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Robust Global Trajectory Tracking for
Underactuated VTOL Aerial Vehicles using
Inner-Outer Loop Control Paradigms
Roberto Naldi, Michele Furci, Ricardo G. Sanfelice and Lorenzo Marconi

Abstract—This work proposes a feedback control strategy to
let the dynamics of a class of under-actuated Vertical Take-
Off and Landing (VTOL) aerial vehicle tracking a desired
position and attitude trajectory globally with respect to the
initial conditions. The proposed feedback controller is derived
following an inner-outer loop control paradigm, namely by
considering the attitude, which is governed by means of a
hybrid controller so as to overcome the well-known topological
constraints, serving as a virtual input to stabilize the aircraft
position. Two different approaches, the first one obtained by
assuming perfect knowledge of the vehicle dynamics and the
second one obtained by considering uncertainties and exogenous
disturbances, are proposed and compared by analyzing the
interconnection between the hybrid attitude and the continuous-
time position closed-loop subsystems. The effectiveness of the
obtained results is demonstrated by means of simulations and
experiments using a miniature quadrotor prototype.

Index Terms—Aerial Robotics, Nonlinear Control, Intercon-
nected Systems, Hybrid Control, Robust Control.

I. INTRODUCTION

Miniature Vertical Take-Off and Landing (VTOL) aerial
systems are currently employed successfully in a large number
of applications including, among others, surveillance, aerial
photography and search and rescue operations [1]. One reason
for this large success is the high level of maneuverability
which allows to safely perform flight missions even in densely
cluttered environments [2] or even to perform advanced robotic
tasks [3]. Among the different configurations, the class of
VTOL aerial systems includes helicopters [4], ducted-fan tail-
sitters - [5], [6] - and multi-propeller helicopters - [7], [8], [9].
All of these vehicles are under-actuated mechanical systems,
namely the number of available control inputs is less than
the number of degrees-of-freedom (d.o.f.). As a consequence,
to achieve the high level of agility required by real-world
applications, the feedback control design plays a central role.

Several contributions - [10], [11], [12], [13] - document
different approaches to the control design for such a class
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of under-actuated systems. In [14], almost-global stability
results are demonstrated by means of Lyapunov based tech-
niques. Results therein show robustness also in the presence
of aerodynamic drag disturbances that typically affect aerial
systems. Trajectory tracking in the absence of linear velocity
measurements has been considered in [15] where a hierarchical
controller has also been proposed. In [16], almost-global sta-
bility results are achieved by considering geometric methods
and then applied to the control of a quadrotor aerial vehicle.
Backstepping control design has been proposed in [17] in order
to perform aggressive maneuvers by considering the dynamics
of a model helicopter and in [18] by considering a hybrid
controller able to globally stabilize a desired trajectory. In
[19] and [20], inner-outer loop control strategies have been
employed to stabilize the dynamical model of a miniature
helicopter. The proposed methodology takes into account for
the feedback interconnection between the inner attitude and the
outer position control loops. In particular, nested saturations
and high-gain control techniques are used to show stability of
the overall closed-loop system under some limitations in term
of the initial attitude configuration. More recently, a survey
describing feedback control design for under-actuated VTOL
systems has appeared in [21].
In this work, hierarchical control strategies for a miniature

VTOL vehicle to track a desired trajectory globally with
respect to the initial position and attitude configuration are
proposed. In particular, drawing inspiration from recent results
pertaining to attitude control of rigid bodies [22], hybrid
control techniques [23] are used to overcome the topologi-
cal obstruction affecting continuous-time globally stabilizing
control laws [24]. Robustness with respect to possibly large
exogenous disturbances and parametric uncertainties is the
main contribution. This is achieved by combining total stability
tools for nonlinear control systems [25] with a suitable design
of the hybrid control law.
Two different hierarchical control approaches are employed

and compared. The first approach is based on the idea of
“breaking the loop” between the attitude and the position
closed-loop dynamics through a suitable choice of the control
torques. The overall closed-loop system can be considered as
a cascade connection in which the attitude and the position
controllers can be tuned independently to achieve the desired
stability properties. However, this control design relies upon
the perfect knowledge of the vehicle dynamics and then
it may not be effective in the general real-world scenario
in which uncertainties and disturbances, including wind and
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aerodynamic drag forces, affect the dynamics of the vehicle.
To overcome this important limitation, a second approach

is proposed. Since the lack of full knowledge of the sys-
tem dynamics prevents one to compensate the influence of
the position dynamics on the attitude of the vehicle, we
propose an attitude controller that combines a linear hybrid
feedback law and a feed-forward law obtained by nominal
model inversion. The resulting control law is more suitable for
practical implementation on a real autopilot due to robustness
properties. Such a control law, however, leads to a more
involved feedback interconnection between the hybrid attitude
and the continuous-time position closed-loop subsystems and,
in turn, to a more complex closed-loop analysis.
The paper is organized as follows. Section II introduces the

notation and the supporting results from the literature of hybrid
systems. Section III-A presents the dynamical model for the
class of under-actuated aerial vehicles of interest. Section III-B
introduces the control problem which is then addressed in
Section IV considering both the nominal and the robust cases.
Finally, the application of the robust algorithm to the control
of a miniature quadrotor prototype is presented in Section V.
Both numerical simulations and experiments are presented.

II. PRELIMINARIES
A. Notation and Definitions
Throughout this paper, Fi and Fb denote, respectively, an

inertial reference frame and a reference frame attached to the
center of gravity of the vehicle. With In ∈ Rn×n we denote the
n-dimensional identity matrix. The symbols R, R>, R≥ denote
the set of real, positive real, and non-negative real numbers,
respectively. For x ∈ Rn, |x| denotes the Euclidean norm and,
given a closed set A ⊂ Rn, |x|A = infy∈A |x − y|. For a
function f : [0, ∞) → Rk, k > 0, we define with |f |∞ :=
supt∈[0,∞) |f(t)| and |f |a := lim supt→∞ |f(t)|. Given a set
M,M denotes its closure. Given sets S1 and S2, the notation
f : S1 ⇒ S2 denotes a set-valued map mapping subsets of
S1 onto subsets of S2. With Bn

r we denote the closed ball of
radius r centered at the origin of Rn, namely Bn

r = {x ∈
Rn : |x| ≤ r}. Given a function f : R → R and i ∈ N,
we use the notation f(t)(i) := di

dti f(t) to denote derivative
of f with respect to t. We denote the unit vectors as e1 :=
[1, 0, 0]⊤, e2 := [0, 1, 0]⊤, and e3 := [0, 0, 1]⊤. For any x ∈
R3, we let S(x) - with the first, second and third rows given
by [0, −x3, x2], [x3, 0, −x1] and [−x2, x1, 0] - be a skew-
symmetric matrix and we denote with ∧ the inverse operator
such that S(x)∧ = x. Let SO(3) denote the special orthogonal
group of order three, i.e., SO(3) = {R ∈ R3×3 : R⊤R =
RR⊤ = I3, detR = 1}. Given a rotation matrix R ∈ SO(3),
Θ(R) := 1

2 trace(I3 − R). We denote the n-dimensional unit
sphere as Sn := {x ∈ Rn+1 : |x| = 1}.
A unit quaternion q ∈ S3 is defined as a pair q = [η, ϵ⊤]⊤

in which η ∈ R and ϵ ∈ R3 are denoted, respectively, as the
scalar and vector part. Given unit quaternions q1 = [η1, ϵ⊤1 ]

⊤

and q2 = [η2, ϵ⊤2 ]
⊤, the standard quaternion product is defined

as

q1 ⊗ q2 =

[

η1 −ϵ⊤1
ϵ1 η1I3 + S(ϵ1)

][

η2
ϵ2

]

.

With 1 = [1, 0, 0, 0]⊤ ∈ S3 we denote the identity quaternion
element and, for a quaternion q = [η, ϵ⊤]⊤ ∈ S3, with q−1 =
[η, −ϵ⊤]⊤ the inverse, so that q ⊗ q−1 = q−1 ⊗ q = 1. A
rotation matrix parameterizing attitude can be expressed in
terms of a unit quaternion q ∈ S3 through the mapping R :
S3 → SO(3) (known as Rodrigues formula [26]) defined as

R(q) = I3 + 2ηS(ϵ) + 2S(ϵ)2 .

The mapping R is such that R(q) = R(−q), namely the two
quaternions q and −q correspond to the same rotation matrix.
We refer to a saturation function as a mapping σ : Rn →

Rn such that, for n = 1,
1) |σ′(s)| := |dσ(s)/ds| ≤ 2 for all s,
2) |σ′′(s)| := |d2σ(s)/ds2| ≤ d̄ for some d̄ > 0, for all s,
3) sσ(s) > 0 for all s ̸= 0, σ(0) = 0,
4) σ(s) = sgn(s) for |s| ≥ 1,
5) |s| < |σ(s)| < 1 for |s| < 1.

For n > 1, the properties listed above are intended to hold
componentwise.

B. Hybrid Systems: Definitions and Stability Notions
In this work, we consider hybrid systems H given by

H
{

ẋ ∈ F (x, vc) x ∈ C

x+ ∈ G(x) x ∈ D ,
(1)

with state x ∈ Rn and input vc ∈ Rm acting only on the flows.
The sets C ⊂ Rn and D ⊂ Rn define the flow and jump sets,
respectively, while the set-valued mappings F : Rn × Rm ⇒

Rn and G : Rn ⇒ Rn define the flow map and jump map,
respectively. For details about hybrid systems, see [23].
In the special case in which vc ≡ 0, the hybrid systems

considered in this paper will satisfy the hybrid basic conditions
(see [23]), namely

(A1) The sets C and D are closed in Rn.
(A2) The set-valued mapping (x, 0) ,→ F (x, 0) is outer
semicontinuous relative to Rn×{0} and locally bounded,
and for all x ∈ C, F (x, 0) is nonempty and convex.
(A3) The set-valued mapping x ,→ G(x) is outer semi-
continuous relative to Rn and locally bounded, and for
all x ∈ D, G(x) is nonempty.

