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Abstract This article collects several model predictive control (MPC)
strategies in the literature that have a hybrid flavor, which, due to the di-
verse use of the term hybrid, span a wide range of control settings. These in-
clude discrete-time systems with discontinuous right-hand sides, with states
that include both continuous-valued and discrete-valued variables. It also in-
cludes systems controlled by MPC strategies using memory variables and
logic states, continuous-time systems controlled by MPC strategies that up-
date the feedback law periodically as well as those controlled by MPC strate-
gies that employ more than one feedback controller. This article provides a
unified presentation of these strategies with the purpose of serving as a self-
contained summary of the state of the art in hybrid MPC, as a handbook
with precise pointers to the literature to the interested control practitioner,
and as a motivator for future research directions on the subject.

1 Summary

The literature features several MPC strategies that are labeled as hybrid,
either due to features of the state of the system, its dynamics, or the con-
trol algorithm. The term hybrid in the context of MPC has been used to
refer to systems that are to be controlled (or the control algorithm) with
continuous-valued and discrete-valued state components; e.g., in the control
of a thermostat system, a continuous-valued state component would represent
temperature and a discrete-valued state component would represent whether
the heating/cooling device is on or off. The term hybrid has also been used
in the literature for systems with dynamics whose right-hand sides depend
discontinuously on their state or on their input. In addition, the term hybrid
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has also been used to emphasize nonsmoothness in the control algorithm, for
instance, when the algorithm switches between different control laws or when
it is implemented using the sample-data control paradigm.

Due to the need for digitally implementable control algorithms, it is natural
to consider dynamical models given in discrete time. In fact, the vast majority
of the results in the literature of hybrid MPC fall into such a category. This
article presents those strategies first. There are also a number of strategies
that follow a sampled-data control approach. Rather than discretizing the
system to control, such approaches incorporate into the mathematical models
the continuous-time dynamics of the plant as well as the (periodic) discrete
events at which computations occur. These type of strategies are presented
after the ones for discrete-time systems. Strategies for systems with combined
continuous and discrete dynamics in which the state variables may flow and,
at times exhibit jumps due to state or input conditions are scarce. As argued
in Section 3, new advances in hybrid dynamical systems are needed to develop
those strategies.

In light of the outlined state of the art, this chapter covers hybrid MPC
results in each of the main three forms seen in the literature and is organized
as follows:

1. Discrete-time MPC for systems modeled as discrete-time systems with
discontinuous right-hand sides (Section 2.1);

2. Discrete-time MPC for systems modeled as discrete-time systems with a
state that contains continuous and discrete-valued states (Section 2.2);

3. Discrete-time MPC for systems modeled as discrete-time systems using
memory and logic variables (Section 2.3);

4. Continuous-discrete MPC for systems modeled as continuous-time sys-
tems, with piecewise continuous inputs (Section 2.4.1) and piecewise con-
stant inputs (Section 2.4.2);

5. Continuous-discrete MPC for systems modeled as continuous-time systems
with local static state-feedback controllers (Section 2.5);

6. Discrete-time MPC for systems modeled as continuous-time linear systems
with impulses (Section 2.6).

2 Hybrid Model Predictive Control

The MPC strategies presented in this section perform the following tasks:

• Measure the current state of the system to control;
• Predict for a finite amount of time – the so-called prediction horizon –

the trajectories of the system to control from the current state and for a
family of allowed input signals;
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• Select an input signal that is a minimizer of a given cost functional, which
potentially depends on the predicted trajectories and the input, and that
satisfies a terminal constraint (if one is given);

• Apply the input signal for a finite amount of time – the so-called control
horizon.

Most MPC algorithms perform these tasks repetitively in the order listed.
The following sections provide details on these tasks for each of the strategies
listed in Section 1. Regardless of the type of model used, and unless otherwise
stated, the state and the input of the system to control are denoted as x and
u, while the state and input constraints (if any) are denoted as X and U ,
respectively. When the model of the system to control is of discrete-time
type, the notation x+ indicates the value of the state after a discrete-time
step. Discrete time is denoted as k, which takes values in N := {0, 1, 2 . . .}. For
continuous-time models, the notation ẋ denotes the derivative with respect to
ordinary time. Ordinary time is denoted as t, and takes values from R≥0 :=
[0,∞). The MPC strategies require solving an optimization problem using
the current state of the system. Since the strategies presented in this article
are stated for time-invariant systems, we treat the current state as an initial
condition, and denote it as x0. The prediction horizon in discrete time is
denoted N ∈ N>0 := {1, 2, . . .}, while in continuous time is denoted by T ∈
R>0 := (0,∞). Similarly, the control horizon in discrete time is denoted Nc ∈
N>0 := {1, 2, . . .}, while in continuous time is denoted by Tc ∈ R>0 := (0,∞).
We also define N<N := {0, 1, 2, . . . , N − 1} and N≤N := {0, 1, 2, . . . , N} for a
given N ∈ N>0. Given a vector x, |x| denotes its Euclidean norm and given
p ∈ [1,∞], |x|p denotes its p-norm. Given n ∈ N>0, Rn denotes the Euclidean
space of dimension n.

