
Chapter 1

Networked Hybrid Dynamical
Systems:
Models, Specifications, and Tools

Ricardo G. Sanfelice ?

Abstract
Models, specifications, and tools for networked hybrid dynamical systems

are presented. The proposed modeling framework allows the agent, the net-
work, and the algorithms to have hybrid dynamics. Notions that properly
capture key specifications for networked systems, namely, formation, synchro-
nization, safety, and security, are provided. Tools for analysis of the closed-
loop hybrid system and for the design of distributed hybrid algorithms are
presented. Applications of the methods to estimation, consensus, and syn-
chronization over complex networks are presented throughout the paper.

1.1 Introduction

The objective of this paper is to present mathematical models, specifications,
notions, and tools for the design of algorithms for networked hybrid dynamical
systems. A network of such systems is defined as multiple agents running
algorithms that are allowed to share information over a network so as to
fulfill a given design specification. The mathematical models of the agents,
the algorithms, and the network are all given in terms of hybrid inclusions.
In the autonomous case, a hybrid inclusion is given by

ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

(1.1)

where x is the state. This model allows the state to change continuously
according to the constrained differential inclusion in (1.1) during flows and,
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at jumps, change discretely according to the constrained difference inclusion
in (1.1). With such a general model, the agents may have states that evolve
continuously and discretely, the models of the algorithms can have logic state-
ments and conditions under which their response changes, and the models of
the network may capture the conditions triggering communication events for
agents to exchange information over the network. Due to the combination of
heterogeneous continuous and discrete dynamics, the analysis of the resulting
system as well as the design of algorithms and system parameters to satisfy
a particular design specification cannot be carried out with tools for purely
continuous-time or discrete-time systems.

Several unique features of networked hybrid dynamical systems makes
their analysis and design challenging. These features include the unavoid-
able effect of the network, which, in most cases, does not allow continuous
exchange of information, perturbations, and the inherently hybrid dynamics
of the agents. More precisely:

1. Distributed agents with hybrid dynamics: the intervals of time over which
the state of the agents changes continuously may be different among
agents. The time instants at which the state of the agents change dis-
cretely may also not be the same. In fact, the assumption that all of the
agents flow and jump at the same time might be too restrictive.

2. Asynchronous communication events at unknown times: the time in-
stances at which agents exchange information may not be synchronized,
meaning that each agent may receive information at different time in-
stances. Furthermore, as in the previous item, the amount of ordinary
time elapsed between communication events for each agent might be dif-
ferent; for instance, an agent can receive information at a much faster
rate than others. In addition, the exact times at which information is
exchanged may not be known a priori.

3. Lack of full information at the same time: The information about the
states of the neighboring agents may not be available at the same time.
In fact, most realistic models of networks would not provide informa-
tion continuously, but rather, at isolated time instances. To met certain
design specifications, such a constraint may require algorithms that can
cope with limited information, both in terms of its value and the time
information is received.

4. Perturbations in the dynamics, parameters, and measurements: the lack
of knowledge of the actual models of each component of a network of
hybrid systems would prevent one from compensating for their effect
at the design stage. Designs that are robust to perturbations such as
measurement noise, unmodeled dynamics, and delay are mandatory.

Section 1.2 of this paper pertains to modeling of networked hybrid dy-
namical systems. A mathematical model of each of the agents is introduced
first. Each agent is modeled as a hybrid system, similar to (1.1). Such a
model is general enough to allow for nonlinear, nonautonomous, set-valued,
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and heterogeneous dynamics with solutions that evolve continuously and,
at times, jump. Hybrid dynamical models capturing the mechanisms behind
the networks connecting the agents are presented. The hybrid dynamics in
these models allows to capture the discrete nature of communication events
in digital networks. These models are also modular to permit their use in the
definition of interconnections between the agents in the network, where its
topology is defined by a graph. Finally, a general model of hybrid algorithms
for the control of the agents is given in terms of hybrid inclusions as in (1.1)
as well.

The interconnection between the agents, the networks, and the algorithms
defines a closed-loop system that, after appropriate design, is to meet certain
given specifications. With such a model at hand, Section 1.3 introduces spec-
ifications that are of typical interest in networked systems problems. These
specifications are given in terms of the dynamical properties of the resulting
closed-loop system. The property of all agents converging to a desired rel-
ative configuration, typically referred to as formation, is introduced as the
property that solutions converge (in the limit or in finite time) to the set
of points defining the formation. Synchronization is defined as the property
that all solutions (or some of its components) converge to each other, prop-
erty that we define as asymptotic synchronization, potentially with stability,
which we refer to as stable synchronization. In addition, specifications that
capture safety and security are also presented.