1) Solutions: Solutions to hybrid systems H are given by
pairs of hybrid arcs and hybrid inputs defined over extended
time domains called hybrid time domains. A set S ⊂ R≥0×N

is a hybrid time domain if, for all (T, J) ∈ S, the set S ∩
([0, T ]× {0, 1, ..., J}) can be written as

J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2... ≤ tJ . A
hybrid arc x : domx → Rn is such that domx is a hybrid time
domain and, for each j, t ,→ x(t, j) is absolutely continuous on
the interval {t : (t, j) ∈ domx }. A hybrid arc is parameter-
ized by (t, j), where t is the ordinary-time component and j is
the discrete-time component that keeps track of the number of
jumps. A hybrid input vc : dom vc → Rm is such that dom vc
is a hybrid time domain and, for each j ∈ N, the function
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t ,→ vc(t, j) is Lebesgue measurable and locally essentially
bounded on the interval {t : (t, j) ∈ dom vc }. Then, given
a hybrid input vc : dom vc → Rm and an initial condition ξ, a
hybrid arc φ : domφ→ Rn defines a solution pair (φ, vc) to
the hybrid system H in (1) if the following conditions hold:

(S0) ξ ∈ C ∪D and domφ = dom vc (= dom(φ, vc));

(S1) For each j ∈ N such that
Ij := {t : (t, j) ∈ dom(φ, vc) } has nonempty interior
int(Ij), φ(t, j) ∈ C for all t ∈ int(Ij), and, for almost
all t ∈ Ij , d

dtφ(t, j) ∈ F (φ(t, j), vc(t, j));

(S2) For each (t, j) ∈ dom(φ, vc) such that (t, j + 1) ∈
dom(φ, vc), φ(t, j) ∈ D and φ(t, j + 1) ∈ G(φ(t, j)).

A solution pair (φ, vc) to H is said to be complete if
dom(φ, vc) is unbounded, maximal if there does not exist
another pair (φ, vc)′ such that (φ, vc) is a truncation of (φ, vc)′
to some proper subset of dom(φ, vc)′.
2) Stability Notions: For a hybrid system H with vc ≡

0, which will be denoted as H0, the following definition of
stability will be used.

Definition 1 A compact set A ⊂ Rn is said to be
• stable if for each ϵ > 0 there exists δ > 0 such that each
maximal solution φ to H0 with |φ(0, 0)|A ≤ δ satisfies
|φ(t, j)|A ≤ ϵ for all (t, j) ∈ domφ;

• attractive if there exists µ > 0 such that every maximal
solution φ to H0 with |φ(0, 0)|A ≤ µ is complete and
satisfies

lim
(t,j)∈domφ,t+j→∞

|φ(t, j)|A = 0;

• asymptotically stable if it is stable and attractive.

Asymptotic stability is said to be global when the attractivity
property holds for every point in C ∪D.

III. PROBLEM FORMULATION
A. Dynamical Model
The dynamics of a large class of miniature Vertical Take-

Off and Landing (VTOL) aerial vehicles, including heli-
copters, ducted-fan and multi-propeller configurations, can be
described by considering the following dynamic model (see
among others [21], [15])

Mp̈ = −ufRe3 +Mge3 + df
Ṙ = RS(ω)

J ω̇ = S(Jω)ω + uτ + dτ

(2)

in which p = [x, y, z]⊤ ∈ R3 denotes the position of the
center of gravity of the system expressed in the inertial refer-
ence frame Fi, ω = [ωx, ωy, ωz]⊤ ∈ R3 is the angular speed
expressed in the body frame Fb, R ∈ SO(3) is the rotation
matrix relating vectors in Fb to vectors in Fi, M ∈ R> and
J ∈ R3×3 (with the property that J = J⊤ > 0) are the mass
and the inertia matrix of the system, uf ∈ R≥0 denotes the
control force that, by construction, is directed along the body
z axis and uτ ∈ R3 is the control torque vector. The force and
torque vectors df ∈ R3 and dτ ∈ R3 are bounded unknown

exogenous signals modeling the effects of aerodynamic drag
and wind disturbances.
To model actuator limitations, the control force and torques

are required to satisfy

uf ∈ Ωf , uτ ∈ Ωτ (3)

where the compact sets Ωf ⊂ R≥0 and Ωτ ⊂ R3 define the
attainable force and torques for the specific vehicle.
Besides the presence of the exogenous disturbances df and

dτ , the further source of uncertainty considered in the paper
is the inertia matrix J . More specifically, it is assumed that
only a nominal value J0 ∈ R3×3, with J0 = J⊤

0 > 0, and an
“upper-bound” JU ∈ R3×3, i.e., such that

|x⊤JUx| ≥ |x⊤Jx| (4)

for all x ∈ R3, are known. This uncertainty on the value of J
reflects the fact that, for a physical system having a complex
mass distribution, an exact inertia matrix may not be available.

Remark 1 Instead of using a rotation matrix R, the attitude
in (2) can be parameterized by means of the unit quaternion
q ∈ S3. In this case, in the first equation in (2) the rotation
matrix is replaced by the Rodrigues map R and the kinematic
equations, which are given by the second equation in (2), are
replaced by

q̇ =
1

2
q ⊗

[

0

ω

]

. (5)

In many applications, quaternion parametrization of attitude
is often preferred due to the small number of parameters
(4 with respect to 9 required by a rotation matrix) and the
computationally simple quaternion algebra [26].

B. Control Problem and Nominal System Inversion
This work focuses on the problem of global tracking by

state feedback for system (2). More specifically, the goal is
to asymptotically track a given time reference position and
orientation

t ,→ p∗(t) ∈ R
3, t ,→ R∗(t) ∈ SO(3) (6)

for all possible initial conditions p(0) ∈ R3, ṗ(0) ∈ R3,
R(0) ∈ SO(3), ω(0) ∈ R3, by assuming full knowledge of
the state of the system.
Two different scenarios will be considered. The first sce-

nario, referred to as the nominal case, is when the force and
the torque disturbances are neglected, i.e., df ≡ dτ ≡ 0, and
the inertia matrix is perfectly known, i.e., JU ≡ J0 ≡ J .
The second scenario, referred to as the robust case, takes into
account all of the uncertainties specified in Section III-A. Due
to the presence of disturbances, a practical tracking result will
be derived in the robust case, while asymptotic tracking results
are obtained in the nominal case.
The desired references (6) are required to satisfy functional

controllability constraints that are described below. The first
constraint derives from the under-actuated nature of system
(2) by which the reference position and orientation cannot
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be assigned independently. As the aircraft position assumes a
major role in real-world applications [1], the attitude reference
is required to satisfy some constraints to meet the requirements
posed by the position tracking objective. Specifically, let t ,→
p∗(t) be the desired position reference and let t ,→ v∗f (t) be
the nominal reference control force vector defined as

v∗f (t) := Mge3 −Mp̈∗(t) ∀t ≥ 0 . (7)

The function in (7) represents the force vector yielding the
desired acceleration p̈∗(t) in the nominal case (i.e., when df ≡
0). The enforcement of such a v∗f (t) necessarily requires that
the body z-axis of the vehicle, i.e., the thrust direction, is
aligned with v∗f (t) at each t. This requires that the reference
attitude t ,→ R∗(t) ∈ SO(3) satisfies the following constraint

R∗(t)e3 =
v∗f (t)

|v∗f (t)|
∀t ≥ 0 . (8)

Implicit in the previous expression is the requirement that t ,→
p̈∗(t) is such that

|v∗f (t)| = M |ge3 − p̈∗(t)| > v, ∀t ≥ 0 (9)

for some v ∈ R>0, which is assumed hereafter.
The problem of computing a rotation matrix satisfying

(8) has been considered, for instance, in [16] using differ-
ential geometric tools, and in [15] using a unit quaternion
parametrization of R∗. Details on the computation of a rotation
matrix R∗ fulfilling (8) are presented in Appendix C.
With t ,→ v∗f (t) and t ,→ R∗(t) fulfilling (8) and (9) in

hand, the nominal system inversion can be accomplished by
defining the reference force and torque control inputs as

u∗
f(t) := |v∗f (t)| (10)

and
u∗
τ (t) := J ω̇∗(t)− S(Jω∗(t))ω∗(t) ,

for each t ≥ 0, where ω∗(t) := (R∗T (t)Ṙ∗(t))∧ is the refer-
ence angular velocity. Note that u∗

τ depends on the uncertain
parameter J ; hence, it can be computed only in the nominal
case. In the following, for the sake of clarity, we shall denote
by u∗

τ0 the nominal value of u∗
τ , namely

u∗
τ0 := J0ω̇∗ − S(J0ω∗)ω∗ . (11)

The reference angular velocity ω∗ and its time derivative along
the body x and y axis can be easily derived as functions of p∗
and its time derivatives. As a matter of fact, using the second
equation in (2), it follows that R∗⊤Ṙ∗e3 = S(ω∗)e3 by which

[

ω∗
x

ω∗
y

]

:= WxyR
∗⊤ d

dt

v∗f
|v∗f |

, (12)

[

ω̇∗
x

ω̇∗
y

]

:= Wxy

(

−S(ω∗)R∗⊤ d

dt

v∗f
|v∗f |

+R∗⊤ d2

dt2
v∗f
|v∗f |

)

where Wxy ∈ R2×3 is the matrix with the first and second
rows given by [0, −1, 0] and [1, 0, 0], respectively. On the
other hand, the angular speed and acceleration along the body
z-axis, namely t ,→ ω∗

z and ω̇∗
z , are not subjected to constraints

deriving from the position tracking objective.

Further constraints on the reference position t ,→ p∗(t) and
the reference orientation t ,→ R∗(t) must be chosen to let the
control force and torques computed in (10) and (11) satisfy
the actuator limitations (3), namely

u∗
f (t) ∈ Ωf , u∗

τ (t) ∈ Ωτ ∀t ≥ 0 . (13)

In particular, the reference derivatives p∗ (1), p∗ (2), p∗ (3),
p∗ (4), ω∗

z and ω
∗ (1)
z are required to be bounded functions of

time satisfying appropriate bounds.

Remark 2 Let R1 ∈ SO(3) be such that (8) holds with
R∗ = R1. Then (8) also holds by picking R∗ = R1Rz for
any Rz ∈ SO(3) such that Rze3 = e3 (i.e., Rz represents an
elementary rotation around the e3 unit vector). This fact shows
that the relation given in (8) fixes only two of the three degree
of freedom of R∗. The third degree of freedom, which is the
rotation around the vector v∗f (t), can be arbitrarily assigned
according to attitude tracking objectives.