2.1 Discrete-time MPC for discrete-time systems with
discontinuous right-hand sides

MPC for discrete-time systems that have piecewise-linear but discontinuous
right-hand sides is studied in [19]. Under the name Piecewise Affine System
(PWA), the systems considered in [19] take the form

x+ = Aix+Biu+ fi (1)

y = Cix+Diu (2)

subject to x ∈ Ωi, u ∈ Ui(x), i ∈ S (3)

where S := {1, 2, . . . , s} with s finite, the sequence of constant matrices
{(Ai, Bi, fi, Ci, Di)}i∈S has elements with appropriate dimensions, {Ωi}si=1

is a collection of polyhedra such that
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i∈S

Ωi = X

where X is the state space and

int(Ωi) ∩ int(Ωj) = ∅ ∀i 6= j, i, j ∈ S

where, for each x ∈ Ωi, Ui(x) is the set of allowed inputs. The subset of
elements i in S for which 0 ∈ Ωi is denoted as S0, while all of the other
elements in S define S1. The origin of (1)-(3) is assumed to be an equilibrium
state with u = 0, and the requirement fi = 0 for all i ∈ S0 is further
imposed. It should be noted that in [19], this class of systems is referred to as
hybrid, presumably due to the right-hand side being discontinuous – in fact,
in general, the map

(x, u) 7→ {Aix+Biu+ fi : i ∈ S, x ∈ Ωi, u ∈ U(x) }

defined on
⋃
i∈S
⋃
x∈Ωi

({x} × U(x)) is discontinuous.
Given the current state x0, a prediction horizon N ∈ N>0, a terminal

constraint set Xf , a stage cost L, and a terminal cost F , the problem of
interest consists of minimizing the cost functional

J (x, i, u) := F(x(N)) +

N−1∑
k=0

L(x(k), i(k), u(k))

whose argument is actually k 7→ (x(k), i(k), u(k)), which is subject to the
constrained dynamics in (1)-(3). Note that k 7→ x(k) is uniquely defined by
x0 and k 7→ (i(k), u(k)). The initial state for the x component is such that
x(0) = x0 and the final value is restricted to x(N) ∈ Xf . The argument
k 7→ (x(k), i(k), u(k)) of the functional is such that x(k) is uniquely defined
for each k ∈ N≤N , while (i(k), u(k)) is uniquely defined for each k ∈ N<N .

The problem to solve at each discrete-time instant is as follows:

Problem 1. Given the current state x0, a prediction horizon N ∈ N>0,
a terminal constraint set Xf , a stage cost L, and a terminal cost F
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minJ (x, i, u)

subject to

x(0) = x0

x(N) ∈ Xf
x(k + 1) = Ai(k)x(k) +Bi(k)u(k) + fi(k) ∀k ∈ N<N
y(k) = Ci(k)x(k) +Di(k)u(k)
x(k) ∈ Ωi(k), u(k) ∈ Ui(k)(x(k)), i(k) ∈ S

}
∀k ∈ N≤N

A minimizer1k 7→ (x∗(k), i∗(k), u∗(k)) defines the value of the cost func-
tional J ∗(x0) = J (x∗, i∗, u∗).

A typical choice of the functions L and F in the cost functional J is

L(x, i, u) = |Qix|p + |Riu|p, F(x) = |Px|p

for some p ∈ [1,∞], where {(Qi, Ri)}i∈S and P are matrices of appropri-
ate dimensions. When p = 1 or p = ∞, Problem 1 can be rewritten as a
mixed integer linear program (MILP). When the stage and terminal costs
are quadratic, Problem 1 can be rewritten as a mixed integer quadratic pro-
gram (MIQP).

Key properties of Problem 1 were reported in [19], which due to space
constraints are not included here. Under suitable assumptions, conditions
guaranteeing recursive feasibility and asymptotic stability of the origin are
given in [19, Theorem III.2]. Properties of and techniques for the computa-
tion of the terminal cost and terminal constraint set are also given; see [19,
Section IV and Section V]. The issue of existence of minimizers for Prob-
lem 1 requires careful treatment, in particular, due to the partitions of the
state space introduced by the sets Ωi. Furthermore, due to Problem 1 being
a nonconvex nonlinear optimization problem, the authors of [19] suggest to
use optimization solvers such as fmincon and fminunc in Matlab.

2.2 Discrete-time MPC for discrete-time systems with
mixed states

An MPC formulation for discrete-time systems to handle switching among
different linear dynamics, on/off inputs, logic states and their transitions, as
well as logic constraints on input and state variables is given in [3, 2, 4, 19,

1 Or, equivalently, k 7→ (i∗(k), u∗(k)), due to k 7→ x∗(k) being uniquely defined by x0 and

k 7→ (i∗(k), u∗(k)).
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5]. The nominal models considered therein, which are called Mixed Logical
Dynamical (MLD) systems, are discrete-time systems involving continuous-
valued and discrete-valued states, inputs, and outputs, as well as constraints
depending on the states, the inputs, and the outputs. These system models
are given as

x+ = Ax+B1u+B2δ +B3z +B4 (4)

y = Cx+D1u+D2δ +D3z +D4 (5)

subject to E2δ + E3z ≤ E1u+ E4x+ E5 (6)

In most MLD models in the literature, the state vector x is partitioned as
(xc, x`), where xc ∈ Rnc are the continuous-valued components and x` ∈
{0, 1}n` are the discrete-valued components of x. Similarly, the input u is
partitioned as (uc, u`) ∈ Rmc ×{0, 1}m` and the output y as (yc, y`) ∈ Rpc ×
{0, 1}p` . The continuous-valued auxiliary variables z ∈ Rrc and the discrete-
valued auxiliary variables δ ∈ {0, 1}r` are added to capture constraints, logic
statements, and such. The matrices A, {Bi}3i=1, B4, C, {Di}3i=1, D4, and
{Ei}5i=1 have suitable dimensions. Given the current state x0, a prediction
horizon N ∈ N>0, and a terminal constraint set Xf , the problem of interest
consists of minimizing the cost functional

J (x, z, δ, u)

whose argument is actually k 7→ (x(k), z(k), δ(k), u(k)), and is subject to the
constrained dynamics in (4)-(6). The initial state for the x component is such
that x(0) = x0 and its final value is restricted to x(N) ∈ Xf . In the literature,
this class of dynamical systems is referred to as hybrid mainly due to having
a discontinuous right-hand side and due to the states, inputs, and outputs
having continuous-valued and discrete-valued components.

