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Abstract— In this paper, stability properties for discrete-time
dynamical systems with set-valued states are studied. We use
previous results on detectability and invariance properties to
present an extension of Krasovskii and Lyapunov stability
results for set dynamical systems, under the assumption of
outer semicontinuity of the set-valued maps that define the
system’s dynamics. We also propose a formulation for closed-
loop control systems with state-feedback, within the framework
of set dynamical systems. Examples illustrate the results.

I. INTRODUCTION

Convergence and stability properties of dynamical sys-
tems are key topics in control systems design. The task
of guaranteeing stability for closed-loop dynamics becomes
particularly challenging in the presence of varying parame-
ters, noise in the state, or general disturbances. One practical
approach to model these behaviors is to represent variation
ranges as sets, and to take advantage of already available set-
theoretic methods to characterize their effects on the system
and then specify system performance in control design [1]
[2]. Formulations based on set-theoretic frameworks involve
the use of techniques based on the properties of subsets of
the state space, such as invariant sets theory.

A particular such approach involves the study of beha-
vioral properties of systems, where set-valued states account
for representing variables or multivalued signals. Early re-
sults in this direction include the work by Pelczar [3], where
a type of generalized systems is presented and basic stability
properties are studied, with follow-up developments for the
study of limit sets in [4] and [5]. Notions of reachability for
generalized pseudo dynamical systems are formally studied
in [6], and properties of systems with set-valued states in
continuous time are studied in [7]. Other contributions to
describe this type of systems can be found in [8]. More
recently, results associated to controlled invariant sets for
systems using a set-valued state approach can be found in [9],
for the case of state-feedback using set iteration, and in [10],
for the case of output feedback, where set invariance results
for bounded disturbances are obtained using information sets
as a parameter for the calculation of the control input. For
the characterization of convergence and general properties
of solutions to systems with set-valued states, called set
dynamical systems, see [11]. Detectability and invariance
principles in the same framework are presented in [12].
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Even though results to characterize stability and con-
vergence of solutions for systems with set-valued states
exist, tools that resemble those of classical Lyapunov based
methods have not yet been fully developed, to the best
knowledge of the authors. This paper presents such tools
for set dynamical systems.

Set dynamical systems are discrete-time systems whose
state evolution is defined in Euclidean space by a set-valued
map and a constraint given in terms of a set. Solutions
associated to such systems are given by sequences of sets,
rather than just by sequences of single points, as in the
case of classical dynamical systems. We study the stability
properties of set dynamical systems and propose a formu-
lation for state-feedback control with set-valued states. We
follow similar ideas to those existing for classical dynamical
systems and use recent results on convergence via invariance
principles for set dynamical systems in [11], [12] to generate
versions of Krasovskii and Lyapunov stability theorems for
set dynamical systems. We also provide sufficient conditions
for the design of stabilizing state-feedback controllers for
such systems. Although results characterizing invariance for
systems with set-valued states for discrete time-systems are
available (see [10]), our approach provides a general frame-
work along with tools to analyze stability using Lyapunov-
like functions.

This paper is organized as follows. After basic notation is
introduced, Section II presents the framework for set dynam-
ical systems, along with basic concepts and properties that
are relevant to characterize their behavior. The main results
of the paper are presented in Section III and Section IV.
In Section III, the Krasovskii and Lyapunov Theorems for
set dynamical systems are presented, while the formulation
of state-feedback control with set-valued states is presented
in Section IV. Results are illustrated in examples along the
paper. Complete proofs will be published elsewhere.

II. PRELIMINARIES ON SET DYNAMICAL SYSTEMS

A. Notation

The following notation is used throughout this paper. N
denotes the natural numbers including 0, i.e., N = {0, 1, . . .}.
Rn denotes the n-dimensional Euclidean space. R≥0 denotes
the nonnegative real numbers. B denotes the closed unit ball
around the origin in Euclidean space. domV denotes the
domain of definition for the map V . Given x ∈ Rn, |x|
denotes the Euclidean vector norm. For a closed set A ⊂ Rn
and x ∈ Rn, we define the distance |x|A = infy∈A |x − y|.
The empty set is represented by ∅. Given a function V :
domV → R and a constant r ∈ R, its r-sublevel set is
given by LV (r) := {x ∈ domV : V (x) ≤ r }. In most



cases, lower case letters are used to represent singletons and
uppercase letters are used to refer set-valued variables.