IV. INNER-OUTER LOOP CONTROL STRATEGIES
This section presents control strategies that solve the global

tracking problem in the nominal and robust case. The proposed
solutions rely upon a hierarchical control structure having the
attitude and the position closed-loop dynamics playing the
role of the inner loop and of the outer loop, respectively.
A vectored-thrust control paradigm (see [21]) is followed in
the design of the control law. In this respect, a crucial role
in avoiding singularities is played by the use of saturation
functions in the outer loop that naturally lead to the design of
a “control vectored-thrust” whose amplitude never vanishes
regardless of the values assumed by the position error. This
feature, in turn, enables the adoption of vectored-thrust design
paradigms in setting up references signal for the attitude
dynamics on which the inner loop is built.
As far as the inner loop is concerned, two different control

strategies are presented to address the nominal and robust
cases, respectively. In the nominal case, the torque control
input is synthesized as a “feedback linearizing” control law
able to decouple the closed-loop attitude dynamics from
the position dynamics. The resulting control loop, which is
depicted Figure 1(a), is a cascade interconnection between
the attitude and the position loops. In the next subsections,
it is shown that stability of the overall interconnected system
does not impose constraints on the tuning of the position and
attitude controllers. The above property can be also achieved
by designing a torque control input able to only partially
decouple the closed-loop attitude and position dynamics. This
leads to the feedback interconnection depicted in Figure 1(b),
in which, due to a suitable design of the torque control input,
the influence of the position dynamics on the attitude dynamics
does not affect the stability properties of the overall closed-
loop system.
In the robust case, a complete decoupling of the closed-

loop attitude and position dynamics is not possible. In this
case, the proposed attitude controller combines only a linear
feedback law, driven by a hybrid system to overcome the
topological obstruction, and a feed-forward law obtained by
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model inversion This control law will lead to a feedback
interconnection between the attitude (inner) and the position
(outer) loop (see Figure 1(c)). In the stability analysis of this
feedback interconnection, a crucial role is played by the use
of nested saturation functions (used in the outer loop) intro-
ducing a “decoupling effect” between the two interconnected
dynamics. Such an effect, in turn, is crucial to show that the
attitude loop, which is a hybrid system, has solutions that,
after some finite time, only flow. This property of solutions is
instrumental to establish asymptotic properties of the feedback
interconnection.

attitude position

(36) (21)q̃

(a) Nominal Case: Cascade Intercon-
nection

attitude position

(35) (21)
q̃

ωc

(b) Nominal Case: Feedback Inter-
connection

+

+

+

+

attitude

position

(46)

(21)
yζ

q̃

df

dτ

(c) Robust Case: Feedback Intercon-
nection

Fig. 1. The resulting inner/outer loops in the nominal and robust cases.

A. Stabilization of the translational motion
By letting

p̃ :=

[

p̃
˙̃p

]

:=

[

p− p∗

ṗ− ṗ∗

]

and bearing in mind the first equation in (2), the position error
dynamics are described by

M ¨̃p = −ufRe3 + v∗f + df (14)

with v∗f defined in (7). A vectored-thrust control strategy is
employed to stabilize system (14). To this end, let the control
force vector vc be defined as

vc(p̃, t) := v∗f (t) + κ(p̃) , (15)

where κ is a state feedback law satisfying κ(0) = 0 and

|κ(p̃)| ≤ κ̄ ∀ p̃ ∈ R
6 (16)

with 0 < κ̄ < v. Property (16), which will be fulfilled in the
following by designing κ(·) as a saturated function, guarantees
that

|vc(p̃, t)| ≥ |v∗f (t)|− |κ(p̃)| ≥ v − κ̄ > 0 (17)

for all p̃ ∈ R6 and t ≥ 0. The form of (14) suggests to design
the force control input uf ∈ R>0 and a desired reference

attitude Rc ∈ SO(3) in such a way that uf (t)Rc(p̃, t)e3 =
vc(p̃, t), namely

Rc(p̃, t)e3 =
vc(p̃, t)

|vc(p̃, t)|
(18)

and
uf = ufc(p̃, t) := |vc(p̃, t)| . (19)

Note that (18), (19) are well defined for all p̃ ∈ R6 and for
all t ≥ 0 by virtue of (17) and of (16). By bearing in mind
the discussion in Remark 2, relation (18) fixes two of the
three degree of freedom characterizing Rc ∈ SO(3). The third
degree of freedom can be fixed by enforcing the constraint

Rc(0, t) = R∗(t) ∀t ≥ 0 (20)

which, along with (18), uniquely defines the control reference
attitude Rc ∈ SO(3).
By adding and subtracting the term ufRce3 in (14), the

position error dynamics read as

M ¨̃p = −κ(p̃) + Γ(Rc, R) + df (21)

where Γ is defined as

Γ(Rc, R) := ufc (Rc −R) e3 . (22)

The design of κ(·) must be conceived to stabilize the origin
of (21), which is a double integrator forced by the exogenous
inputs Γ and df , and to fulfill the crucial requirement (16).
Nested saturations can be used for such a purpose ( [27],
[20]). Among the possible nested saturation design solutions
available in literature (see, for instance, [27], [28], [29]), the
approach in [20, Appendix C] yields the following control law

κ(p̃) := λ2σ

(

k2
λ2

(

˙̃p+ λ1σ

(

k1
λ1

p̃

)))

(23)

in which σ is a saturation function defined in Section II while
λ1, λ2, k1, and k2 are chosen as

λi = ε(i−1) λ⋆i , ki = ε k⋆i , i = 1, 2 (24)

where k⋆i , λ⋆i are positive constants (fixed as Proposition 1
below) and ε > 0. Note that, by the definition of saturation
function,

|κ(p̃)| ≤
√
3λ⋆2ε .

Property (16) is thus fulfilled by fixing ε as

0 < ε ≤ κ̄√
3λ⋆2

. (25)

The asymptotic properties of the closed-loop position system
(21), (23) are detailed in the following proposition.

Proposition 1 Consider the closed-loop position error dy-
namics (21)-(23) with λi and ki, i = 1, 2, chosen as in (24),
(25) and λ⋆i , k⋆i taken as

λ⋆2
k⋆2

<
λ⋆1
4
, 4k⋆1λ

⋆
1 <

λ⋆2
4
, 6

k⋆1
k⋆2

<
1

24
. (26)

Then, there exist RΓ > 0, Rdf
> 0 and γpos > 0 such that

the system is Input-to-State Stable with respect to the inputs
(Γ, df ) without restrictions on the initial state, restrictions
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(RΓ, Rdf
) on the inputs and asymptotic gain γpos. In partic-

ular, for all (Γ, df ) such that |Γ|∞ ≤ RΓ, |df |∞ ≤ Rdf
and

for all initial conditions p̃(0) ∈ R6, the resulting trajectories
are bounded and the following asymptotic bound holds true

|p̃|a ≤ γpos max{ |Γ|a , |df |a } .

Proof: System (21)-(23) can be rewritten as

ζ̇1 = −λ1σ
(

k1

λ1
ζ1
)

+ ζ2

M ζ̇2 = −λ2σ
(

k2

λ2
ζ2
)

+Mk1σ′
(

k1

λ1
ζ1
)

ζ̇1 + γ(Rc, R)+

+ df

where ζ1 := p̃, ζ2 := ˙̃p + λ1σ ((k1/λ1)ζ1). Then the result
follows from [20, Lemma C.2.1] and [20, Proposition C.2.2]
since the system can be written as [20, (C.7)] with n = 2,
q1 = 1, q2 = 1/M , v1 = 0 and v2 = (Γ(·) + df )/M . "

If R = Rc then Γ ≡ 0 and the previous result shows that
the position tracking error has an asymptotic bound upper
bounded by a function of the disturbance df . Due to the fact
that saturation functions are used in the design of κ(·), the
class of force disturbances is required to fulfill the restriction
|df |∞ ≤ Rdf

. In particular, if df ≡ 0, global asymptotic
tracking is guaranteed. In the next subsection, we show how
the attitude dynamics of the vehicle can be controlled in order
to asymptotically enforce the condition R = Rc. This is
accomplished through appropriate design of the inner loop,
in which the rotation matrix Rc plays the role of reference
signal for the attitude dynamics.
Instrumental to the design of the inner loop is the computation
of the angular velocity ωc associated to the rotation matrix Rc,
defined as

ωc = (R⊤
c Ṙc)

∧ .

The next two lemmas exploit the particular choice of the
position control law (23) to highlight some properties of ωc

and ω̇c that will play a key role in the subsequent analysis.

Lemma 1 The angular velocity ωc can be expressed as

ωc = Ω1(p̃, t) + Ω2(p̃, t)Γ(R,Rc) + Ω2(p̃, t) df

where Ω1 and Ω2 are smooth functions satisfying Ω1(0, t) =
ω⋆(t) for all t ≥ 0 and

|Ωi(p̃, t)| ≤ Ω̄ ∀ p̃ ∈ R
6 , t ≥ 0

i ∈ {1, 2}, with Ω̄ a positive constant.

Proof: See Appendix A. "

Lemma 2 If df ≡ 0 then there exist Ω̄c1, Ω̄c2 ∈ R≥0 such
that

|ωc|∞ ≤ Ω̄c1 and |ω̇c|∞ ≤ Ω̄c2 .

Proof: See Appendix B. "

The next two subsections present the attitude stabilization
in the nominal and robust case, respectively. The analysis
in those sections is based on a quaternion parametrization
of the attitude. In this respect, we denote by qc ∈ S3 a
control quaternion associated to Rc, namely R(qc) = Rc

with R(·) the Rodrigues map. Due to topological reasons, the
computation of qc from Rc requires lifting continuous paths
from SO(3) to S3. In this paper, this has been achieved by
employing the path-lifting mechanism proposed in [30], which
ensures that t ,→ qc(t) is a continuous function of time.

B. Attitude Stabilization: the Nominal Case
Let us consider the problem of attitude stabilization in the

nominal case in which df ≡ 0, dτ ≡ 0, and J ≡ J0. We start
by defining attitude error coordinates as

q̃ := q−1
c ⊗ q

ω̃c := ω − ω̄c

(27)

with ω̄c := R(q̃)⊤ωc. From (27), bearing in mind (5) and the
last equation in (2), the following error attitude dynamics can
be computed

˙̃q =
1

2
q̃ ⊗

[

0

ω̃c

]

J ˙̃ωc = Σ(ω̃c, ω̄c)ω̃c + S(J ω̄c)ω̄c − JR(q̃)⊤ω̇c + uτ ,
(28)

having defined by Σ the skew-symmetric matrix

Σ(ω̃c, ω̄c) := S(J ω̃c) + S(J ω̄c)− S(ω̄c)J − JS(ω̄c) .