The problem to solve at each discrete-time instant is as follows:

Problem 2. Given the current state x0, a prediction horizon N ∈ N>0,
a terminal set Xf , and a cost functional J

minJ (x, z, δ, u)

subject to

x(0) = x0

x(N) ∈ Xf
x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) +B4 ∀k ∈ N<N
y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) +D4

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5

}
∀k ∈ N≤N
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A minimizer k 7→ (x∗(k), z∗(k), δ∗(k), u∗(k)) defines the value of the cost
functional J ∗(x0) = J (x∗, z∗, δ∗, u∗).

A particular choice of the cost functional J made in [3, 2, 4, 19, 5] is

J (x, z, δ, u) =

N−1∑
k=0

(|Qx(k)|p + |Ru(k)|p + |Qδδ(k)|p + |Qzz(k)|p)+|Px(N)|p

for some p ∈ [1,∞]. The term inside the sum is the stage cost, which, given
matrices Q, Qδ, and Qz, involves the value of the current and predicted state
x, input u, and auxiliary variables (δ, z) for N − 1 steps in the future. The
last term in J is the terminal cost.

Perhaps the most comprehensive reference about Problem 2 is Chapter 18
of the recent monograph [5]. Therein, the authors consider the same model
(but with B4 = 0 and D4 = D5) in Section 18.1. By picking the cost func-
tional above, Problem 2 is formulated as a MIQP or MILP, according to
the choice of p. A complete rewrite of Problem 2 including slack variables
is given in (18.28) in the said reference. Mixed-integer optimization methods
suitable to solve Problem 2 are also outlined. The chapter concludes with
discussions on how to derive state feedback solutions via the batch approach
and the recursive approach. This class of systems is referred to as hybrid due
to the right-hand side being discontinuous and due to the states, inputs, and
outputs having continuous-valued and discrete-valued components.

2.3 Discrete-time MPC for discrete-time systems
using memory and logic variables

Variations of the basic MPC formulation, obtained by adding memory and
logic states, for discrete-time systems of the following form is proposed in
[38]:

x+ = g(x, u) (7)

subject to x ∈ X , u ∈ U (8)

The set X defines the constraint on the state and U is the set of allowed
inputs. Recall from Chapter 1 of this handbook (see also Chapter 2 and
Chapter 3) that the basic MPC formulation consists of minimizing the cost
functional

J (x, u) := F(x(N)) +

N−1∑
k=0

L(x(k), u(k))
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where x is the current state, N ∈ N>0 is the prediction horizon, L is the stage
cost, and F is the terminal cost. The function k 7→ x(k) in the cost functional
J is the solution to (7)-(8) at time k, starting from the initial condition x0
and under the influence of the input sequence k 7→ u(k). The two variations
of this MPC formulation proposed in [38] are described next.

To incorporate memory in the selection of the input, define the buffer gain
as µ > 1, the memory horizon as M ∈ N>0,M ≤ N , and the memory state as
` = (`1, `2, . . . , `M ). The optimization problem in [38] involving the memory
state ` that is to be solved at each discrete-time instant is as follows:

Problem 3. Given the current state x0, a prediction horizon N ∈ N>0,
a stage cost L, a terminal cost F , a buffer gain µ > 1, a memory horizon
M ∈ N>0 such that M ≤ N , and the current memory state `, solve the
following problems:

Problem 3a:

minJ (x, u)

subject to

x(0) = x0

x(k + 1) = g(x(k), u(k)) ∀k ∈ N<N
u(k) ∈ U ∀k ∈ N≤N

Denote the solution to this problem as k 7→ (x∗(k), v∗(k)) and define
V (x0) = J (x∗, v∗) as the associated value function.2

Problem 3b:

minJ (x, u)

subject to

x(0) = x0

x(k + 1) = g(x(k), u(k)) ∀k ∈ N<N
u(k − 1) = `k ∀k ∈ {1, 2, . . . ,M}
u(k) ∈ U ∀k ∈ N≤N

Denote the solution to this problem as k 7→ (x∗(k), w∗(k)) and define
W (x0, `) = J (x∗, w∗) as the associated value function.

After solving3 Problem 3a and Problem 3b, update the memory state
according to

`+ =

{
(v∗(1), v∗(2), . . . , v∗(M)) if W (x0, `) > µV (x0)
(w∗(1), w∗(2), . . . , w∗(M)) if W (x0, `) ≤ µV (x0)
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and the minimizing control input k 7→ u∗(k) is4

u∗ =

{
v∗ if W (x0, `) > µV (x0)
w∗ if W (x0, `) ≤ µV (x0)

Problem 3a provides a solution to the standard MPC problem without
memory states. The solution from this problem is used in Problem 3b, which
uses the current value of the memory state ` as it enforces that the first M
entries of u, namely, (u(0), u(1), . . . , u(M − 1)), are equal to `. The selection
of the control input is such that the improvement provided by the solution to
the standard MPC problem is significant when compared to the one with the
memory states. The optimal control input u∗ is given by v∗ in Problem 3a
when the improvement provided by the solution to that problem (namely,
k 7→ (x∗(k), v∗(k))) is “significantly better” – as characterized by the buffer
gain µ > 1 – than the improvement provided by the solution to the problem
involving memory states (namely, k 7→ (x∗(k), w∗(k)) in Problem 3b). More
precisely, if the value function of the problem that does not use information
about the previous solution (i.e., Problem 3a) is a factor 1/µ ∈ (0, 1) smaller
than the value function of the problem solved using previous information
(i.e., Problem 3b), namely,

V (x0) <
1

µ
W (x0, `) (9)

then the optimal solution comes from Problem 3a and the memory state is
updated with the input component of the solution to that problem. Note that
when V (x0) ≥ 1

µW (x0, `) and the control horizon is equal to one, the input
applied to the system to be controlled would be `1 and that ` is subsequently
updated to (`2, `3, . . . , `M , w

∗(M)).