With the specifications introduced in Section 1.3, notions and tools that
can be used to satisfy the given specifications are introduced in Section 1.4.
The notions include asymptotic stability, finite time convergence, forward
invariance, and robustness. Due to space constraints, we provide pointers
to the literature of hybrid dynamical systems where formal statements and
further applications of these notions and tools can be found. These methods
have been recently used to solve problems pertaining to certain classes of
networked hybrid dynamical systems, specifically, to solve state estimation
[1, 2], consensus [3], synchronization [4, 5, 6, 7], and security [8] problems
over networks. Section 1.5 provides a summary of some of these applications.

1.2 Networked Hybrid Dynamical Systems

In this section, we introduce a general model of N networked hybrid systems.
A graph defines the network structure, in particular, the nodes and the com-
munication links between them. Each node in the graph corresponds to an
agent with general hybrid dynamics. The exchange of information between
the agents is also modeled as a hybrid system, in particular, to capture the
events at which communication events occur. Each agent is controlled by an
algorithm that may also be hybrid.
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1.2.1 Agents

For each i ∈ V := {1, 2, . . . , N}, the i-th agent is modeled as a hybrid system
Hai with data (Cai , F

a
i , D

a
i , G

a
i , E

a
i , H

a
i ) and given by the hybrid inclusion

with inputs and outputs

żi ∈ F ai (zi, ui) (zi, ui) ∈ Cai
z+
i ∈ G

a
i (zi, ui) (zi, ui) ∈ Da

i

yi ∈ Ha
i (zi, ui) (zi, ui) ∈ Eai

(1.2)

where zi ∈ Rnai is the state, ui ∈ Rmai the input, and yi ∈ Rpai the output
of the i-th agent. The set-valued map F ai is the flow map capturing the con-
tinuous dynamics and Cai defines the flow set on which flows are allowed.
The set-valued map Gai defines the jump map and models the discrete be-
havior, and Da

i defines the jump set, which is where jumps are allowed. The
set Eai defines the output set. A solution2 to Hai is given by a pair (φi, ui)
parametrized by (t, j) ∈ R≥0 × N, where t denotes ordinary time and j de-
notes jump time. The domain dom(φi, ui) ⊂ R≥0×N is a hybrid time domain
if for every (T, J) ∈ dom(φi, ui), the set dom(φi, ui) ∩ ([0, T ]× {0, 1, . . . , J})
can be written as ∪Jj=0(Ij × {j}), where Ij := [tj , tj+1] for a time sequence
0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ ≤ tJ+1. The tj ’s with j > 0 define the time
instants when the state of the hybrid system jumps and j counts the number
of jumps. The set SHai contains all maximal solutions to Hai , and the set
SHai (ξ) contains all maximal solutions to Hai with initial condition ξ.

Example 1. A widely studied problem in the literature of multi-agent systems
is the problem of controlling the state of point-mass systems over a network
to reach consensus. In such a case, the dynamics of the agents are simply
żi = ui for each i ∈ V, where zi, ui ∈ Rnai for some nai = ma

i . Certainly, such
dynamics can be modeled as shown in (1.2) by choosing F ai (zi, ui) := ui,
Gai (zi, ui) arbitrary, Cai = Rnai ×Rnai , and Da

i empty. The model in (1.2) also
allows to include constraints in the state and the input of each agent. For
instance, if the input of the agent is constrained to |ui| ≤ u for some u > 0
then the flow set can be defined as Cai = Rnai ×

{
ui ∈ Rmai : |ui| ≤ u

}
. More

interestingly, the model in (1.2) permits capturing agents with point-mass
hybrid dynamics, such as

żi = ui,1 =: F ai (zi, ui)

during flows and

2 A solution to Ha
i is called maximal if it cannot be extended, i.e., it is not a (proper)

truncated version of another solution. It is called complete if its domain is unbounded. A
solution is Zeno if it is complete and its domain is bounded in the t direction. A solution

is precompact if it is complete and bounded.
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z+
i = ui,2 =: Gai (zi, ui)

at jumps, where ui = (ui,1, ui,2). In such a model, the conditions on the state
and the input imposed by the flow and jump sets would determine when the
input ui,1 affecting the flows is active, and when the input ui,2 assigning the
state after jumps is active. �

Example 2. Synchronization of the state of nonlinear continuous-time systems
of the form żi = fi(zi, ui) emerges in many problems in science and engineer-
ing. Such an agent model is captured by defining F ai (zi, ui) := fi(zi, ui),
Gai (zi, ui) arbitrary, Cai = Rnai ×Rmai , and Da

i empty. More interestingly, the
model in (1.2) allows for jumps in the state that can emerge due to hybrid
dynamics in the agents themselves. The mathematical models of impulse-
coupled oscillators used in the literature to capture the dynamics of popula-
tions of fireflies and neurons exhibit such dynamics; see, e.g., [9]. For instance,
one such a model consists of a scalar state zi of each oscillator taking val-
ues in the compact set [0, T ], where T > 0 is a parameter, and that, during
flows, increases monotonically towards T . During this regime, the change of
zi is governed by the autonomous system żi = fi(zi) and the state zi is
constrained to [0, T ]. Upon reaching a threshold T , the state zi self-resets to
zero. Furthermore, when agents that are neighbors to the i-th agent self-reset
their states to zero, they trigger a reset of the state zi to a value that may
depend on the state of the i-th agent and of its neighbors. Letting ui be the
input to the i-th agent, which is to be assigned to a function of the state
of the neighbors so as to externally reset zi as just described, the change
of zi at self-triggered jumps is z+

i = 0 and at externally-triggered jumps as
z+
i = gi(zi, ui) An agent model as in (1.2) is given by

żi = fi(zi) =: F ai (zi, ui) (zi, ui) ∈ [0, T ]× Rm
a
i =: Cai ,

z+
i ∈ G

a
i (zi, ui) :=

0 if zi = T, ui /∈ De
i

gi(zi, ui) if zi ∈ [0, T ), ui ∈ De
i

{0, gi(zi, ui)} if zi = T, ui ∈ De
i

(zi, ui) ∈ ({T} × Rm
a
i ) ∪ ([0, T ]×De

i ) =: Da
i ,

yi = zi =: Ha
i (zi, ui) (zi, ui) ∈ [0, T ]× Rm

a
i =: Eai

In this model, the events are triggered when zi = T or ui is equal to a
value, or more generally, belong to an appropriately defined set describing
the conditions that externally reset zi. The latter set is denoted as De

i in the
model above. Note that when both reset conditions occur simultaneously,
the jump map of the agent is set valued, meaning that either one of the two
possible resets is possible. �
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1.2.2 Networks

A directed graph (digraph) is defined as Γ = (V, E ,G). The set of nodes of
the digraph are indexed by the elements of V and the edges are pairs in the
set E ⊂ V × V. Each edge directly links two different nodes, i.e., an edge
from i to k, denoted by (i, k), implies that agent i can send information to
agent k. The adjacency matrix of the digraph Γ is denoted by G ∈ RN×N ,
whose entries gik take values on {0, 1} according to the connectivity map:
gik = 1 if (i, k) ∈ E , and gik = 0 otherwise. The set of indices corresponding
to the neighbors that can send information to the i-th agent is denoted by
N (i) := {k ∈ V : (k, i) ∈ E}. The in-degree and out-degree of agent i are

defined by d in
i =

∑N
k=1 gki and d out

i =
∑N
k=1 gik. The in-degree matrix D

is the diagonal matrix with entries Dii = d in
i for all i ∈ V. The Laplacian

matrix of the digraph Γ , denoted by L ∈ RN×N , is defined as L = D − G. A
digraph is said to be

• weight balanced if, at each node i ∈ V, the out-degree and in-degree are
equal; i.e., for each i ∈ V, d out

i = d in
i ;

• completely connected if every pair of distinct vertices is connected by a
unique edge; that is gik = 1 for each i, k ∈ V, i 6= k;

• strongly connected if and only if any two different nodes of the digraph can
be connected via a path that traverses the directed edges of the digraph.

In most applications involving networks, the transfer of information be-
tween neighboring agents is driven by events. The events triggering commu-
nication between neighboring agents may depend on the state, the input,
output information, or on a local quantity. The following general hybrid sys-
tem model, denoted Hnet

ik , is used to trigger such events for each (i, k) ∈ E :

µ̇ik ∈ F net
ik (µik, ωik) (µik, ωik) ∈ Cnet

ik

µ+
ik ∈ G

net
ik (µik, ωik) (µik, ωik) ∈ Dnet

ik

χik ∈ Hnet
ik (µik, ωik) (µik, ωik) ∈ Enet

ik

(1.3)

where µik ∈ Rnnet
ik is a state variable associated to the communication of in-

formation from agent i to agent k, ωik ∈ Rmnet
ik is its input, which might be

assigned to information that agent i has to transmit to agent k as well as state
variables in agent i that determine whether µik should evolve continuously
or discretely, and χik ∈ Rpnetik is its output, which includes the information
that is transmitted from agent i to agent k. The hybrid model Hnet

ik is general
enough to capture most communication mechanisms or protocols in the litera-
ture. The following sample-and-hold mechanism defines perhaps the simplest
version of a model to trigger communication of information from agent i to
agent k.