B. Properties of sets
Some basic definitions and properties that are used to

characterize set dynamical systems are given in this section.

Definition 2.1 (Distance between sets): The Hausdorff
distance between two closed sets A1, A2 ⊂ Rn is given by

d(A1,A2) = max

{
sup
x∈A1

|x|A2
, sup
z∈A2

|z|A1

}
Definition 2.2 (inner and outer limit): For a sequence of

sets {Ti}∞i=0 in Rn:
• The inner limit of the sequence {Ti}∞i=0, denoted

lim infi→∞ Ti, is the set of all x ∈ Rn for which there
exist points xi ∈ Ti, i ∈ N, such that limi→∞ xi = x.

• The outer limit of the sequence {Ti}∞i=0, denoted
lim supi→∞ Ti, is the set of all x ∈ Rn for which there
exist a subsequence {Tik}∞k=0 of {Ti}∞i=0 and points
xk ∈ Tik , k ∈ N, such that limk→∞ xk = x.

The limit of the sequence exists if the outer and the inner
limit sets are equal, namely

lim
i→∞

Ti = lim inf
i→∞

Ti = lim sup
i→∞

Ti

The inner and outer limit of a sequence always exist and are
closed, although the limit itself might not exist.

Definition 2.3: [13, Convergence of a sequence of sets]
When the limit of the sequence {Ti}∞i=0 in Rn exists in the
sense of Definition 2.2, and is equal to T , the sequence of
sets {Ti}∞i=0 is said to converge to the set T .

C. Set Dynamical Systems with outputs
We consider set dynamical systems defined by

X+ = G(X)

Y = H(X)

X ⊂ D
(1)

where X is the set-valued state, Y is the system’s output,
G : Rn ⇒ Rn and H : Rn ⇒ Rm are set-valued maps
defining the right-hand side and the output map, respectively,
and D ⊂ Rn defines a constraint that solutions to the system
must satisfy. A solution to the system in (1) is defined as
the sequence of nonempty sets {Xj}Jj=0 and its associated
output is defined by the sequence {Yj}Jj=0, J ∈ N ∪ {∞},
satisfying1

Xj+1 = G(Xj)

Yj = H(Xj)

Xj ⊂ D

for all j ∈ domXJ , where domXJ is the domain of
definition of the solution {Xj}Jj=0, which is given by the
collection {0, 1, 2, . . . , J}∩N. The first entry of the solution,
X0, is the initial set. We assume X0 to be compact. If a
solution has J = 0 then we say that it is trivial, and if it

1The solution is defined as a collection of sets, but its elements for each
j are used to evaluate G and H .

has J > 0 we say that it is nontrivial. If it has J = ∞,
we say that it is complete. A solution {Xj}Jj=0 is said to be
maximal if it cannot be further extended. Given an initial set
X0 ⊂ Rn, S(X0) denotes the set of maximal solutions to (1)
from X0

2.
To make notation easier to follow, at times, the collection

of sets given by the sequence {Xj}Jj=0 is represented as Xj
(or even just X). Notation {Xij}∞i=0 refers to the sequence
of solutions Xij , indexed by i, where j is the associated
discrete time. We make the same notational simplification
when referring to the output Y . Also, the term solution-
output pair {X,Y} is used to represent a solution X and
its associated output Y = H(X).

Now we provide some basic definitions and assumptions
for set dynamical systems that will be used in the following
sections.

Definition 2.4 (outer semicontinuity): The set-valued map
G : Rn ⇒ Rn is outer semicontinuous at x ∈ Rn if for each
sequence {xi}∞i=0 converging to x ∈ Rn and each sequence
{yi}∞i=0 such that yi ∈ G(xi) for each i, converging to y, it
holds that y ∈ G(x). It is outer semicontinuous if G is outer
semicontinuous at each x ∈ Rn.