Hereafter, the scalar and vector part of the error quaternion q̃
are denoted, respectively, by η̃ and ϵ̃.
Inspired by [22], the following two controllers are designed

uτ = uτ,FF (q̃,ωc, ω̇c) + uτ,FB(q̃, ω̃c, h) , (29)

u′
τ = u′

τ,FF (q̃,ωc, ω̇c) + uτ,FB(q̃, ω̃c, h) (30)

where uτ,FF (·) and u′
τ,FF (·) are the “feedforward terms”,

which are given by

uτ,FF (q̃,ωc, ω̇c) = JR(q̃)⊤ω̇c − S(J ω̄c)ω̄c (31)

and

u′
τ,FF (q̃,ωc, ω̇c) = uτ,FF − (Σ(ω̃c, ω̄c)− S(J ω̃c)) ω̃c ,

(32)
while uτ,FB is the “hybrid feedback term”

uτ,FB(q̃, ω̃c, h) = −kp h ϵ̃− kd ω̃c (33)

in which kp, kd are positive gains and where h ∈ {−1, 1} is a
logic variable with hysteresis governed by the hybrid dynamics

{

ḣ = 0 h η̃ ≥ −δ
h+ ∈ sgn(η̃) h η̃ ≤ −δ

(34)

where δ ∈ (0, 1) is the hysteresis threshold and sgn : R ⇒

{−1, 1} is the set-valued function

sgn(s) =

{

sgn(s) |s| > 0

{−1, 1} s = 0 .

The goal of the control law (30) is to completely decouple
the attitude from the position dynamics in order to obtain
the cascade connection given in Figure 1(a). The control law
(29), on the other hand, is such that the skew-symmetric
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term Σ(ω̃c, ω̄c)ω̃c in (28) is not canceled, leading to the
interconnection shown in Figure 1(b).
By considering the control torques (29) and (30), the

corresponding closed-loop attitude error systems, denoted re-
spectively as Hnom and H′

nom, are given by

Hnom

{

˙̃x = Fnom(x̃,ωc) x̃ ∈ Cnom

x̃+ ∈ Gnom(x̃) x̃ ∈ Dnom
(35)

and

H′
nom

{

˙̃x = F ′
nom(x̃) x̃ ∈ Cnom

x̃+ ∈ Gnom(x̃) x̃ ∈ Dnom
(36)

where x̃ = col(q̃, ω̃c, h),

Fnom(x̃,ωc) :=

⎡

⎢

⎢

⎢

⎣

1

2
q̃ ⊗

[

0

ω̃c

]

J−1 (Σ(ω̃c, ω̄c) ω̃c − kp h ϵ̃− kd ω̃c )

0

⎤

⎥

⎥

⎥

⎦

,

F ′
nom(x̃) :=

⎡

⎢

⎢

⎢

⎣

1

2
q̃ ⊗

[

0

ω̃c

]

J−1 (S(J ω̃c)ω̃c − kp h ϵ̃− kd ω̃c )

0

⎤

⎥

⎥

⎥

⎦

,

Gnom(x̃) := [q̃⊤, ω̃⊤
c , sgn(η̃)]

⊤,

Cnom := {x̃ ∈ Xatt : h η̃ ≥ −δ} ,
Dnom := {x̃ ∈ Xatt : h η̃ ≤ −δ}

having defined Xatt := S3 × R3 × {−1, 1}. Note that the
attitude error system (35) is affected by the position error
system through the input ωc, whereas the attitude error system
(36), as a consequence of the choice (32), is an autonomous
system. Also note that Fnom(0,ωc) = 0 for all ωc ∈ R3.
For the closed-loop autonomous system (36), inspired by

the ideas in [22], we have the following result.

Proposition 2 Consider the hybrid systems H′
nom in (36). For

all kp > 0, kd > 0, and δ ∈ (0, 1), the compact set

A = {x̃ ∈ Xatt : q̃ = h1 , ω̃c = 0}

is globally asymptotically stable.

Proof: Consider the candidate Lyapunov function V : Xatt →
R≥0 given by V (x̃) = 2kp(1 − hη̃) + 1

2 ω̃
⊤
c J ω̃c. It satisfies

V (A) = 0, V (Xatt \ A) > 0, and {x̃ ∈ Xatt : V (x̃) ≤ c} is
compact for every c ≥ 0. During flows, since

˙̃η = −
1

2
ϵ̃⊤ ω̃c, ˙̃ϵ =

1

2
η̃ ω̃c +

1

2
S(ϵ̃) ω̃c

and ω̃⊤
c S(J ω̃c)ω̃c = 0 we have

⟨∇V (x̃), F ′
nom(x̃)⟩ = −kd ω̃

⊤
c ω̃c ≤ 0

for all x̃ ∈ Cnom. During jumps, using the fact x̃ ∈ Dnom

implies sgnη̃ ̸= sgnh and h+ = −h,

V (ξ)− V (x̃) = −2kp(−h)η̃ + 2kphη̃ = 4kphη̃

≤ −4kpδ < 0

for all ξ ∈ Gnom(x̃) and for all x̃ ∈ Dnom. Stability of A
follows by applying [31, Theorem 7.6]. To prove asymptotic

stability we make use of an invariance principle. Note first of
all that system (36) satisfies assumptions (A1)-(A3). In fact,
Cnom and Dnom are closed sets. The flow map is continuous
while, since s ,→ sgn(s) is an outer-semicontinuous and
bounded map, Ḡnom is outer semi-continuous and locally
bounded. Now applying [31, Theorem 4.7] with uc : Cnom →
R given by uc(x̃) = −kd ω̃⊤

c ω̃c and ud : Dnom → R

given by ud(x̃) = −4kpδ < 0, it follows that every bounded
and complete solution to (36) converges to the largest weakly
invariant set contained in

V −1(r) ∩W (37)

for some r ≥ 0 where W := {x̃ ∈ Cnom : ω̃c = 0}. By
evaluating the dynamics (36) along solutions that remain in
(37), we have that ϵ̃ = 0 and, since hη̃ ≥ −δ for all x̃ ∈ W ,
q̃ = h1. Then, since the only invariant set is for r = 0, i.e.,
{x̃ ∈ Xatt : q̃ = h1, ω̃c = 0, h ∈ {−1, 1}}, and (37) with
r = 0 is contained in A, we have that every bounded and
complete solution converges to A. Now it remains to prove
that every maximal solution is complete and that solutions
are bounded. From the fact that {x̃ ∈ Xatt : V (x̃) ≤ c} is
compact for every c ≥ 0 and the fact that V is nonincreasing
along solutions to (36), we have that solutions are bounded.
Moreover, since the viability condition (VC) in [23, Proposi-
tion 6.10] holds for (36), Gnom(Dnom) ⊂ (Cnom ∪ Dnom),
and the fact that solutions are bounded, by applying [23,
Proposition 6.10], it follows that all maximal solutions are
complete. Then A is attractive. Global asymptotic stability
follows from compactness of sublevel sets and from the fact
that V is positive definite. "

Now consider system Hnom. The latter is a hybrid system
affected by the exogenous input ωc. As a consequence of
Lemma 2, we have that the trajectories ωc can be thought
of solutions to the exosystem

ω̇e ∈ B3
Ω̄c2

, ωe ∈ B3
Ω̄c1

(38)

in which Ω̄c1, Ω̄c2 are the positive values given in Lemma
2. In particular, we have that there exists a solution ωe to
(38) such that ωe(t) ≡ ωc(t) for all t ≥ 0. Consider now the
autonomous hybrid system given by

He

{

ẋe ∈ Fe(xe) xe ∈ Ce

ẋe ∈ Ge(xe) xe ∈ De
(39)

where xe := [ω⊤
e , x̃

⊤]⊤,

Fe(xe) :=

[

B3
Ω̄c2

Fnom(x̃,ωe)

]

, Ge(xe) :=

[

ωe

Gnom(x̃)

]

Ce := {xe : ωe ∈ B3
Ω̄c1

, x̃ ∈ Cnom} and De := {xe : ωe ∈
B3
Ω̄c1

, x̃ ∈ Dnom}. For system (39), the following stability
result holds.

Proposition 3 Consider the hybrid system He in (39). For all
kp > 0, kd > 0, and δ ∈ (0, 1), the compact set

A =
{

xe ∈ R
3 × Xatt : ωe ∈ B3

Ω̄c1
, q̃ = h1 , ω̃c = 0

}

is globally asymptotically stable.
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Proof: Similarly to the proof of Proposition 2, we consider the
candidate Lyapunov function V : B3

Ω̄c1
× Xatt → R≥0 given

by V (xe) = 2kp(1−hη̃)+ 1
2 ω̃cJ ω̃c. It satisfies V (A) = 0 and

V ({B3
Ω̄c1

×Xatt} \A) > 0. Moreover, since B3
Ω̄c1

is compact,
{xe ∈ B3

Ω̄c1
× Xatt : V (xe) ≤ c} is compact for every c ≥ 0.

During flows, since Σ is a skew-symmetric matrix (which
implies ω̃⊤

c Σ(ω̃c,ωe)ω̃c = 0), it turns out that the Lyapunov
function is nonincreasing, i.e.,

⟨∇V (xe), Fe(xe)⟩ = −kd ω̃
⊤
c ω̃c ≤ 0

for all xe ∈ Ce. During jumps, following the same arguments
as in the proof of Proposition 2,

V (ξ)− V (xe) = −2kph+η̃ + 2kphη̃ = 4kphη̃

≤ −4kpδ < 0

for all ξ ∈ Ge(xe) and for all xe ∈ De. Stability of A
follows from [31, Theorem 7.6]. Asymptotic stability can be
proved by applying an invariance principle as for the proof
of Proposition 2. Note first of all that system (39) satisfies
assumptions (A1)-(A3). In fact Ce and De are closed sets.
The flow equation is continuous while Ḡe is outer semi-
continuous and locally bounded. Now applying [31, Theorem
4.7] with uc : Ce → R given by uc(xe) = −kd ω̃⊤

c ω̃c and
ud : De → R given by ud(xe) = −4kpδ < 0, it follows that
every bounded and complete solution to (39) converges to the
largest weakly invariant set contained in V −1(r) ∩ W with
W := {xe ∈ Ce : ω̃c = 0} and for some r ≥ 0. Following the
same arguments as in the proof of Proposition 2, this implies
that every bounded and complete solution converges to A.
Global asymptotic stability of A then follows as in the proof
of Proposition 2. "

C. Stability Properties of the Combined Position and Attitude
Closed-Loops in the Nominal Case
By combining the ISS properties of the position error system

in Proposition 1 with the global asymptotic stability of the
attitude error subsystem given in Propositions 2 and 3, the
desired global tracking objective for the whole system in the
nominal case can be accomplished.