To incorporate logic states in the selection of the input, define the buffer
gain as µ > 1, the logic state as q taking its value from Q := {1, 2, . . . , q̄}
where q̄ ∈ N>0, and, for each q ∈ Q, define the cost functional

Jq(x, u) := Fq(x(N)) +

N−1∑
k=0

Lq(x(k), u(k))

2 Note that the only constraint on v∗(N) is for it to belong to U .
3 The solution component x∗ in Problem 3a and in Problem 3b would be most likely

different, but we use the same label due to it not being part of the logic.
4 The state component k 7→ x∗(k) associated to k 7→ u∗(k) is obtained by applying u∗ to

the system to be controlled.
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where Lq is the stage cost and Fq the terminal cost associated with q. The
proposed optimization problem involving a logic variable q to solve at each
discrete-time instant is as follows:

Problem 4. Given the current state x0, a prediction horizon N ∈ N>0,
stage costs {Lq}q∈Q, terminal costs {Fq}q∈Q, and a buffer gain µ > 1,
solve the following problem for each q ∈ Q:

Problem 4-q:

minJq(x, u)

subject to

x(0) = x0

x(k + 1) = g(x(k), u(k)) ∀k ∈ N<N
u(k) ∈ U ∀k ∈ N≤N

Denote the solution to this problem as k 7→ (xq∗(k), vq∗(k)) and define
Vq(x0) = Jq(xq∗, vq∗) as the associated value function.

After solving Problem 4-q for each q ∈ Q, pick

q∗ ∈ arg min
q∈Q

Vq(x0)

update the logic state according to

q+ =

{
q∗ if Vq(x0) > µVq∗(x0)
q if Vq(x0) ≤ µVq∗(x0)

and the minimizing control input k 7→ u∗(k) is

u∗ =

{
vq

∗
if Vq(x0) > µVq∗(x0)

vq if Vq(x0) ≤ µVq∗(x0)

The value functions Vq(x0) associated to each optimal solution obtained in
Problem 4-q are compared when determining a new value of the logic variable.
Such value of q is denoted as q∗, and is such that Vq∗(x0) is among those
minimizers in {Vq(x0)}q∈Q with “enough improvement” – as characterized
by µ –when compared to the value function associated to the current value of
q. In fact, according to Problem 4, a change on the value of the logic variable
occurs when there exists q∗ ∈ Q such that

Vq∗(x0) <
1

µ
Vq(x0) (10)
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Discussions in [38] indicate that the MPC strategies with memory states
and logic variables guarantee robustness to small measurement noise. Such
robustness is possible due to the hysteresis mechanism incorporated by con-
ditions (9) and (10) in the strategies above. It is also likely that these MPC
strategies confer robustness to other classes of perturbations, mainly due to
the said hysteresis mechanism they implement, which, in particular, prevents
the control law from chattering.

2.4 Periodic Continuous-discrete MPC for
Continuous-time Systems

In this section, we present model predictive control strategies for continuous-
time systems that periodically recompute an input signal solving the opti-
mization problem and apply it over a bounded horizon. Such MPC strategies
appear in the literature under the name continuous-discrete MPC.

2.4.1 With piecewise continuous inputs

MPC for continuous-time systems with input constraints is proposed in [7].
The class of systems is given by

ẋ = f(x, u) x ∈ Rn, u ∈ U (11)

where U is the input constraint set. The right-hand side f is assumed to
be twice continuously differentiable, to satisfy f(0, 0) = 0, and such that it
leads to unique solutions under the effect of piecewise right-continuous input
signals. The input constraint set U is assumed to be compact, convex, and
with the property that 0 belongs to the interior of U .

Given the current state x0, a prediction horizon T > 0, a terminal con-
straint set Xf , a stage cost L, and a terminal cost F , the problem of interest
consists of minimizing the cost functional

J (x, u) := F(x(T )) +

∫ T

0

L(x(τ), u(τ))dτ (12)

whose argument is actually t 7→ (x(t), u(t)) which is subject to the con-
strained dynamics in (11). The initial condition is such that x(0) = x0, and
the value of x after T seconds is restricted to Xf . More precisely, the problem
to solve every T seconds is as follows:
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Problem 5. Given the current state x0, a prediction horizon T > 0, a
terminal constraint set Xf , a stage cost L, and a terminal cost F

minJ (x, u)

subject to

x(0) = x0

x(T ) ∈ Xf
d

dt
x(t) = f(x(t), u(t)) ∀t ∈ (0, T )

u(t) ∈ U ∀t ∈ [0, T ]

A minimizer t 7→ (x∗(t), u∗(t)) defines the value of the cost functional
J ∗(x0) = J (x∗, u∗).

In [7], the approach to solve this problem consists of picking Xf to be a
neighborhood of the origin that is invariant in forward time for the closed-loop
system resulting from using a (local) linear state-feedback law of the form
Kx, and by picking F so that the terminal cost upper bounds the infinite
horizon cost from Xf . According to [7], the design of the set Xf , the gain K,
and the function F can be performed offline. Due to the value of the cost
functional providing a bound to an infinite horizon cost problem, the authors
refer to this strategy as quasi-infinite horizon nonlinear MPC.

The application of the stabilizing linear feedback law Kx to the system
(11) generates a solution-input pair t 7→ (x(t), u(t)) that satisfies the input
and terminal constraints, for any initial condition x0 ∈ Xf . Therefore, the
feasible set of initial conditions to Problem 5 includes Xf . The actual moving
horizon implementation of the MPC strategy in [7] would not use the (local)
linear state-feedback law, but rather, guarantee feasibility. The moving hori-
zon implementation would recursively apply the open-loop optimal control
solution for δ < T seconds. The constant δ defines the sampling period for
obtaining new measurements of the state of the plant. At such events, the
optimal solution to the open-loop problem is recomputed and then the input
to the plant is updated.