Definition 2.5 (locally bounded): The set-valued map G :
Rn ⇒ Rn is locally bounded if, for each compact set K ⊂
Rn, there exists a compact set K ′ ⊂ Rn such that G(K) ⊂
K ′.

We consider the following concept of invariance and
omega limit set for set dynamical systems

Definition 2.6 (forward and backward invariance):
A set M ⊂ Rn is said to be forward invariant for (1) if
for every set T ⊂ M ∩ D we have G(T ) ⊂ M ∩ D. A
set M ⊂ Rn is said to be backward invariant for (1) if for
every set T ′ ⊂ M∩D for which there exists a set T with
the property T ′ = G(T ), we have T ⊂ M ∩ D for every
such set T . A set M ⊂ Rn is said to be invariant if it is
both forward and backward invariant.

Definition 2.7 (ω-limit set): The ω-limit set of a solution
{Xj}Jj=0 to (1) is given by

ω̃(Xj) = {Y ⊂ Rn : ∃{ji}∞i=0, lim
i→∞

ji =∞, Y = lim
i→∞

Xji}

Note that ω̃(Xj) is a collection of sets.

In the following sections, some results for set dynamical
systems are presented under the following assumption on
their data.

Assumption 2.8: The set dynamical system defined in (1),
with data (D,G,H) satisfies the following properties:

(A0) The set-valued map G : Rn ⇒ Rn is outer semicon-
tinuous, locally bounded, and, for each x ∈ D, G(x)
is a nonempty subset of Rn.

(A1) The set D ⊂ Rn is closed.
(A2) The set-valued map H : Rn ⇒ Rm is outer semicon-

tinuous, locally bounded, and, for each x ∈ D, H(x)
is a nonempty subset of Rm.

2By [11, Lemma 4.5], maximal solutions to (1) are unique.



III. STABILITY PROPERTIES OF SET DYNAMICAL
SYSTEMS

This section pertains to the formulation of sufficient con-
ditions guaranteeing stability properties of set dynamical
systems.

Definition 3.1 (stability of a set): A closed set A ⊂ Rn
is stable if for each ε > 0 there exists δ > 0 such that each
solution X to (1) with d(X0,A) ≤ δ satisfies d(Xj ,A) ≤ ε
for all j ∈ domX.

Definition 3.2 (attractivity): A closed set A ⊂ Rn is
locally attractive for (1) if there is ρ > 0 such that for any
compact set X0 ⊂ A + ρB, X ∈ S(X0) is complete and
satisfies

lim
j→∞

d(Xj ,A) = 0

Definition 3.3 (asymptotic stability of a set): The com-
pact set A ⊂ Rn is asymptotically stable if it is stable and
locally attractive.

Next, we propose conditions that resemble those in
Krasovskii and Lyapunov stability theorems, which are based
on the existence of a Lyapunov-like function (see e.g. [11]
[14]) for set dynamical systems.

Theorem 3.4: (Krasovskii-type sufficient conditions for set
dynamical systems) Suppose the data of the set dynamical
system in (1) satisfies Assumption 2.8. Let A ⊂ Rn be a
compact set and M⊂ Rn contain a neighborhood of A. If
(?) There exists a function V : M → R≥0 that is

continuous on M and positive definite on M∩D with
respect to A, and a map uD :M→ [−∞,+∞] defined
as

uD(X) =

 sup
η∈G(X)

V (η)− sup
x∈X

V (x) if X ⊂ D

−∞ otherwise

that satisfies uD(X) ≤ 0 for all X ⊂M,

then A is stable.
Suppose additionally that
(??) there exists r∗ > 0 such that for all r ∈ (0, r∗), the

largest invariant set in

E ∩ LV (r) ∩D (2)

is empty, where

E = {X ⊂ D : sup
η∈G(X)