Proposition 4 Consider the closed-loop system given by the
position error dynamics (21), with df ≡ 0, controlled by (23),
with λi and ki, i = 1, 2, chosen as in (24), (25) and λ⋆i , k⋆i
chosen as in Proposition 1, and the error attitude dynamics
(28) controlled by (29) or, respectively, (30), with kp > 0,
kd > 0, δ ∈ (0, 1) arbitrarily chosen. Then, the compact set

A⋆ = {(p̃, x̃) ∈ R
6 × Xatt : p̃ = 0 , q̃ = h1 , ω̃c = 0}

is globally asymptotically stable.

Proof: First, consider (28) controlled by (29). From Lemma
2, in the nominal case, the trajectories ωc can be obtained
as solutions to (38) and then Proposition 3 holds. Since the
hybrid system (39) satisfies (A1)-(A3), from [23, Theorem 6.8]
the hybrid system (39) is nominally well-posed and then [23,
Lemma 7.8] implies that the compact set A in Proposition 3 is
uniformly attractive from every compact set of the state space.

Since A is stable, uniformly attractive from compact subsets
of the state space, and, due to global asymptotic stability and
by applying [23, Lemma 6.16], the reachable set from every
given compact set is bounded, then [23, Lemma 7.11] implies
that A is also KL asymptotically stable. As a consequence,
for each maximal solution to (35), given ∆ > 0 there exists
T∆ > 0 such that Θ(R(q̃(t, j))) ≤ ∆ for all t + j ≥ T∆,
(t, j) ∈ dom x̃. Hence, in finite time, Θ(R(q̃)) is arbitrarily
small and, asymptotically, q̃ = h1 and ω̃c = 0. Now consider
(28) controlled by (30). From Proposition 2, the same result
holds following the same arguments employed above. By
focusing now on the position error dynamics (21), it follows
that, by choosing ∆ sufficiently small, restrictions R∆ on the
exogenous input Γ(Rc, R) given Proposition 1 are fulfilled
in finite time and Γ(Rc, R) approaches zero asymptotically.
Then, since system (21) is a continuous-time system and it
has no finite escape time, the result follows applying cascade
control arguments as in [20, Corollary B.3.3]. In particular,
for all 0 ≤ t ≤ T∆ solutions to (21) are defined and, since
for all t ≥ T∆ the restrictions on the inputs are satisfied,
|p̃|a ≤ γp|Γ|a for some class-K function γp, which, since
|Γa| = 0, implies that p̃ converges to zero. "

Remark 3 Note that the fact that the compact set A⋆ in
Proposition 4 is globally asymptotically stable implies that
the position and the attitude of system (2) converge to the
desired references (6), globally with respect to the initial
conditions. This result, which overcomes the topological ob-
struction of globally stabilizing systems on manifolds via
continuous feedback laws [24], takes advantage from the
methodology proposed in [22] in which a globally stabilizing
attitude controller is proposed.

Remark 4 The result in Proposition 4 for the overall closed-
loop system does not require additional conditions on the
tuning of the position and attitude controllers other than to the
ones given in Propositions 1, 2 and 3. This useful property is
obtained by designing the attitude controller in (29) (and (30))
so as to decouple (partially decouple) the inner attitude loop
from the outer position loop. As a main limitation, the resulting
attitude controller relies on the perfect knowledge of the system
dynamics (in particular, see the feedforward terms (31) and
(32)) and then it may not be robust to large uncertainties or
exogenous disturbances.

D. Attitude Stabilization: the Robust Case

Let us focus now on the general case in which the ex-
ogenous disturbances df and dτ affect system (2) and just
the nominal value J0 of the inertia matrix J is available for
feedback.
In this case it is possible to define the new attitude error

coordinates

q̃ := q−1
c ⊗ q, ω̃∗ := ω − ω̄∗ (40)

with ω̄∗ = R(q̃)⊤ω∗. By bearing in mind (2) and (5), the
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choice (40) leads to an attitude error dynamics of the form

˙̃q =
1

2
q̃ ⊗

[

0

ω̃∗

]

− 1

2
q̃ ⊗

[

0

R(q̃)⊤yζ

]

J ˙̃ω∗ = Σ(ω̃∗, ω̄∗) ω̃∗ + S(J ω̄∗)ω̄∗ − JS(R(q̃)⊤yζ) ω̄∗

−JR(q̃)⊤ ω̇∗ + uτ + dτ
(41)

in which yζ := ωc − ω∗ and where Σ(ω̃∗, ω̄∗) is the skew-
symmetric matrix defined just after (28) with (ω̃c, ω̄c) replaced
by (ω̃∗, ω̄∗). As above, η̃ and ϵ̃ denote respectively the scalar
and vector part of the error quaternion q̃. Regarding the term
yζ in (41) note that, by using the properties in Lemma 1, the
following holds

yζ := Ω1(p̃, t)− ω∗(t) + Ω2(p̃, t)Γ(R,Rc) + Ω2(p̃, t) df (t)

where Ω1(p̃, t) − ω∗(t) and Ω2(p̃, t)Γ(R,Rc) are bounded
smooth functions vanishing respectively with p̃ and ϵ̃. Namely,
yζ = yζ(p̃, ϵ̃, df , t) with yζ(0, 0, 0, t) = 0. Furthermore, with
the expression of u∗

τ0 in (11) at hand, note that the term
S(J ω̄∗)ω̄∗ − JR(q̃)⊤ ω̇∗ in the last equation of (41) can be
expressed as

S(J ω̄∗)ω̄∗ − JR(q̃)⊤ ω̇∗ =

−u∗
τ0 +∆1ω(q̃, t) ϵ̃+∆2ω(q̃, t) (J − J0)

where ∆1ω and ∆2ω are smooth functions of appropriate
dimension such that

∆1ω(q̃, t)ϵ̃ = J0(I3 −R(q̃)⊤)ω̇∗ + S(J0ω̄∗)ω̄∗+

− S(J0ω⋆)ω∗,

∆2ω(q̃, t)(J − J0) = (S(J ω̄∗)− S(J0ω̄∗))ω̄∗+

+ (J0 − J)R(q̃)⊤ω̇∗.

Note that ∆iω, i ∈ {1, 2}, are uniformly bounded, namely
there exists a constant ∆̄ω such that for all q̃ ∈ S3 and t ≥ 0

|∆iω(q̃, t)| ≤ ∆̄ω , i ∈ {1, 2} .

Furthermore, note that

ω∗ ≡ 0 , ω̇∗ ≡ 0 ⇒ ∆2ω(q̃, t) ≡ 0 . (42)

System (41) is thus a system driven by control input uτ

and affected by the exogenous disturbances (df , dτ , p̃, (J0 −
J)[ω∗, ω̇∗]). For this system, the attitude controller is selected
as

uτ = u∗
τ0 + uτ,FB(q̃, ω̃

∗, h) (43)

where the feedback law uτ,FB is chosen as

uτ,FB(q̃, ω̃∗, h) = −kp h ϵ̃− kp kd ω̃∗ (44)

in which kp, kd are positive gains and where h ∈ {−1, 1} is
governed by the following hybrid dynamics
{

ḣ = 0 h η̃ ≥ −δ or ϵ̃⊤JU ϵ̃+ ω̃∗⊤JU ω̃∗ ≥ 2kd δ

h+ ∈ sgn(η̃) h η̃ ≤ −δ, ϵ̃⊤JU ϵ̃+ ω̃∗⊤JU ω̃∗ ≤ 2kd δ
(45)

with δ ∈ (0, 1) and with the function sgn(·) defined as Section
IV-B. Note that, compared to (34), jumps occur only for
sufficiently small values of the angular position and velocity

errors. The whole attitude error system is thus a hybrid system
of the form

Hrob

{

˙̃x = Frob(x̃,d) x̃ ∈ Crob

x̃+ ∈ Grob(x̃) x̃ ∈ Drob
(46)

with x̃ = col(q̃, ω̃∗, h), d = col(df , dτ , p̃, (J0 − J)ω⋆, (J0 −
J)ω̇⋆), Frob(·) is the vector given by the right-hand side of
(41), Grob(·) is defined as Gnom in the previous section, and

Crob = {x̃ ∈ Xatt : h η̃ ≥ −δ }∪
{x̃ ∈ Xatt : ϵ̃⊤JU ϵ̃+ ω̃∗⊤JU ω̃∗ ≥ 2kd δ}

Drob = {x̃ ∈ Xatt : h η̃ ≤ −δ ,
ϵ̃⊤JU ϵ̃+ ω̃∗⊤JU ω̃∗ ≤ 2kd δ}

It turns out that, if the inputs (df , dτ , (J0−J)ω∗, (J0−J)ω̇∗)
are bounded, the design parameters can be tuned so as,
after a finite amount of jumps, system (41) flows only and
the resulting continuous-time system is characterized by an
arbitrarily small asymptotic gain with respect to the input d.
This fact is formalized in the next Theorem.

Theorem 1 Consider the hybrid system Hrob in (46). Let δ ∈
(0, 1) and

|df |∞ ≤ Rf , |dτ |∞ ≤ Rτ , |(J − J0)[ω
∗, ω̇∗]|∞ ≤ RW

(47)
for some constants Rf > 0, Rτ > 0 and RW > 0. For any
γatt > 0, c > 0, there exists k⋆d > 0 and for all kd ≤ k⋆d
there exists k⋆p > 0 such that for all kp ≥ k⋆p and for all
x̃(0, 0) ∈ Crob ∪ Drob each maximal solution x̃ is complete
and such that

• there exists T ⋆ > 0 such that x̃(t, j) ∈ Crob and
|ϵ̃(t, j)| ≤ c for all (t, j) ∈ dom x̃ such that t+ j ≥ T ⋆;

•

lim sup
t→∞

|x̃(t, j⋆)| ≤ γatt max{|p̃|a , |df |a , |dτ |a ,

|J − J0||[ω∗, ω̇∗]|a}

where j⋆ = sup{j : (t, j) ∈ dom x̃}.