Example 3 (periodic communication events with memory). The simplest event-
driven communication protocol is perhaps one that collects information and
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transmits it periodically. Let T > 0 denote the period for the events. A model
that, after the first event, updates the information provided by the network
after every T seconds have elapsed can be modeled as (1.3) for each (i, k) ∈ E .
Let τik denote a timer state that triggers the communication events and let
`ik be a memory state that stores the information at those events. Then,
defining the state of (1.3) as µik = (τik, `ik), the following model captures
the network described above:

µ̇ik =

[
τ̇ik
˙̀
ik

]
=

[
1
0

]
when τik ∈ [0, T ]

µ+
ik =

[
τ+
ik

`+ik

]
=

[
0
ωik

]
when τik = T

(1.4)

where ωik is the input to the network, which has the information to commu-
nicate, and the output is χik = `ik. Then, the data of Hnet

ik is given by

F net
ik (µik, ωik) :=

[
1
0

]
Cnet
ik := {(µik, ωik) : τik ∈ [0, T ]}

Gnet
ik (µik, ωik) :=

[
0
ωik

]
Dnet
ik := {(µik, ωik) : τik = T}

Hnet
ik (µik, ωik) := `ik

Enet
ik := {(µik, ωik) : τik ∈ [0, T ]}

A network model in which collection and transmission of information do
not occur simultaneously can be obtained by adding a timer and a memory
state to the model above. In such a model, one of the timers, denoted as
τik,1, triggers the events every T1 seconds, at which events the input ωik is
stored in a memory state, denoted as `ik,1. The other timer, denoted as τik,2,
triggers the events every T2 seconds updating the memory state assigning
the output, denoted `ik,2, to the recorded value of ωik in `ik,2. A model as in
(1.3) capturing such mechanism has state µik = (τik,1, `ik,1, τik,2, `ik,2) and
data
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F net
ik (µik, ωik) := (1, 0, 1, 0)

Cnet
ik := {(µik, ωik) : τik,1 ∈ [0, T1], τik,2 ∈ [0, T2]}

Gnet
ik (µik, ωik) :=


(0, ωik, τik,2, `ik,2) if τik,1 = T1, τik,2 ∈ [0, T2),
(τik,1, `ik,1, 0, `ik,1) if τik,1 ∈ [0, T1), τik,2 = T2,
{(0, ωik, τik,2, `ik,2), (τik,1, `ik,1, 0, `ik,1)}

if τik,1 = T1, τik,2 = T2,

Dnet
ik := {(µik, ωik) : τik,1 = T1} ∪ {(µik, ωik) : τik,2 = T2}

Hnet
ik (µik, ωik) := `ik

Enet
ik := {(µik, ωik) : τik,1 ∈ [0, T1], τik,2 ∈ [0, T2]}

The jump set Dnet
ik of this hybrid system captures the two possible events,

which are when τik,1 = T1 or when τik,2 = T2, and the jump map Gnet
ik resets

the state variables according to which even has occurred. Note that when
both events happen simultaneously, the jump map is set valued. In general,
the parameters T1 and T2 in the models above may depend on each agent, in
which case they will be denoted as T i1 and T i2. �

While the models in Example 3 capture the key property that informa-
tion transmitted over networks is typically only available at isolated time
instances, they make the assumption that transmissions occur periodically.
The following model relaxes that assumption by allowing consecutive com-
munication events to occur within a window of finite length. For simplicity,
this extension is carried out for the model in (1.4) and without a memory
state. An extension for the case with memory states and two timers follows
similarly.