V (η) = sup
x∈X

V (x)}

LV (r) = {x ∈ D : V (x) ≤ r}

Then A is asymptotically stable.
Proof Sketch: Assume (?) and let ε > 0 be small enough

so that A + 2εB ⊂ M. We claim there exist rε > 0 such
that for X ⊂ (A+ 2εB) ∩D, if supx∈X V (x) ≤ rε then

X ⊂ (A+ εB) ∩D,G(X) ⊂ (A+ εB) ∩D (3)

Note that uD(X) ≤ 0 for all X ⊂ A and V is positive definite
on D with respect to A, so G(A ∩D) ⊂ A ∩D. Since by
Assumption 2.8, G is outer semicontinuous and bounded,
there exists γ > 0 so that G(A+ γB) ⊂ A+ εB. Based on

(3), we can claim that the collection of sets

N = {X ⊂ (A+ εB) ∩D : sup
x∈X

V (x) ≤ rε}

is forward invariant for (1). Relying on forward invariance of
N , maximal solutions X ∈ S(X), with X ⊂ (A+ δB) ∩D
will be contained in A+εB, leading to the set A being stable.
To show attractivity, note that given ε > 0 with (A+ εB) ⊂
M, we can find rε ∈ (0, r), with r as in condition (??) so
that N is forward invariant and apply Theorem 4.9 from [12]
�

Example 3.5 (Illustration of Theorem 3.4): Consider the
set dynamical system

X+ = G(X)

X ⊂ D

where G(X) = {g(x) : x ∈ X } , g(x) =

[
x2

α(1+x2
2)

x1

β(1+x2
2)

]
and D ⊂ R2 a compact set, α, β > 0, along with the sets
M = {x ∈ R2 : |x| ≤ m}, with m ∈ R≥0 and the set
A = {(0, 0)}. The data of this set dynamical system satisfies
Assumption 2.8 since g is continuous and D is compact.
Consider the function V (x) = x>x for each x ∈ R2 which
is continuous and positive definite with respect to A. Let ε ∈
(0,m) be such that X ⊂ A+εB ⊂M. Then supx∈X V (x) ≤
ε2. Now, with V (η) = η21 + η22 and[

η1
η2

]
∈
⋃
x∈X

[
x2

α(1+x2
2)

x1

β(1+x2
2)

]
we have

sup
η∈G(X)

V (η) = sup

{
η21 + η22 : (η1, η2) ∈

⋃
x∈X

[
x2

α(1+x2
2)

x1

β(1+x2
2)

]}
Since X is compact, we have that, for X ⊂ A+ εB ⊂M,

sup
η∈G(X)

V (η) = max

{
η21 + η22 : (η1, η2) ∈

⋃
x∈X

[
x2

α(1+x2
2)

x1

β(1+x2
2)

]}

= max
x∈X

{
x22

α2(1 + x22)2
+

x21
β2(1 + x22)2

}
= max

{
1

β2
,

1

α2

}
ε2

Recalling that

uD(X) =

 sup
η∈G(X)

V (η)− sup
x∈X

V (x) if X ⊂ D

−∞ otherwise

since we have that sup
η∈G(X)

V (η) ≤ max

{
1

β2
,

1

α2

}
ε2 and

sup
x∈X

V (x) ≤ ε2 it follows that for α, β ≥ 1 we have that

uD(X) ≤ 0. With supx∈X V (x) ≤ ε2, we have X ⊂ A+ εB
implies G(X) ⊂ A+εB. Then we can find r∗ as in condition
(??) in Theorem 3.4 and the sublevel set LV (r) defines a
forward invariant set for X ⊂ A + εB. Now, since V is
continuous, we can find δ > 0 such that solutions starting



Fig. 1. Solution to the set dynamical system in Example 3.5, with α = 2
and β = 1 and initial condition: X0 = {(x1, x2) ∈ R2 : |x| ≤ 1}

inside of δB are within the sublevel set, and since LV (r) is
invariant, solutions will remain there. In particular, we can
select δ = ε, and solutions that start inside of the set defined
by δB will remain in A+ εB, thus leading to A = {(0, 0)}
being stable. An illustration for the case where α = 2 and
β = 1, where the initial set starts in εB is shown in Figure
1.