Proof: By the expression of ωc and the properties of Ω1(·)
and Ω2(·) in Lemma 1, by the fact that Γ(Rc, R) is a smooth
function vanishing at ϵ̃ = 0, and by the definition of yζ , it
turns out that there exist smooth matrices ∆iη(p̃, q̃, t) and
∆iϵ(p̃, q̃, t), i = 1, 2, 3, of appropriate dimension such that

1

2
q̃ ⊗

[

0

R(q̃)⊤yζ

]

=

[

ϵ̃⊤∆1η(p̃, q̃, t)

∆1ϵ(p̃, q̃, t)

]

ϵ̃

+

[

ϵ̃⊤∆2η(p̃, q̃, t)

∆2ϵ(p̃, q̃, t)

]

+

[

ϵ̃⊤∆3η(p̃, q̃, t)

∆3ϵ(p̃, q̃, t)

]

df

and

|∆iη(p̃, q̃, t)| ≤ ∆̄q , |∆iϵ(p̃, q̃, t)| ≤ ∆̄q , i = 1, 2, 3

for all p̃ ∈ R6, q̃ ∈ S3, t ≥ 0, where ∆̄q is a positive constant.
Furthermore,

∆2η(0, q̃, t) = 0 , ∆2ϵ(0, q̃, t) = 0 ∀ q̃ ∈ S3 , t ≥ 0 .
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Moreover, there exist smooth matrices∆iω(p̃, q̃, t), i = 3, 4, 5,
of appropriate dimension such that

JS(R(q̃)⊤yζ)ω̄∗ =

∆3ω(p̃, q̃, t)ϵ̃+∆4ω(p̃, q̃, t) +∆5ω(p̃, q̃, t)df

and |∆iω(p̃, q̃, t)| ≤ ∆̄ω, i = 3, 4, 5, for all p̃ ∈ R6, q̃ ∈
S3, t ≥ 0, ω∗ bounded, where ∆̄ω is a positive constant.
Furthermore, ∆4ω(0, q̃, t) = 0 ∀ q̃ ∈ S3 , t ≥ 0 . By putting
all the previous expressions in (41), along flows, the error
attitude dynamics can be more explicitly rewritten as

˙̃η = −
1

2
ϵ̃⊤ω̃∗ + ϵ̃⊤∆1η(·)ϵ̃ + ϵ̃⊤dη

˙̃ϵ =
1

2
(η̃ω̃∗ + S(ϵ̃)ω̃∗) +∆1ϵ(·)ϵ̃ + dϵ

J ˙̃ω∗ = Σ(·) ω̃∗ − u⋆
τ0 + (∆1ω(·) +∆3ω(·))ϵ̃ +∆4ω(·)

+∆5ω(·)df +∆2ω(q̃,ω∗, ω̇∗)(J − J0) + uτ + dτ
(48)

where
dη = ∆2η(p̃, q̃, t) +∆3η(p̃, q̃, t)df

dϵ = ∆2ϵ(p̃, q̃, t) +∆3ϵ(p̃, q̃, t)df .

Let us define now the backstepping-like change of variable

ω̃∗ ,→ z̃ := ω̃∗ +
1

kd
h ϵ̃

that transforms system (48) into

˙̃η = −1

2
ϵ̃⊤
(

z̃ − 1

kd
h ϵ̃

)

+ ϵ̃⊤∆1η(·)ϵ̃+ ϵ̃⊤dη

˙̃ϵ =
1

2
(η̃I3 + S(ϵ̃))

(

z̃ − 1

kd
h ϵ̃

)

+∆1ϵ(·)ϵ̃ + dϵ

J ˙̃z =
(

−kpkdI3 + Σ′
kd
(z̃, q̃, h)

)

z̃ + Σ′′
kd
(z̃, q̃, h)ϵ̃ + dz

(49)
where

Σ′
kd
(·) := Σ(·) + 1

2kd
h (η̃I3 + S(ϵ̃))

Σ′′
kd
(·)ϵ̃ := −Σ(·) 1

kd
ϵ̃+ (∆1ω(·) +∆3ω(·))ϵ̃+

+
1

2kd
hS(ϵ̃)

(

z̃ −
1

kd
hϵ̃

)

+
1

kd
h∆1ϵϵ̃

dz :=

(

J

kd
h∆2ϵ(·) +∆4ω(·)

)

+

+

(

J

kd
h∆3ϵ(·) +∆5ω(·)

)

df+

+ ∆2ω(q̃,ω∗, ω̇∗)(J − J0) + dτ .

In order to study the asymptotic properties of system (46),
consider the following candidate Lyapunov function

V (x̃) = 2(1− hη̃) +
1

2
z̃⊤Jz̃ .

During flows, the time derivative of V reads as

⟨∇V (x̃), Frob(x̃,d)⟩ =

= − 1

kd
ϵ̃⊤ ϵ̃ − z̃⊤

(

kp kdI3 − Σ′
kd
(z̃, q̃, h)

)

z̃+

+ϵ̃⊤∆1η(p̃, q̃, t)ϵ̃ + hϵ̃⊤z̃ + z̃⊤Σ′′
kd
(z̃, q̃, h)ϵ̃+

+z̃⊤dz + dϵ .

Note that |(dη, dϵ, dz)|∞ ≤ d̄ for some positive constant d̄
dependent on Rf , Rτ , RW . As a consequence, standard high-
gain arguments for continuous time systems (see in particular
[25, Chapter 10]) can be used to claim that for any ℓ1 > 0
there exist k⋆d > 0 and, for all kd ≤ k⋆d , k⋆p > 0 such that for
all kp ≥ k⋆p the following holds

|(ϵ̃, z̃)| ≥ ℓ1|(dη, dϵ, dz)|
x̃ ∈ Crob

}

⇒ ⟨∇V (x̃), Frob(x̃,d)⟩ ≤ −γV (x̃)
(50)

for some positive constant γ.
Let us now analyze the behavior of V during jumps. By

definition of Drob, during jumps sgnh ̸= sgnη̃ which implies
that h+ = −h. Hence, z̃+ = ω̃∗+ + (1/kd)h+ϵ̃+ = ω̃∗ −
(1/kd)hϵ̃ by which, recalling also (4), the following holds

V (ξ)− V (x̂) =

2(1− h+η̃) +
1

2
z̃+⊤Jz̃+ − 2(1− hη̃)− 1

2
z̃⊤Jz̃

= 4hη̃ +
1

2

(

ω̃∗ −
1

kd
hϵ̃

)⊤

J

(

ω̃∗ −
1

kd
hϵ̃

)

−1

2

(

ω̃∗ +
1

kd
hϵ̃

)⊤

J

(

ω̃∗ +
1

kd
hϵ̃

)

= 4hη̃ − 2

kd
hω̃∗⊤J ϵ̃

≤ −4δ +
2

kd
|ω̃∗⊤J ϵ̃| ≤ −4δ +

1

kd

(

ω̃∗⊤JU ω̃∗ + ϵ̃⊤JU ϵ̃
)

≤ −2δ

for all ξ ∈ Grob(x̃). Now let c1 ≤ c be a positive constant
such that |ϵ̃| ≤ c1 ⇒ |η̃| > δ and let ℓ2 > 0 be such that

V (x̃) ≤ ℓ2 ⇒ |(ϵ̃, z̃)| ≤ c1 .

Furthermore, by bearing in mind (50), fix ℓ1 > 0 (and k⋆d and
k⋆p accordingly) and 0 < ℓ3 < ℓ2 so that

|(ϵ̃, z̃)| ≤ ℓ1d̄ ⇒ V (x̃) ≤ ℓ3 .

In summary, for all df , dτ , J , t ,→ p∗(t), t ,→ ω∗
z(t) such that

|df |∞ ≤ Rf , |dτ |∞ ≤ Rτ , |J−J0||[ω∗, ω̇∗]|∞ ≤ RW , and for
all p̃ ∈ R6, we have that (50) holds and V is strictly decreasing
during jumps. Accordingly, every complete solutions to Hrob

converge in finite time to the set Pℓ2 := {x̃ : V (x̃) ≤ ℓ2}.
Now, we show that every maximal solution to (46) is

complete. From the fact that {x̃ : V (x̃) ≤ c′} is compact
for every c′ > 0, and, for all x̃ such that V (x̃) ≥ ℓ2, V is
non increasing along solutions to (46), we have that solutions
are bounded. Moreover the viability condition (VC) in [23,
Proposition 6.10] holds for the hybrid system (46) with zero
input, i.e., d ≡ 0. Then, since Grob(Drob) ⊂ (Crob ∪ Drob)
and, as shown above, from the fact that solutions are bounded,
by applying [23, Proposition 6.10] it follows that all max-
imal solutions to (46) with zero input are complete. Since
Grob(Drob) ∩Drob = ∅ and the inputs df , dτ , dz in (49) are
bounded, there is a finite (nonzero) amount of flows among
jumps. This shows that every maximal solution to (46) in the
presence of the input d satisfying (47) are complete. As a
consequence, from (50), there exists a T ⋆ > 0 such that
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V (x̃(t, j)) ≤ ℓ2 for all (t, j) in the hybrid time domain of
the solution such that t + j ≥ T ⋆. Hence, by definition of
c1, |ϵ̃(t, j)| ≤ |(ϵ̃(t, j), z̃(t, j))| ≤ c1 < c for all (t, j) such
that t+ j ≥ T ⋆. This in particular implies that x̃(t, j) ∈ Crob

for all (t, j) such that t + j ≥ T ⋆, from which item 1 holds
true. To prove item 2, note that for all (t, j) ∈ dom x̃ such
that t + j ≥ T ⋆ system (46) evolves as a continuous time
system, namely no jumps occur. Accordingly, for all maximal
solutions to (46), there exists j⋆ > 0 such that (t, j⋆) belong
to dom x̃ for all t ≥ T ⋆. The second item then follows by
considering the continuous time system (49), the Lyapunov
function (50), and by applying standard ISS arguments for
continuous time systems [25, Chapter 10]. In particular the
asymptotic bound involving (J − J0)[ω∗, ω̇∗] follows from
the property of ∆2ω(·) in (42). "

Remark 5 From the model inversion computed in Section
III-B it follows that ω∗, ω̇∗ are functions of the position
references p∗ (3), p∗ (4) and the attitude references ω∗

z , ω̇∗
z .

Hence, the value of RW in Theorem 1 depends on the desired
position and attitude references and on the uncertainties on
the inertia matrix J .