Note that forward/recursive feasibility of the closed-loop is guaranteed
by the terminal constraint and the local feedback law Kx. This is because,
as stated in [7], the MPC strategy can be thought of as a receding horizon
implementation of the following switching control strategy:

• Over a finite horizon of length T , apply the optimal input obtained by
solving Problem 5 so as to drive the state to the terminal set;

• Once the state is in the terminal set, switch the control input to the (local)
linear state-feedback law so as to steer the state to the origin.
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2.4.2 With piecewise constant inputs

A minimizing input t 7→ u∗(t) obtained from a solution to Problem 5 is a
piecewise-continuous function defined on an interval of length equal to the
prediction horizon T . Using a similar continuous-discrete MPC strategy, in
[23], the class of inputs allowed is restricted to piecewise-constant functions
and the strategy is of sample-and-hold type. More precisely, the input u
satisfies the following:

(?) The input signal u is a piecewise-constant function with intervals of con-
stant value of length δ seconds, within the control horizon Ncδ, where
Nc ∈ N>0 and Ncδ ≤ T .

In such a (zero-order) sample-and-hold approach, the input applied to the
plant remains constant in between the sampling events. In [23], this mecha-
nism is modeled by adding an extra state xu to the system with the following
dynamics:

ẋu = 0 in between sampling events

x+u = κ(x) at sampling events

where κ denotes the function assigning the feedback at each event. Further-
more, the setting in [23] allows for state constraints x ∈ X in (11), where X
is the state constraint set.

Given the current state x0, a prediction horizon T , a sampling time δ ∈
(0, T ], a control horizon Ncδ ≤ T , and a terminal constraint set Xf , the
problem formulated in [23] is that of minimizing (12) at every sampling time
instant, where

F(x) = x>Px, L(x, u) = x>Qx+ u>Ru (13)

for given matrices P , Q, and R of appropriate dimensions. The argument of
(12) is actually t 7→ (x(t), u(t)) with the input component being a piecewise
constant function.

The problem to solve at each periodic sampling event occurring every δ
seconds is as follows:

Problem 6. Given the current state x0, a prediction horizon T > 0,
a sampling time δ ∈ (0, T ], a control horizon Ncδ ∈ (0, T ], a terminal
constraint set Xf , and matrices P , Q, and R
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minJ (x, u)

subject to

x(0) = x0

x(T ) ∈ Xf
d

dt
x(t) = f(x(t), u(t)) ∀t ∈ (0, T )

x(t) ∈ X , u(t) ∈ U ∀t ∈ [0, T ]

u satisfies (?)

A minimizer t 7→ (x∗(t), u∗(t)) defines the value of the cost functional
J ∗(x0) = J (x∗, u∗).

A somewhat related problem that involves periodic continuous-discrete
MPC for continuous-time systems with piecewise constant inputs was studied
in [28]. In that reference, MPC is used to solve the problem of finding a
sampled version of a continuous-time controller that leads to a trajectory of
the resulting sample-data system that is as close as possible to the trajectory
of the closed-loop system with the original continuous-time controller. To
characterize closeness between them, the stage cost of the MPC problem in
[28] penalizes the error between the two trajectories.

2.5 Periodic Continuous-time MPC for
continuous-time systems combined with local static
state-feedback controllers

A strategy uniting two controllers for the asymptotic stabilization of the
origin of continuous-time systems in affine control form is provided in [10];
see also [8, Chapter 5]. The family of continuous-time systems considered in
[10] is given by

ẋ = f1(x) + f2(x)u x ∈ Rn, u ∈ U (14)

where U = {u : |u| ≤ umax } for some umax ≥ 0 and f1(0) = 0.
One of the controllers in the proposed strategy is a continuous-discrete

MPC controller with piecewise-constant inputs and implemented with peri-
odic sampling, similar to the strategy presented in Section 2.4.2. The stage
cost used has the same form as in (13). In [10], this particular continuous-
discrete MPC algorithm is designed so that, at each periodic sampling event,
Problem 6 is solved with control horizon equal to the prediction horizon T
and no state constraint set.

Revised on October 30, 2017 Page 14



Hybrid Model Predictive Control Ricardo G. Sanfelice

The second controller in the strategy in [10] consists of a family of finitely
many locally stabilizing static state-feedback controllers {κ1, κ2, . . . , κr},
r ∈ N>0, that are designed using a family of control Lyapunov functions
{V1, V2, . . . , Vr}, following the universal construction proposed in [20]. These
individual control laws can be designed to satisfy the input constraint in (14).
When the second controller is the one applied to (14), the particular element
in the family that is actually used is such that x belongs to its basin of at-
traction, which in [10] is defined by a sublevel set of the control Lyapunov
function associated with that controller.

The two controllers outlined above are combined via a strategy that uses
the static state-feedback controllers as “fall-back” in the event that the
continuous-discrete MPC controller is unable to achieve closed-loop stabil-
ity, which could be the case when Problem 6 does not have a solution or does
not terminate before δ seconds. The strategy proposed for combining them
is as follows. The control system in (14) is treated as the switching system

ẋ = f1(x) + f2(x)uσ x ∈ Rn, u ∈ U

where t 7→ σ(t) ∈ {1, 2} is a switching signal that determines which controller
is being used: σ = 1 indicates that u = u1 with u1 assigned by the MPC
control law κ, and σ = 2 that u = u2 with u2 assigned by an element in the
family of static state-feedback laws {κ1, κ2, . . . , κr}. The particular selection
of σ in [10] is

σ(t) =

{
1 if t ∈ [0, T̄ )
2 if t ∈ [T̄ ,∞)

(15)

where T̄ is the smallest time such that

Lf1Vi(x(T̄ )) + Lf2Vi(x(T̄ ))κ(T̄ ) ≥ 0 (16)

or the MPC algorithm fails to provide an output value, where i ∈ K :=
{1, 2, . . . , r} is such that x(0) belongs to the basin of attraction induced by the
static state-feedback controller κi. The idea behind the state-based triggering
condition (16) is that since x(0) is in the basin of attraction of a controller
in the family {κ1, κ2, . . . , κr}, then a solution guarantees a strict decrease of
the control Lyapunov function associated with that controller.