Theorem 3.6: (Lyapunov-type sufficient conditions for set
dynamical systems) Given a set dynamical system as defined
in (1) with data satisfying Assumption 2.8, a compact set
A ⊂ Rn and a set M ⊂ Rn that contains a neighborhood
of A, suppose that (?) of Theorem 3.4 holds and that,
furthermore, uD(X) < 0 for all X ⊂ M \ A. Then, A is
attractive and, hence, locally asymptotically stable.

Example 3.7 (Illustration of Theorem 3.6): Consider the
system from Example 3.5, now with both α, β > 1. Its
data satisfies Assumption 2.8. Consider the function V as
defined in Example 3.5. Now, since α, β > 1 we have that
for X ⊂ A+ εB ⊂M, sup

x∈X
V (x) ≤ ε2 and

sup
η∈G(X)

V (η) ≤ max

{
1

β2
,

1

α2

}
ε2

so uD(X) < 0 for all X ⊂ D \ A. Because

sup
η∈G(X)

V (η) < sup
x∈X

V (x)

the sequence given by {supx∈Xj
V (x)}∞j=0 converges to 0.

Then, r = 0 and the sublevel set LV (0) is forward invariant.
An illustration for α = β = 2 is shown in Figure 2.

IV. CONTROL OF SET DYNAMICAL SYSTEMS

We now consider set dynamical systems with a set-
valued external control input. More precisely, we consider
a controlled system consisting of a physical process with
dynamics described by

X+
p = Gp(Xp,Up)
Yp = Hp(Xp,Up)
(Xp,Up) ⊂ Dp, Xp ⊂ Rnp ,Up ⊂ Rmp

(4)

Fig. 2. Solution to the set dynamical system in Example 3.7, with α = β = 2
and initial condition: X0 = {(x1, x2) ∈ R2 : |x| ≤ 1}

and a set-valued controller described as

X+
c = Gc(Xc,Uc)
Yc = Hc(Xc)

Xc ⊂ Rnc ,Uc ⊂ Rmc

(5)

The closed-loop system resulting from controlling the set
dynamical system (4) with the set-valued controller in (5)
obtained through the assignment Up = Yc and Uc = Yp can
be represented as a set dynamical system in (1) with

G(X) =

[
Gp(Xp, Hc(Xc))

Gc(Xc, Hp(Xp, Hc(Xc)))

]
(6)

D := {(Xp,Xc) ⊂ Rn : (Xp, Hc(Xc)) ⊂ Dp}

and an arbitrary function H , where X = (Xp,Xc) ⊂ Rn is
now the set-valued state and n = np + nc.

Given (Dp, Gp, Hp) the results presented in Theorems 3.4
and 3.6 can be used to design (5), by specifying conditions
on the data (Gc, Hc) defining the controller such that the
resulting closed-loop system has a stability property. The
following result provides conditions for stability of the
closed-loop set dynamical system with data in (6).

Theorem 4.1: Given a compact set A ⊂ Rn, a set M ⊂
Rn that contains a neighborhood of A, a plant represented
by the set dynamical system in (4), and a controller defined
in terms of (5), suppose

1) There exist functions Gc and Hc such that the resulting
closed-loop system (6) satisfies (A0) and (A1) in
Assumption 2.8; and

2) There exists a function V :M→ R≥0, continuous on
M and positive definite on M∩D with respect to A,
such that the map uD :M→ [−∞,+∞] defined as

uD(X) =

 sup
η∈G(X)

V (η)− sup
x∈X

V (x) if X ⊂ D

−∞ otherwise

where
η = (ηp, ηc), G(X) = (Gp(Xp,Up), Gc(Xc,Uc)),
and X = (Xp,Xc) satisfies uD(X) ≤ 0 for all X ⊂M
and uD(X) < 0 for all X ⊂M\A.



Then, the set A is asymptotically stable for the closed-loop
system in (6).