Example 4 (aperiodic communication events). The first model in Example 3
guarantees that every solution has a hybrid time domain defined by a se-
quence t0 = 0 ≤ t1 < t2 < t3 < . . . satisfying

tj+1 − tj = T

for all j > 0 such that (t, j) is in the domain of the solution. When the time
in between consecutive events is not constant, but rather known to occur no
later than T2 seconds and no sooner than T1 seconds after every event, the
sequence of times {tj} would satisfy

tj+1 − tj ∈ [T1, T2] (1.5)

for all j > 0 such that (t, j) is in the domain of the solution. The parameters
T1 and T2 are such that T2 ≥ T1 > 0. In principle, the event times tj can
be thought of being determined by a random variable taking values in the
interval [T1, T2]. The following model generates solutions satisfying (1.5) by
exploiting nondeterministic behavior due to an overlap between the flow and
jump sets:
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τ̇ik = 1 τik ∈ [0, T2] (1.6a)

τ+
ik = 0 τik ∈ [T1, T2] (1.6b)

In fact, whenever the timer state τik is in [T1, T2), both flows and jumps are
possible, meaning that there exist solutions that jump or that flow when τik is
equal to any point in that set. A model as in (1.3) capturing such mechanism
has state µik = τik, and flow and jump maps/sets given by

F net
ik (µik, ωik) := 1

Cnet
ik := {(µik, ωik) : τik ∈ [0, T2]}

Gnet
ik (µik, ωik) := 0

Dnet
ik := {(µik, ωik) : τik ∈ [T1, T2]}

An alternative model that generates solutions satisfying (1.5) but, instead,
through a set-valued jump map, is given by

τ̇ik = −1 τik ∈ [0, T2] (1.7a)

τ+
ik ∈ [T1, T2] τik = 0 (1.7b)

In this model, the communication events are triggered by a timer τik that
decreases and upon reaching zero, it is reset to a point in [T1, T2]. The hybrid
system (1.7) can be captured by (1.3) by choosing the state as µik = τik, and
flow and jump maps/sets given by

F net
ik (µik, ωik) := −1

Cnet
ik := {(µik, ωik) : τik ∈ [0, T2]}

Gnet
ik (µik, ωik) := [T1, T2]

Dnet
ik := {(µik, ωik) : τik = 0}

�

Network mechanisms and protocols that employ timers, memory states,
and logic can be fit in the network model (1.3), for instance, TCP/IP [10],
wireless Ethernet, and bluetooth protocols [11] can be modeled with such a
hybrid model.

1.2.3 Algorithms

For each i ∈ V, the algorithm associated to the i-th agent is modeled as a
hybrid system HKi with data (CKi , F

K
i , D

K
i , G

K
i , E

K
i , H

K
i ) and given by the

hybrid inclusion with inputs and outputs
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η̇i ∈ FKi (ηi, vi) (ηi, vi) ∈ CKi
η+
i ∈ G

K
i (ηi, vi) (ηi, vi) ∈ DK

i

ζi ∈ HK
i (ηi, vi) (ηi, vi) ∈ EKi

(1.8)

where ηi ∈ RnKi is the state, vi ∈ RmKi the input, and ζi ∈ RpKi the output
of the i-th agent. As for Hai in (1.2), the set-valued map FKi is the flow map
capturing the continuous dynamics and CKi defines the flow set on which
flows are allowed. The set-valued map GKi defines the jump map and models
the discrete behavior, and DK

i defines the jump set which is where jumps are
allowed. The set EKi defines the output set. A solution to the algorithm HKi
can also be defined, as done for Hai .

Example 5. Algorithms that, at isolated time instants, measure the received
data and compute a feedback control law that is to be applied to the agent
can be modeled as the algorithm in (1.8). An algorithm with sampling events
triggered when one of its inputs reaches a particular value, at which event
uses the information in another of its inputs to compute the control law
and stores it in a memory state that is to be applied to the agent is given
as follows. Let vi = (vi,1, vi,2) be the input to the algorithm, where vi,1 is
the input triggering the events and vi,2 is the input with the information
needed to compute the control law. Suppose that vi,1 reaching zero triggers
the computation events. Let `i be a state variable that, at the events, stores
the value of the feedback control law, which is given by the function κ, and
in between events remains constant. The discrete dynamics of the algorithm
are

`+i = κ(vi,2)

which are active when vi,1 = 0. The continuous dynamics of the algorithm
are simply

˙̀
i = 0

which, in principle,3 are active when vi,1 > 0. In this way, the state `i operates
as a memory state. This algorithm is given by HKi as in (1.8) with state
ηi = `i, input vi = (vi,1, vi,2), and data given by

FKi (ηi, vi) = 0

CKi = {(ηi, vi) : vi,1 > 0}
GKi (ηi, vi) = κ(vi,2)

DK
i = {(ηi, vi) : vi,1 = 0}

HK
i (ηi, vi) = `i

and EKi the entire state and input space of HKi .