Remark 6 Theorem 1 shows how the attitude controller (43)-
(45) is actually able to robustly globally stabilize the attitude
error (40) in the presence of bounded exogenous disturbances
and parametric uncertainties. This robustness property repre-
sents the main contribution of the proposed attitude control
design with respect to the one proposed in [22]. Robust
attitude controllers have appeared also in the space control
literature (see [32] among others). The approach proposed in
this work, however, is also able to overcome the topological
obstruction using hybrid feedback control techniques so as to
obtain a global property.

E. Stability Properties of the Combined Position and Attitude
Closed Loops in the Robust Case
By combining the claim of Theorem 1 and the one of Propo-

sition 1, small gain arguments for continuous time systems can
be used to conclude the asymptotic properties of the whole
closed-loop system in the robust case. In fact, the following
proposition holds true. 1

Proposition 5 Consider the whole closed-loop system given
by the position error dynamics (21) controlled by (23), with
λi and ki, i = 1, 2, chosen as in (24), (25) and λ⋆i , k⋆i
chosen as in Proposition 1, and the error attitude dynamics
(41) controlled by (43)-(45) with δ ∈ (0, 1). Let

|df |∞ ≤ Rdf
, |dτ |∞ ≤ Rdτ , |(J − J0)[ω

∗, ω̇∗]|∞ ≤ RW

with Rdf
fixed by Proposition 1 and Rdτ , RW arbitrarily

large positive numbers. Then there exists k⋆d > 0 and, for

1Hereafter, for the hybrid system Hrob, we compactly denote |φ|a =
lim sup

(t,j)∈domφ, t+j→∞

|φ(t, j)|.

all kd < k⋆d , k⋆p(kd) > 0 such that for all kp ≥ k⋆p(kd) the
following asymptotic bound holds true

|(p̃, ϵ̃, ω̃)|a ≤ γmax{|df |a ,
1

kp
|dτ |a,

1

kp
|(J − J0)[ω

∗, ω̇∗]|a}

for some γ > 0.

Proof: As a first step, note that there exists a positive constant
Γ̄ such that the Γ(Rc, R) can be bounded as |Γ(Rc, R)| ≤ Γ̄|ϵ̃|.
With an eye to the statements of Proposition 1 and Theorem
1 , let c > 0 and γatt > 0 be fixed so that Γ̄ c ≤ RΓ and

γatt γpos Γ̄ < 1 (51)

and let k⋆d and k⋆p fixed accordingly so that the properties of
Theorem 1 are fulfilled with the restrictions on the inputs df ,
dτ and (J0−J)[ω∗, ω̇∗] given by Rdf

, Rdτ and RW . Then, by
Theorem 1, the restriction RΓ on the input Γ of system (21)
controlled by (23) is fulfilled in finite time. Moreover, there
exists a time T ⋆ such that for all t+ j ≥ T ⋆ the closed-loop
system flows only. At this point, asymptotic stability properties
of the closed-loop system can be inferred by considering
stability arguments for continuous-time systems. In particular,
note that the small gain condition between the position and
attitude subsystems is fulfilled by virtue of (51). The claimed
asymptotic bound then follows from gain composition using
the fact that γatt in Theorem 1 can be arbitrarily decreased by
increasing kp. "

By considering a possible employment in real-world appli-
cations, note that the robust attitude control strategy derived in
Section IV-D presents a number of advantages with respect to
the nominal one proposed in Section IV-B. On the one hand,
from Theorem 1, the robust attitude controller can be tuned
to deal explicitly with model uncertainties and exogenous
disturbances. The importance of such robustness will be also
emphasized in Section V, in which the problem of controlling
a prototype of quadrotor aerial vehicle is considered. More-
over, the robust attitude controller relies only on a simple
feedback law (44) which depends on the actual state of the
system and on the nominal model inversion computed in
Section III-B. All of the above features thus suggest that the
robust control strategy can be successfully employed in the
design of an autopilot for VTOL aerial vehicles. As far as the
stability of the overall position and attitude closed-loop system
is concerned, note that the robust control strategy requires the
attitude controller to be sufficiently fast (see the conditions on
the attitude control parameters given in Proposition 5). This
is a consequence of the fact that, in the robust case, it is not
possible to decouple the position and the attitude dynamics
trough a suitable design of the control torque as it has been
done in the two solutions proposed for the nominal case.

Remark 7 When a hybrid controller is subjected to mea-
surement noise, multiple jumps or chattering may occur [23,
Chapter 4]. This phenomenon may happen when jumps map
the state back to the jump domain, namely G(D) ∩ D ̸= ∅.
With an eye on (35) and (36), since δ > 0, it follows
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that Gnom(Dnom) ∩ Dnom = ∅ (see [22, Subsection IV.E]).
Moreover, with an eye on (46), since Grob = Gnom and
Drob ⊂ Dnom, it also holds that Grob(Drob) ∩ Drob = ∅.
As shown in [22, Subsection IV.E], the parameter δ can be
also tuned to ensure robustness to possibly large measurement
noise.

V. APPLICATION TO THE CONTROL OF A QUADROTOR
AERIAL VEHICLE

The control strategy developed for the robust case has
been tested on a real quadrotor aerial vehicle. The selected
prototype, which is depicted in Figure 2, is based on a carbon
fiber tubular airframe characterized by high stiffness and low
weight (about 220 grams). The prototype is actuated by four
fixed-pitch propellers, each one driven by a brushless DC
(BLDC) electric motor. The selected motors (Dualsky XM-
400, 130 W of maximum power) and propellers (APC, 8
inches diameter) are able to produce approximately 2 Kg of
total thrust when using a 3S LiPo (Lithium Polimery) battery
as the poser source.

Fig. 2. Quadrotor prototype

Following [7], the dynamics of the system can be described
by means of (2) in which the resultant force and torques can
be computed as a function of the four thrusts Ti, i = 1, 2, 3, 4,
generated by the four different propellers, namely

[

uf

uτ

]

=

⎡

⎢

⎢

⎢

⎣

−1 −1 −1 −1

0 −d 0 d

d 0 −d 0

Ktm −Ktm Ktm −Ktm

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

T1

T2

T3

T4

⎤

⎥

⎥

⎥

⎦

(52)

where d denotes the distance of the propeller spin axis from
the center of gravity of the system, Ktm is a parameter which
relates the thrust of a single motor to the aerodynamic torque
produced along the spin axis of the propeller. The thrust Ti

produced by each propeller is a function of the angular speed
ωP,i of the motors, namely Ti = kTω2

P,i, with i ∈ {1, 2, 3, 4}.
The parameters of the specific prototype are M = 1.05 Kg,
J0 = diag(0.0082, 0.0082, 0.0164) Kgm2, d = 0.29 m, and
Ktm = 0.026. The values of Ktm, kT , d and M have been
measured experimentally with the help of a load-cell, while the
value of the inertia J0 has been estimated using a computer
aided design software. To take into account possible uncertain-
ties of the mass distribution, the following upper bound has
been taken into account JU = diag(0.01, 0.01, 0.02) Kgm2.
With the above prototype at hand, the following two subsec-

tions propose respectively simulations and experimental results
obtained by considering the robust control strategy defined in
Sections IV-A and IV-D.

A. Simulations
Two different simulations are proposed. In the first one,

the quadrotor is required to hover at a fixed position p⋆

starting from an initial attitude configuration in which the
vehicle is overturned (attitude recovery maneuver). To govern
the position dynamics, the controller (23) has been employed
by choosing, according to Proposition 1, the control gains as
k⋆1 = 1, λ⋆1 = 5, k⋆2 = 150, λ⋆2 = 150 and ϵ = 0.06. For
the attitude loop, the controller in (43), yielding robust global
stability results, has been considered with kp = 40, kd = 0.2
and δ = 0.1. To show the robustness of the proposed control
law, realistic parametric uncertainties and disturbances have
been considered in the simulations. In particular, the actual
inertia J of the vehicle is assumed to be 10 % larger than the
nominal one, while the forces and torques disturbances df and
dτ are selected as coloured noise with maximum amplitude
of 1.5 N and 0.05 Nm, respectively, to model the effects
of possible wind impacting propellers. Finally, a white noise
with maximum amplitude of 0.04 rad has been added to the
attitude position measurement to represent uncertainties in the
sensor model.
Figures 3, 4 and 5 show the attitude position, the angular

speed and the linear position of the vehicle during the attitude
recovery maneuver. Note that, despite the vehicle in the initial
position is overturned, i.e., [η(0), ϵ(0)⊤]⊤ = [0, 1, 0, 0]⊤, the
vehicle converges rapidly to the desired hover configuration
by rotating around the body x-axis. This is achieved without
undesired switches of the hybrid state h, as depicted in Figure
6. This result may not be achieved with continuous time
controllers having the above initial condition as equilibrium
point, or with discontinuous feedback laws not robust to
measurement noise (see also [33]). Finally, the force and
torque control inputs applied to the quadrotor during the
maneuver are depicted in Figure 7.
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Fig. 3. The attitude trajectory of the quadrotor during the attitude recovery
maneuver.

The second simulation considers an aggressive maneuver
(barrel flip) to be accomplished by the vehicle. In particular,
the desired time reference signals are given by x∗(t) := 0,
y∗(t) := cos(γt), z∗(t) := − sin(γt), where γ := 1.4π
rad/s. In practice the quadrotor is required to follow a circular
trajectory along the y and z inertial axis maintaining a constant
speed along the path. The reference inputs u∗

f and u∗
τ , required

to compute the feed-forward control terms in (15) and (43),
have been computed as in Section III-A with R∗ obtained
using the algorithm in Appendix C. For the above reference
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Fig. 4. The angular speed of the quadrotor during the attitude recovery
maneuver.
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Fig. 5. The position trajectory of the quadrotor during the attitude recovery
maneuver.
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Fig. 6. The logic state h of the quadrotor during the attitude recovery
maneuver.
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Fig. 7. The control force and torques applied to the quadrotor during the
attitude recovery maneuver.

trajectory, condition (9) holds with ϵ ≤ 0.1. Thus the same
position and attitude control parameters of the first simulation
have been considered. The actual and the reference position
trajectories are depicted in Figure 10, showing how the system
converges to the desired path. Figure 8 shows the attitude
of the vehicle during the aggressive maneuver and Figure 9
shows the angular velocity. Note that, to compensate for the

high centrifugal force with the thrust forces generated by the
propellers, the quadrotor has to continuously rotate around the
body x axis.
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Fig. 8. The attitude trajectory of the quadrotor during the aggressive
maneuver.
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Fig. 9. The angular speed of the quadrotor during the aggressive maneuver.
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Fig. 10. The position trajectory of the quadrotor during the aggressive
maneuver.