Using Theorem 4.1, controller design can be performed by
either selecting Gc and Hc, and then finding a Lyapunov-
like function V or, by selecting a candidate function V
and then defining a control law that satisfies the previously
stated stability conditions. This methodology is illustrated in
examples below.

Example 4.2 (Control design with unmodeled dynamics):
Consider the special case given by the dynamical system
described by x+ = g(x, u) with state dependent disturbances
di, with i ∈ {1, 2, 3}, associated to state, input and
unmodeled dynamics respectively. Effects of these
disturbances can be represented by the set dynamical
system

Gp(Xp,Up)=
⋃
x∈Xp

⋃
u∈Up

(g(x+d1(x)B, u+d2(x)B)+d3(x)B)

Let us consider Yp = Xp. A feedback control strategy can be
designed in terms of (6) by defining a controller with output
Yc = Hc(Xc) and dynamics X+

c = Gc(Xc,Xp) where Gc
and Hc are selected such that the resulting feedback system
has a desired set asymptotically stable. Such a property
would be robust to the effects of state, input and unmodeled
dynamics disturbances.

Now, consider the particular choice x+ = Ax+Bu with
bounded unmodeled dynamics disturbances d3 associated to
parameter variation, with |x| ≤ γ, for some γ ≥ 0. This
system can be represented in terms of (6) with

Gp(Xp,Up) =
⋃
x∈Xp

⋃
u∈Up

((Ax+Bu) + d3(x))

and Dp = {x ∈ Rnp : |x| ≤ ρ}, ρ ∈ R≥0. Let Yp = Xp and
Up be the controlled plant input. The function d3 represents
parameter variation and is taken to be a bounded function
with respect to the state such that d3(x) ⊂ ∆B for some
∆ ≥ 0. Consider the case where Xp ⊂ Rnp and the problem
of designing the controller data (Gc, Hc), such that the set
A is stable. Let Uc = Xp, and Gc(Xc,Uc) = Gc(Xp). The
feedback system can be represented as in (6) with

G(X) =
⋃
x∈Xp

[
(Ax+BGc(x) + d3(x)

Gc(x)

]
Consider in particular the case where d3(x) = ∆Ax,
Gc(Xc,Uc) = KXp, with K a matrix of appropriate di-
mension, and the problem of designing the controller data
such that the set A = {0} is stable. Since D is compact and
by construction both Gp, Gc are linear functions of closed
sets, the closed-loop system data satisfies Assumption 2.8.
Consider the function V (x) = x>Px, with P = P> > 0.
In order to achieve asymptotic stability of A, we want
uD(X) < 0, namely

sup
η∈G(X)

V (η) < sup
x∈X

V (x)

for all X ⊂ D \ A. Here supx∈X V (x) = supx∈X{x>Px}

Fig. 3. Solution to the set dynamical system in Example 4.2, with initial
condition X0 = {x ∈ R : 0.5 ≤ x ≤ 1}, parameters A = 1, B = 1
∆A = 0.2 and designed controller gain K = −0.7

and

sup
η∈G(X)

V (η) = sup

{
η>Pη : η ∈

⋃
x∈X

(A+ ∆AB +BK)x

}
Since X is compact, we have that

sup
x∈X
{x>Px} = max

x∈X
{x>Px}

and

sup
η∈G(X)

V (η) = max

{
η>Pη : η ∈

⋃
x∈X

(A+ ∆AB +BK)x

}
Consider in particular the case where P = I, A = 1, B = 1
and the parameter variation has a maximum of ∆A = 0.2.
We can select values in K such that uD(X) < 0 for all
X ⊂ D \ A to achieve asymptotic stability for the closed-
loop system. This condition can be satisfied by selecting K
such that

A+ ∆AB +BK < 1

is satisfied within all the range of parameter variation. In
particular, selecting K = −0.7 will render the set A =
{0} asymptotically stable. Figure 3 presents a solution for
parameters A = 1, B = 1, ∆A = 0.2, and designed state-
feedback controller gain K = −0.7 from the initial set
X0 = {x ∈ R : 0.5 ≤ x ≤ 1}.