3 In Section 1.5.1, we present a model for which the continuous dynamics are active when

vi,1 ≥ 0 due to such input being connected to a strictly decreasing timer, in which case,

flows with vi,1 identically zero are not possible. In such a case, the set CK
i is closed.
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The model for HKi also allows to capture the dynamics behind an algo-
rithm that does not trigger computations synchronously with the arrival of
information. The computation events in such algorithm could be triggered
by an internal state, at which events the last piece of information received
is used to compute the feedback law. Such a mechanism can be modeled
using a memory state that stores the information received, a memory state
that stores the computed feedback law, and a state that triggers the events.
Denote these state variables as `i,1, `i,2, and τi, respectively, which define
the state of the algorithm ηi = (`i,1, `i,2, τi). As in the model with a single
memory state given above, the memory state `i,1 stores the information in
vi,2 when the input vi,1 reaches zero. Let γ̃ be a function that, when zero,
triggers the computation of the feedback control law, which is denoted as κ.
Then, the discrete dynamics of τi are active when

γ̃(ηi) = 0

At each jump, the discrete dynamics update τi according to

τ+
i = %di (ηi)

where %di is a function to be defined, and `i,2 according to

`+i,2 = κ(`i,1)

We assume that flows of τi are active when

γ̃(ηi) ≥ 0

and that are governed by
τ̇i = %ci (ηi)

The function %ci is assumed to not allow flows that remain in γ̃(ηi) = 0. The
memory state `i,2 remains constant during flows. This algorithm is given by
HKi as in (1.8) with state ηi = (`i,1, `i,2, τi), input vi = (vi,1, vi,2), and data
given by

FKi (ηi, vi) = (0, 0, %ci (ηi))

CKi = {(ηi, vi) : vi,1 > 0, γ̃(ηi) ≥ 0}

GKi (ηi, vi) =


(vi,1, `i,2, τi) if vi,2 = 0, γ̃(ηi) > 0
(`i,1, κ(`i,1), %di (ηi)) if vi,1 > 0, γ̃(ηi) = 0
{(vi,2, `i,2, τi), (`i,1, κ(`i,1), %di (ηi))} if vi,1 = 0, γ̃(ηi) = 0

DK
i = {(ηi, vi) : vi,1 = 0} ∪ {(ηi, vi) : γ̃(ηi) = 0}

HK
i (ηi, vi) = `i,2

and EKi the entire state and input space of HKi . �
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The model in HKi is general enough to allow for multi-mode, event-
triggered, and predictive-based algorithms.

1.2.4 Closed-loop System

Given a digraph Γ , the interconnection between the agents, algorithms, and
network models results in a hybrid system. Assuming that, for each i ∈ V, the
input ui of the i-th agent is assigned to the output ζi of the i-th algorithm,
that the input vi of the i-th algorithm is assigned to a function of yi and of
the output of the networks connected to it, namely {χki}k∈N (i), and that, for
each k ∈ N (i), the input ωik is assigned to yi, the interconnection between
these hybrid systems lead to an autonomous hybrid system H of the form

ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

(1.9)

where
x = (x1, x2, . . . , xN ) ∈ Rn

is the state with n =
∑
i∈V

(
nai + nKi + d in

i n
net

ki

)
, where xi collects the states

components of the agent, algorithm, and networks associated to the i-th
agent. The data (C,F,D,G) is constructed using the data of the individual
systems. In Section 1.5 we provide numerous examples of such construction.

1.3 Design Specifications

In this section, we formulate specific properties of interest in the design of
networked systems. The network-specific properties introduced include the
situation when the states of the individual systems reach a particular set
that depends on the local variables, which we call formation, that the states
of all systems converge to each other, which is referred to as synchronization,
that the entire interconnected hybrid system is safe, called safety, and that
exogenous signals injected at specific agents are detectable, which we refer to
as security. These properties are given in terms of the variables and inputs
of the individual agents.