B. Experiments
The goal of this section is to show the performance of the

proposed robust inner-outer loop control strategy in a real-
world application scenario. In particular, the robust control
strategy developed in Sections IV-A and IV-D has been
implemented on a real autopilot [34] in order to stabilize
the quadrotor prototype described in Section V. To determine
the attitude of the vehicle, the selected autopilot includes an
Inertial Measurement Unit (IMU) which consists of 3D ac-
celerometers, magnetometers and gyros. The low-level sensor
information obtained by the IMU is processed by an Attitude
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and Heading Reference System (AHRS) algorithm, derived
following [35], in order to compute the attitude quaternion and
the angular speed of the system. An external motion tracking
system [36] has then been employed to determine the linear
position of the center of gravity of the vehicle. The selected
motion tracking system is able to measure the position at 100
Hz with approximately 1 mm accuracy. With this information
at hand, a standard high-gain observer [37, Chapter 14.5] has
been employed to compute the linear velocities in real-time.
All of the control and estimation algorithms run in real-time
at 200 Hz rate on a 32 bit ARM processor. The parameters
for the controller used in the experiment are: k⋆1 = 1, λ⋆1 = 5,
k⋆2 = 150, λ⋆2 = 150, ϵ = 0.06, kp = 16, kd = 0.7 and
δ = 0.15. The value of δ has been selected to take into account
the measurement noise on attitude estimation of the specific
prototype.
The goal of the proposed experiment is twofold. On the

one hand, it shows how the proposed control strategy is
actually effective in practical applications in which model
uncertainties, disturbances and noises are present. On the other
hand, it shows how the proposed global stabilizing controller is
able to overcome typical limitations of some continuous-time
stabilizing controllers, such as in particular the un-winding
phenomenon [38]. In the experiment, the vehicle is deployed
by the hand of a human operator and the controller is required
to maintain a constant position and attitude. Due to this
particular type of deployment, large initial attitude errors can
be introduced since the vehicle may rotate when it is launched
by the operator.
Figures2 12 and 13 show the attitude position and angular

velocity of the vehicle during the experiment. Note that the
vehicle starts close to the unit quaternion q = [1, 0, 0, 0]⊤

and then, due to manual deployment procedure, is rotated by
approximately 2π around the body z axis. Note that at time
t ≈ 3.9 sec, η is close to zero while ϵ is close to [0, 0, −1]⊤.
Due to this large attitude error, the jump domain Drob in
(46) is entered. Note that, due to the small values of the
inertia JU , the jump condition in (45) can be entered even
when the vehicle is rotating at relative large angular speed
values (up to 3 rad/s for the parameters employed in the
experiments). Thus the logic state h, which is depicted in
Figure 14, switches from 1 to −1 and the unit quaternion
q = [−1, 0, 0, 0]⊤ is stabilized. This fact prevents the
vehicle to perform a complete rotation around its body z
axis in order to reach q = [1, 0, 0, 0]⊤, which, according to
the Rodrigues formula, corresponds to the same orientation.
The position of the vehicle during the maneuver has been
depicted in Figure 11 while the control inputs are given in
Figure 15. A video showing the experiment is available at
https://www.youtube.com/watch?v=FFW2MchU79A.

VI. CONCLUSIONS
Control strategies to let the dynamics of a class of VTOL

aerial vehicles tracking a desired position and attitude trajec-
tory globally with respect to the initial conditions have been
presented. The proposed feedback controllers are based on a

2Measurements are obtained from the onboard autopilot at 10 Hz rate.
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hierarchical control paradigm in which the attitude, which is
governed by means of a hybrid controller so as to overcome
the well-known topological constraint, is employed as a virtual
input to stabilize the aircraft position. Two main approaches
have been proposed and compared. The first one is based on
the idea of decoupling the attitude from the position dynamics
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Fig. 15. The force and torques control inputs applied to the aerial vehicle
during the hand deployment maneuver.

by taking into account perfect knowledge of the dynamical
model of the system. The second approach, on the other hand,
aims at obtaining a controller which is robust with respect to
the presence of uncertainties and exogenous disturbances such
as wind gusts. Since the dynamical model of the system is not
perfectly known, the position and attitude dynamics cannot
be decoupled. Hence the stability analysis requires to deal
with the feedback interconnection between the hybrid attitude
and the continuous-time position closed-loop subsystems. The
resulting controller is characterized by a very simple structure,
i.e., by a linear error feedback term driven by the logic required
to overcome the topological obstruction and a feedforward
term deriving from the references to be tracked. Simulations
and experiments obtained considering a prototype of quadrotor
aerial vehicle finally show how the robust controller can be
effectively employed in practical applications.
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APPENDIX A
PROOF OF LEMMA 1

By the definition of Rc in (18), (20) and using R⊤
c Ṙce3 =

S(ωc)e3 it follows that

ωc = ḠR⊤
c

d

dt

vc(p̃, t)

|vc(p̃, t)|
+ ω∗

ze3

in which Ḡ ∈ R3×3 is the matrix with the first, second
and third rows given by [0, −1, 0], [1, 0, 0] and [0, 0, 0],
respectively, and

d

dt

vc
|vc|

=

(

I3
|vc|

− vcv⊤c
|vc|3

)

(

v̇∗f + κ̇(p̃)
)

.

By taking advantage from the nested saturation structure of
κ(·) in [20] it is possible to show that κ̇(·) is upper bounded
by a value not dependent on p̃. To this purpose, let ζ :=
˙̃p+ λ1σ (k1p̃/λ1) so that κ(p̃) = λ2σ(k2ζ/λ2) and

κ̇(·) =
k2
M
σ′

(

k2ζ

λ2

)(

−λ2σ
(

k2ζ

λ2

)

+

+ Mk1σ′

(

k1p̃

λ1

)

˙̃p+ Γ+ df

)

from which the expressions of Ω1(·) and Ω2(·) immediately
follow. The fact that Ω1(0, t) = ω⋆ follows from (12) and
σ(0) = 0. Finally, the fact that Ω1 and Ω2 are uniformly
bounded by a constant Ω̄ follows from the fact that vc, σ(·)
and σ′(·) are bounded functions (by the definition of saturation
function and by (15)), and that σ′(k2ζ/λ2) ˙̃p is a bounded term.
As a matter of fact note that, in the computation of a bound for
σ′(k2ζ/λ2) ˙̃p, it is possible to assume |ζ| ≤ λ2/k2 (otherwise
σ′(k2ζ/λ2) = 0 by the definition of saturation function) and
thus, by the definition of ζ, | ˙̃p| ≤

√
3(λ2 + λ2/k2). This

completes the proof of the lemma.

APPENDIX B
PROOF OF LEMMA 2

From Lemma 1, since df ≡ 0 and Γ is bounded, we have
that ωc(t) is a bounded function of time. By computing the
derivative of ωc(t) we obtain

ω̇c = ḠS(ωc)
⊤R⊤

c

d

dt

vc
|vc|

+R⊤
c

d2

dt2
vc
|vc|

+ ω̇⋆
ze3

where the expression of (d/dt)(vc/|vc|) is given in the proof
of Lemma 1, and it is bounded when df ≡ 0, while

d2

dt2
vc
|vc|

=

(

−vcv⊤c
|vc|3

− v̇cv⊤c + vcv̇⊤c − 3(vcv⊤c )2

|vc|5

)

v̇c+

+

(

I3
|vc|

− vcv⊤c
|vc|3

v̈c

)

with v̇c = v̇⋆f + κ̇(·), v̈c = v̈⋆f + κ̈(·) . From the assumptions
on the references given in Section III-B and by considering
the proof of Lemma 1 for the special case in which df ≡ 0,
we have that v̈⋆f and κ̇(·) are bounded functions of time. Then
the result follows by showing that, when df ≡ 0, also κ̈(·) is
bounded. Specifically, we have

κ̈(·) =
k22
λ2
σ′′

(

k2ζ

λ2

)

ζ̇2 + k2σ
′

(

k2ζ

λ2

)

ζ̈

with

ζ̇ =
1

M
(−κ(·) + Γ) + k1σ

′

(

k1p̃

λ1

)

˙̃p

ζ̈ = −
1

M
κ̇(·) +

1

M
Γ̇+

k21
λ1
σ′′

(

k1p̃

λ1

)

˙̃p2+

+ k1σ′

(

k1p̃

λ1

)

¨̃p .

When |ζ| > k2/λ2, from the definition of σ(·), we have that
σ′(k2ζ/λ2) = σ′′(k2ζ/λ2) = 0. In the other case, when |ζ| ≤
k2/λ2, from the definition of ζ given in the proof of Lemma
1, we have that | ˙̃p| ≤

√
3(λ2 + λ2/k2). Then, by considering

also the definition of Γ given in (22) and ¨̃p given by (21) with
df ≡ 0, since σ(·), σ′(·), σ′′(·) are bounded functions, all
terms in the expressions of ζ̇ and ζ̈ are bounded. This proves
the lemma.

APPENDIX C
COMPUTATION OF THE ROTATION MATRIX

A rotation matrix satisfying (8) (or equivalently (18)) can
be obtained parameterizing rotations using Euler angles. In
fact, given ν = [νx, νy, νz ]⊤ ∈ S2, a matrix R′ ∈ SO(3)
s.t. R′e3 = ν can be obtained as (i) R′ = RxRyRz or (ii)
R′ = RyRxRz with

Rx =

⎡

⎢

⎣

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

⎤

⎥

⎦

,

Ry =

⎡

⎢

⎣

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

⎤

⎥

⎦

,

Rz =

⎡

⎢

⎣

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

⎤

⎥

⎦
,

where φ, θ, ψ ∈ R. Since Rze3 = e3 for all ψ ∈ R, the value
of ψ can be considered as a degree of freedom (namely the
heading direction of the vehicle can be assigned arbitrarily)
when R′ is computed as in (i) or (ii). For the case (i), if νz ̸= 0
or νy ̸= 0, φ and θ can be obtained as

φ = arctan

(

−νy
νz

)

, θ = asin(νx) .

When νz and νy are close to zero, since νx is different from
zero from the definition of S2, the expression of R′ can be
computed as in (ii) with φ and θ given as

φ = asin(−νy), θ = arctan

(

νx
νz

)

.