The work in [10] also includes a switching strategy that is designed to
enhance closed-loop performance. Also, an extension to these strategies for
the case when the right-hand side of (14) includes additive uncertainties is
proposed in [25]. See also [26].
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2.6 Periodic Discrete-time MPC for Continuous-time
Linear Systems with Impulses

MPC for linear time-invariant systems with impulses in the state, and with
state and input constraints is proposed in [33]. The set of times at which
impulses occur are predetermined and given by the sequence of times

{tk}k∈N, tk = kδ

where δ > 0 is the sampling (or, as defined in [33], the impulsive) period.
The class of impulsive systems is given by

ẋ(t) = Ax(t) ∀t ∈ R≥0, t 6= kδ (17)

x(t+) = x(t) +Buk ∀t = kδ (18)

for each k ∈ N, where t 7→ x(t) is a solution associated to {uk}k∈N and such
that

x(t) ∈ X ∀t ∈ R≥0, uk ∈ U ∀k ∈ N

and x(t+) is the right limit of x(t) at t = kδ.
The MPC problem in [33] employs over approximation techniques to re-

duce the infinite number of constraints arising from the dynamics of (17)-(18)
to a finite set of inequalities. For a given δ > 0, the collection {Ai}Ki=1 is in-
troduced to define a polytopic over approximation for the flows of (17)-(18),
namely, choose {Ai}Ki=1 such that

{exp(At) : t ∈ [0, δ] } ⊂ co{Ai}Ki=1

To determine the stage cost L, define the polytope

S(x, u) = co{Ai}Ki=1 (x+Bu)

and, given a set Z and a terminal constraint set Xf ⊂ Z that, for some
feedback, is invariant for (17)-(18), define the input constraint

Uf (x) = {u ∈ U : exp(Aδ)(x+Bu) ∈ Xf , S(x, u) ⊂ Z }

With these definitions, the stage cost L is given by the distance to the set

D = {(x, u) : x ∈ Xf , u ∈ Uf (x) }

which is the graph of Uf on Xf .
Within the above setting, given the current state x0, a prediction horizon

N ∈ N>0, a terminal constraint set Xf , and a set Z, the problem formulated
in [33] consists of minimizing the cost functional
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J (x, u) =

N−1∑
k=0

L(x(τk), u(τk))

whose argument is k 7→ (x(τk), u(τk)), where x(τk) is the evaluation at the
N future impulse times τk of the solution to (17)-(18) from x0 resulting from
applying u(τk) at the impulse times, where for some k0 ∈ N,

τk = tk+k0

and
u(τk) = uk+k0

for each k ∈ {0, 1, . . . , N−1}. The constraints associated to the minimization
problem are: (i) the polytope S remains within the state constraint set X ,
and (ii) the value of the resulting solution reaches the terminal constraint set
Xf at the end of the prediction horizon N . More precisely, the problem to
solve at each periodic impulsive event is as follows:

Problem 7. Given the current state x0, a prediction horizon N ∈ N>0,
a terminal constraint set Xf , a set Z, and a stage cost L

minJ (x, u)

subject to

x(0) = x0

x(τN ) ∈ Xf
ẋ(t) = Ax(t) ∀t ∈ (0, Nδ), t 6= τk
x(t+) = x(t) +Bu(t) ∀t = τk
u(τk) ∈ U
S(x(τk), u(τk)) ⊂ X

∀k ∈ {0, 1, . . . , N − 1}

A minimizer k 7→ (x∗(k), u∗(k)) defines the value of the cost functional
J ∗(x0) = J (x∗, u∗).

In [33], instead of imposing the conditions involving the impulsive system
in Problem 7 that are in the first two lines of the expressions within the
brace, conditions on the solution x evaluated at each τk are imposed. Such
a difference is possible due to the impulses occurring periodically and the
continuous-time dynamics being linear. In fact, the values of the solution at
the instants τk are given by the solution to the discrete-time system

x+ = exp(Aδ)(x+Bu)
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from x(0) = x0 and under the effect of the input equal to u(τk). The stability
notion used therein only requires closeness and convergence of the values of
the solution at the instants τk, which the authors refer to as a weak property.
Following such a discretization approach, it is shown in [33] that Problem 7
can be formulated as a convex quadratic program (when L is convex). The
MPC strategy in [33] combines features of impulsive systems and of sample-
data systems, and is one of the MPC approaches found in the literature that
is closest to hybrid dynamical systems, as introduced in the next section.