1.3.1 Formation

A property that is of interest in network system problems is when, for each
i ∈ V, the state xi converges to a particular relative configuration. For the
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closed-loop system H, the set of interest is given as

A :=
⋂
i∈V
Ai (1.10)

where
Ai := {x ∈ Rn : ρi(x) = 0}

and, for each i ∈ {1, 2, . . . , N}, the function ρi defines the relative formation
between the agent i and the other agents. Convergence of solutions to this
set can be interpreted as the network reaching a formation, in particular,
when components of xi are related to physical quantities, such as position or
angles. To formulate this property, denote the distance from x to A as |x|A,
namely,

|x|A = inf
x′∈A

|x− x′|

Then the goal is to design an algorithm such that every maximal solution φ
to H converges to A in finite time or asymptotically, that is, in the limit as
“hybrid” time gets large:

• For some (t∗, j∗) ∈ domφ

lim
(t,j)∈domφ, t+j↘t∗+j∗

|φ(t, j)|A = 0

• If φ is complete, then

lim
(t,j)∈domφ, t+j→∞

|φ(t, j)|A = 0

Note that while in some network systems problems converging to the set A
might be possible without exchanging information between agents, there are
numerous problems where transmission of information between agents and
algorithms is mandatory. One such a case for N = 2 is when the algorithm
that controls agent Ha1 is HK2 , and the algorithm that controls agent Ha2 is
HK1 .

Certainly, the construction of the set A in (1.10) covers the situation when
state components of the algorithm for each agent are to converge to a common
point, say z∗. In such a case, the definition of the sets Ai will include the
condition zi = z∗ for each i ∈ V. It also covers the setting when the algorithm
reconstructs the state zi from measurements of yi, namely, the algorithm
includes an observer. In such a case, the set Ai will include a condition of
the form zi = ẑi, where ẑi is the component of ηi that provides an estimate
of zi.
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1.3.2 Synchronization

Another dynamical property of interest in many network systems problems is
when particular components of the solutions to each agent converge to each
other, rather than to a particular set or point. For the closed-loop system H,
this property is stated as follows. Let x = (x1, x2, . . . , xN ) be partitioned as
xi = (pi, qi). The closed-loop system H is said to have

• stable synchronization with respect to p if for every ε > 0, there exists
δ > 0 such that every maximal solution φ = (φ1, φ2, . . . , φN ), where
φi = (φi,p, φi,q), to H such that

|φi(0, 0)− φk(0, 0)| ≤ δ

for each i, k ∈ V implies

|φi,p(t, j)− φk,p(t, j)| ≤ ε

for all i, k ∈ V and (t, j) ∈ domφ.
• globally attractive synchronization with respect to p if every maximal so-

lution is complete, and for each i, k ∈ V

lim
(t,j)∈domφ
t+j→∞

|φi,p(t, j)− φk,p(t, j)| = 0

• global asymptotic synchronization with respect to p if it has both stable
synchronization and global attractive synchronization with respect to p.

In general, this is a partial state synchronization notion, but if xi = pi for each
i ∈ V, then this notion can be considered to be a full-state synchronization
notion. Note that stable synchronization with respect to p requires solutions
φi for each i ∈ V to start close to each other, while only the components φi,p,
i ∈ V remain close to each other over their domain of definition. Similarly,
global attractive synchronization with respect to p only requires that the
Euclidean distance between each φi approaches zero, while the other compo-
nents are left unconstrained. Also, note that boundedness of the solutions is
not required.

1.3.3 Safety

Safety is a property of interest in the design of most algorithms for dynamical
systems. Safety is typically characterized by conditions on the system vari-
ables, called safety conditions, that guarantee system operation within limits
and away from undesired configurations. A system is said to be safe when
its solutions are such that they remain within the set of points where the
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safety conditions are satisfied. For each i ∈ V, let Ki denote the set of points
defining the safety conditions for the variables of the i-th agent and the set

K := K1 ×K2 × . . .×KN

be the set that captures all safety conditions for the closed-loop system H.
Then, a particular safety goal is to design the algorithms and the networks
such that every solution φ to H with initial condition

φ(0, 0) ∈ K

is such that
φ(t, j) ∈ K ∀(t, j) ∈ domφ

Note that this property enforces all solutions that start from K to remain in
K, even if they are not complete. At times, one might be interested in the
property that solutions starting from a potentially smaller set than K, stay in
K. More precisely, let K0 denote the set of allowed initial conditions. Then,
such a safety property is as follows: design the algorithms and the networks
such that every solution φ to H with initial condition

φ(0, 0) ∈ K0

is such that
φ(t, j) ∈ K ∀(t, j) ∈ domφ

where, in most cases, the set K0 would be strictly contained in the K.

