on Surfaces
	Nonrobustness to measurement noise
	Properties of numerical simulations of H

	A hybrid model for hybrid systems jumping on surfaces with zero-crossing detection
	A hybrid system model of H with zero-crossing detection
	A numerical simulation model of HZCD

	Main Results
	Nominal Properties of HZCD
	Robustness to measurement noise of HZCD
	Properties of HsZCD
	Application to hybrid systems H with asymptotically stable compact sets

	Conclusion
	Acknowledgements