3 Towards MPC for Hybrid Dynamical Systems

Hybrid dynamical systems are systems with states that can evolve continu-
ously (or flow) and, at times, have abrupt changes (or jump). Such systems
may have state components that are continuous valued as well as compo-
nents that are discrete valued, similar to the discrete-time systems described
in Section 2.2. The conditions allowing continuous or discrete changes typ-
ically depend on the values of the state, the inputs, and outputs. The de-
velopment of MPC strategies for such systems is in its infancy, possibly the
most related strategy being the one described in Section 2.6 (even though it
essentially replaces the flows by exp(Aδ) due to assuming periodic impulses
occurring every δ seconds). On the other hand, research on methods to solve
optimal control problems for hybrid dynamical systems has been quite ac-
tive over the past few decades, and such developments could be exploited to
develop MPC strategies for such systems. In particular, maximum principles
of optimal control following Pontryagin’s maximum principle [29] have been
generated for systems with discontinuous right-hand side [34] and for certain
classes of hybrid systems [35, 12, 32]. Shown to be useful in several appli-
cations [35, 9], these principles establish necessary conditions for optimality
in terms of an adjoint function and a Hamiltonian satisfying the “classical”
conditions along flow, in addition to matching conditions at jumps.

Numerous frameworks for modeling and analysis of hybrid systems have
appeared in the literature. These include the work of Tavernini [36], Michel
and Hu [27], Lygeros et al. [22], Aubin et al. [1], and van der Schaft and
Schumacher [39], among others. In the framework of [14, 13] the continuous
dynamics (or flows) of a hybrid dynamical system are modeled using differen-
tial inclusions while the discrete dynamics (or jumps) are captured by differ-
ence inclusions. Trajectories to a hybrid dynamical system conveniently use
two parameters: an ordinary time parameter t ∈ R≥0, which is incremented
continuously as flows occur, and a discrete time parameter j ∈ N, which is
incremented at unitary steps when jumps occur. The conditions determining
whether a trajectory to a hybrid system should flow or jump are captured by
subsets of the state space and input space. In simple terms, given an input
(t, j) 7→ u(t, j), a trajectory (t, j) 7→ x(t, j) to a hybrid system satisfies, over
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intervals of flow,
d

dt
x(t, j) ∈ F (x(t, j), u(t, j))

when
(x(t, j), u(t, j)) ∈ C

and, at jump times,

x(t, j + 1) ∈ G(x(t, j), u(t, j))

when
(x(t, j), u(t, j)) ∈ D

The domain of a trajectory x is denoted domx, which is a hybrid time domain
[13]. The above definition of trajectory (or solution) implicitly assumes that
domx = domu = dom(x, u).

In this way, a hybrid dynamical system is defined by a set C, called the
flow set, a set-valued map F , called the flow map, a set D, called the jump
set, and a set-valued map G, called the jump map. Then, a hybrid system
with state x and input u can be written in the compact form

H :

{
ẋ ∈ F (x, u) (x, u) ∈ C
x+ ∈ G(x, u) (x, u) ∈ D (19)

The objects defining the data of the hybrid system H are specified as H =
(C,F,D,G). The state space for x is given by the Euclidean space Rn while
the space for inputs u is given by the set U . The set C ⊂ Rn ×U defines the
set of points in Rn×U in which flows are possible according to the differential
inclusion defined by the flow map F : C ⇒ Rn. The set D ⊂ Rn × U defines
the set of points in Rn × U from where jumps are possible according to the
difference inclusion defined by the set-valued map G : D ⇒ Rn.

Given the current value of the state x0, and the amount of flow time T
and the number of jumps J to predict forward in time, which define a hybrid
prediction horizon (T, J), an MPC strategy will need to compute trajectories
of (19) over the window of hybrid time [0, T ] × {0, 1, . . . , J} for all possibly
allowed inputs. The fact that different inputs may be applied from the current
state x0 suggests that there may be multiple possible trajectories of (19) from
such a point. While this feature is already present in the receding horizon
approaches in [16, 30, 5, 24, 6, 23], the hybrid case further adds nonuniqueness
due to the potential nonuniqueness of solutions to (19), in particular, due to
overlaps between the flow and the jump sets. To deal with nonuniqueness,
one would need a set-valued model for prediction that includes all possible
predicted hybrid trajectories (and their associated inputs) from x0 and over
[0, T ]× {0, 1, . . . , J}.

An appropriate cost functional for an MPC strategy for (19), defined over
the prediction horizon (T, J), may take the form
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J (x, u) :=

∫
t:(t,j)∈dom(x,u),0≤t≤T

Lc(x(t, j), u(t, j))dt

+
∑

j:(t,j)∈dom(x,u),0<j≤J

Ld(x(tj , j), u(tj , j)) + F(x(T, J))
(20)

where t1, t2, . . . , tj , . . . are the jump times of (x, u). The first two arguments
of J correspond to a solution to (19) from x0 = x(0, 0). The function Lc
captures the stage cost of flowing and Ld captures the stage cost of jumping
relative to desired subsets of the state space and the input space, respectively.
The function F defines the terminal cost. The key challenge is in establishing
conditions such that the value function, which at every point x0 is given by

J ?(x0) := J (x?, u?)

with (x?, u?) being minimizers of J from x0, certifies the desired asymptotic
stability property by guaranteeing that the stage cost approaches zero.

The goal of any MPC strategy for (19) would certainly be to min-
imize the cost functional J in (20) over the finite-time hybrid horizon
[0, T ] × {0, 1, . . . , J} defined by the hybrid prediction horizon (T, J). Given
the current value of the state x0, a potential form of this control law would
be

κc(x0) := u? (21)

where the choice of the function u? is updated when a timer τc reaches the
hybrid control horizon Nc+Tc ≤ T+J , and the dynamics of τc are as follows:

τ̇c = 1

when τc ∈ [0, Nc + Tc], and

τ+c =

 τc + 1 when (x, u) ∈ D, τc < Nc + Tc
0 when (x, u) 6∈ D, τc ≥ Nc + Tc
{τc + 1, 0} otherwise

when (x, u) 6∈ D or τc ≥ Nc + Tc. These dynamics enforce that the timer
increases during flows, so as to count ordinary time, and that at every jump
of the hybrid dynamical system (19), the counter is incremented by one (this
is in the first entry of difference equation for τc), while when the timer has
counted at most Nc + Tc seconds of flow and Nc + Tc jumps, is reset to zero
(this is the second entry in τ+c – the last entry is when both events can occur).
For the current value of the state x0, the function u? used for feedback could
be chosen so that

u? ∈ arg min
u : (x,u)∈S(x0) subject to Problem H

J (x, u) (22)
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which is then applied to the hybrid system over the hybrid horizon with length
given by T seconds of flow and J jumps from the current time (t′, j′). Above,
S(x0) denotes the set of state/input pairs (x, u) that satisfy the dynamics ofH
and also the conditions in the MPC strategy, which is denoted as Problem H
and part of ongoing research efforts is to formally define it.