Example 4.3 (Control design with data fusion):
Consider the system

x+ = Ax+ u

y = H(x)

with x ∈ D, u ∈ U with D,U ⊂ R, where the system’s
output y is a state estimation, obtained from multiple noisy
sensors. Here the output dynamics correspond to a continu-
ous function representing the effect of a sensor fusion filter.
The behavior of each sensor can be represented as

Sij(x) = xj + δi(x)B

where i = 1, 2 . . . ,m corresponds to the sensor number, δi



corresponds to state dependent additive noise, characteristic
of the sensor i, and xj corresponds to the plant’s state at
discrete time j. A simple data fusion strategy can be defined
by generating an estimate of x combining the sensors mea-
sures by weighting their relevance based on their deviation
from the actual state:

Y = H(Xp) =
⋃
x∈Xp

⋃
i∈{1,2,...,m}

ωiSi(x)

where ωi is computed based on the maximum value of δi.
Consider the problem of stabilizing the set A = {0} with
a state-feedback controller, implemented using the output
measured from the data fusion system, for the case where
i = 2 and D = {x ∈ R : |x| ≤ ρ}, with ρ ∈ R≥0. This
system can be described in terms of (6) by

Gp(Xp,Up) =
⋃
x∈Xp

⋃
u∈Up

(Ax+ u)

Hp(Xp,Up) =
⋃
x∈Xp

H(x)

and a controller with X+
c = Gc(Xc,Uc) = KHp(Xp) and

Yc = Up. Since D is compact and both Gp and Gc are
continuous, Assumption 2.8 in Theorem 4.1 is satisfied.
Consider V (x) = |x|2, continuous and positive definite for
all x ∈ D \ A. In order to achieve asymptotic stability,
uD(X) < 0,

sup
η∈G(X)

V (η) < sup
x∈X

V (x)

for all X ⊂ D \ A. Here, supx∈X V (x) = supx∈X{x2} and

Up = KHp(Xp)

Up =
⋃
x∈Xp

(K(ω1(x+ d1(x)B) + ω2(x+ d2(x)B)))

For the case where δ1(x) = D1x and δ2(x) = D2x, with
D1, D2 ∈ R, we can define ω1 = D2

D1+D2
and ω2 = D1

D1+D2
.

Then,
sup

η∈G(X)

V (η) = sup{η2 : η ∈
⋃
x∈X

(A+K(1 + 2ω2D2B))x}

Since X is compact, we have that
sup

η∈G(X)

V (η) = max{η2 : η ∈
⋃
x∈X

(A+K(1 + 2ω2D2B))x}

Consider in particular the case where A = 1 and the sensor
noise parameters are D1 = 0.1 and D2 = 0.05. We can
select a value for K such that uD(X) < 0 for all X ⊂ D \A
to achieve stability for the closed-loop system. In particular,
for K = −0.6 condition is satisfied for the closed-loop
system. Figure 4 presents a solution with initial condition
X0 = {x ∈ R : 0.7 ≤ x ≤ 1.1} and the designed state-
feedback controller with gain K = −0.6.

V. CONCLUSION

Convergence and stability properties for set dynamical
systems with inputs were studied in this paper. Krasovskii
and Lyapunov results on stability were presented for systems
with set-valued states, under the assumption of outer semi-
continuity of the set-valued maps that define the system’s

Fig. 4. Solution to the set dynamical system in Example 4.3, with X0 =
{x ∈ R : 0.7 ≤ x ≤ 1.1}, A = 1, sensor noise parameters D1 =
0.1, D2 = 0.05, and designed value for the controller K = −0.6. Red
lines represent state estimated using the data fusion strategy, and blue lines
represent the evolution of set-valued state.

dynamics. The mathematical framework in [11] and results in
[12] were extended to a formulation for closed-loop control
systems with output feedback within the framework of set
dynamical systems. The set dynamical systems framework
for controller design can be also used for designing other
types of controllers, such as fuzzy and predictive approaches,
where the set formulation can help to represent variability in
current or future states.
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