It should be pointed out that, for purely continuous-time or discrete-time
systems, it is not generally known if the controllers designed to satisfy the
necessary conditions for optimality imposed by Pontryagin-like maximum
principles or Bellman-like approaches confer a margin of robustness to per-
turbations of the closed loop. In fact, it is well know that discontinuous
controllers obtained from solving optimal control laws may not be robust to
small perturbations [17]; see also [31]. This difficulty motivates the genera-
tion of hybrid control strategies with prediction that guarantee optimality
and robustness simultaneously.

For general nonlinear systems, continuity of the state-feedback law plays
a key role in the establishment of robustness of the induced asymptotic sta-
bility property [21, 37]. Early results establishing that discontinuities in the
feedback can lead to a closed-loop system with zero margin of robustness
appeared in books by Filippov [11] and Krasovskii [18]; see also [17] for an
insightful relationship between solution concepts to nonsmooth systems. Con-
trol laws (both open-loop and closed-loop) solving optimal control problems
may not be continuous, which may indicate a lack of robustness when ap-
plied to the system to control. Such lack of robustness may also be present in
receding horizon controllers. In particular, when the associated optimization
problem involves state constraints or terminal constraints, and the optimiza-
tion horizon is small, the asymptotic stability of the closed-loop system may
have absolutely no robustness: arbitrarily small disturbances may keep the
state away from the desired set [15]. On the bright side, results in [13] indi-
cate that, for the case of no inputs, mild properties of the data of (19) lead to
an upper semicontinuous dependence of the solutions with respect to initial
conditions, which, in turn, guarantees that asymptotically stable compact
sets for H (without inputs) are robust to small perturbations.

4 Further Reading

• Discrete-time MPC with hybrid flavor: [3, 2, 4, 38, 19];
• Continuous-discrete MPC with hybrid flavor: [7, 23, 10, 25, 28, 33];
• Hybrid dynamical systems: [14, 13].
• Software tools for modeling and some MPC problems with hybrid flavor:

– Multi-Parametric Toolbox (MPT) 3
http://control.ee.ethz.ch/~mpt
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– The Hybrid Toolbox
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
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28. D. Nešić and L. Grüne. A receding horizon control approach to sampled-data imple-

mentation of continuous-time controllers. Systems & Control Letters, 55(8):660–672,

2006.
29. L. S. Pontryagin, V. G. Boltyanskij, R. V. Gamkrelidze, and E. F. Mishchenko. The

mathematical theory of optimal processes. Wiley, 1962.
30. J. B. Rawlings and D. Q. Mayne. Model predictive control: Theory and design. Nob

Hill Pub., 2009.

31. R. G. Sanfelice, R. Goebel, and A.R. Teel. Generalized solutions to hybrid dynamical
systems. ESAIM: Control, Optimisation and Calculus of Variations, 14(4):699–724,

2008.

32. M. S. Shaikh and P. E. Caines. On the hybrid optimal control problem: Theory and
algorithms. IEEE Transactions on Automatic Control, 52:1587–1603, 2007.

33. P. Sopasakis, P. Patrinos, H. Sarimveis, and A. Bemporad. Model predictive control for

linear impulsive systems. IEEE Transactions on Automatic Control, 60(8):2277–2282,
2015.

34. H. J. Sussmann. Some recent results on the maximum principle of optimal control

theory. Systems and Control in the Twenty-First Century, pages 351–372, 1997.
35. H. J. Sussmann. A maximum principle for hybrid optimal control problems. In Proc.

38th IEEE Conference on Decision and Control, pages 425–430, 1999.
36. L. Tavernini. Differential automata and their discrete simulators. Nonlinear Analysis,

Theory, Methods & Applications, 11(6):665–683, 1987.

37. A.R. Teel and L. Praly. A smooth Lyapunov function from a class-KL estimate involv-
ing two positive semidefinite functions. ESAIM: Control, Optimisation and Calculus

of Variations, 5:313–367, 2000.

38. S. E. Tuna, R. G. Sanfelice, M. J. Messina, and A. R. Teel. Hybrid MPC: Open-
minded but not easily swayed. In Assessment and Future Directions of Nonlinear

Model Predictive Control, volume Lecture Notes in Control and Information Sciences

358, pages 17–34. Springer Berlin / Heidelberg, 2007.
39. A. van der Schaft and H. Schumacher. An Introduction to Hybrid Dynamical Systems.

Lecture Notes in Control and Information Sciences, Springer, 2000.

Revised on October 30, 2017 Page 23


	Hybrid Model Predictive Control
	Ricardo G. Sanfelice
	Summary
	Hybrid Model Predictive Control
	Discrete-time MPC for discrete-time systems with discontinuous right-hand sides
	Discrete-time MPC for discrete-time systems with mixed states
	Discrete-time MPC for discrete-time systems using memory and logic variables
	Periodic Continuous-discrete MPC for Continuous-time Systems
	Periodic Continuous-time MPC for continuous-time systems combined with local static state-feedback controllers
	Periodic Discrete-time MPC for Continuous-time Linear Systems with Impulses

	Towards MPC for Hybrid Dynamical Systems
	Further Reading
	References