1.3.4 Security

The general closed-loop system H allows to model the dynamics of the physi-
cal components, such as sensors and actuators, the cyber components, which
include digital devices and computing, as well as their interfaces. These inter-
faces can be exploited by adversaries to, for example, deny access or corrupt
the information transmitted among agents. The characterization of which
attacks are detectable and the design of algorithms to detect them are of
great importance. Modeling the attacks as exogenous signals wc and wd af-
fecting the continuous and discrete dynamics of H, respectively, the closed
loop under the effect of attacks is given by

ẋ ∈ F (x+ wc,1) + wc,2 x+ wc,3 ∈ C
x+ ∈ G(x+ wd,1) + wd,2 x+ wd,3 ∈ D

where wc = (wc,1, wc,2, wc,3) and wd = (wd,1, wd,2, wd,3). We refer to this
closed-loop system as Hw. In this context, the security problem consists of
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detecting when the exogenous signal w := (wc, wd) is nonzero. One way to
accomplish that is to design a function that, when evaluated along solutions
only, is nonzero if the attacker’s input w is nonzero. For instance, one would
be interested in designing a function r such that for every solution pair (φ,w)
to Hw

∃(t, j) ∈ dom(φ,w) : |w(t, j)| > 0 ⇒ |r(φ(t, j))| > 0

Note that when the input w is nonzero over an interval, it might suffice to
have a function r that becomes nonzero at some time over that interval,
within some reasonable amount of time since the attack started.

1.4 Notions and Design Tools

In this section, we present dynamical properties that are suitable to cer-
tify the network-specific properties given in Section 1.3. These properties are
stated for general hybrid systems given as H in (1.9) and later, in Section 1.5,
specialized to networked systems problems. The presentation of these proper-
ties and related results is informal, and pointers to the literature with formal
statements are given.

1.4.1 Asymptotic Stability

Given a subset of the state space of a dynamical system, asymptotic stability
captures the property that solutions starting close to the set stay close to
it, and that solutions that are complete converge to it asymptotically. For a
hybrid system H as in (1.9) with state space Rn, a closed set A ⊂ Rn is said
to be

• stable for H if for each ε > 0 there exists δ > 0 such that each solution φ
to H with initial condition such that

|φ(0, 0)|A ≤ δ

satisfies
|φ(t, j)|A ≤ ε ∀(t, j) ∈ domφ

• globally asymptotically attractive for H if every maximal solution φ to H
is complete4 and satisfies

4 This attractivity notion enforces that every maximal solution to H is complete, which is a
property that is not for free. Sufficient conditions guaranteeing that maximal solutions are

complete are given in [12, Proposition 2.10 and Proposition 6.10]. An attractivity notion
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lim
(t,j)∈domφ, t+j→∞

|φ(t, j)|A = 0

• globally asymptotically stable for H if it is stable and globally asymptoti-
cally attractive.

Algorithms HKi for Hai that, under the effect of the networks Hnet
ik , guar-

antee asymptotic stability of the set A can be designed using the Lyapunov
stability analysis tools in [12, Chapter 3 and Chapter 7]. In particular, asymp-
totic stability is of interest to networked systems problems as it can be em-
ployed to guarantee formation and synchronization. In fact, the problem of
guaranteeing that the network H asymptotically reaches a formation can be
solved by showing that the set A in (1.10) is asymptotically attractive. The
problem of designing algorithmsHKi that guarantee full state asymptotic syn-
chronization of H can be recast as the problem of asymptotically stabilizing
the closed set

A := {x ∈ Rn : x1 = x2 = · · · = xN}

Sufficient conditions for asymptotic stability in terms of Lyapunov functions
can be found in [12, Chapters 3, 6, and 7]; see Section 1.5 for illustrations.

1.4.2 Finite time Convergence

At times, convergence to the set of points of interest in finite time is desired.
For instance, in a network system one might be interested in assuring that the
state of the individual systems converge to a particular formation, and after
that, accomplish a different task. For a hybrid system H on Rn, given a closed
set A ⊂ Rn, an open neighborhood N of A, and a function T : N → [0,∞)
called the settling-time function, the closed set A is said to be

• finite time attractive for H if each solution φ to H with initial condition
such that

φ(0, 0) ∈ N

satisfies

sup
(t,j)∈domφ

t+ j ≥ T (φ(0, 0)) (1.11)

and

lim
(t,j)∈domφ:t+j↗T (φ(0,0))

|φ(t, j)|A = 0 (1.12)

that does not require every maximal solution to be complete is given in [12, Definition 3.6
and Definition 7.1], which, to emphasize the potential lack of completeness, has the prefix
“pre.”



18 Ricardo G. Sanfelice

This property becomes global when N can be picked such that C ∪D ⊂ N .
Condition (1.11) assures that convergence occurs at a point in domφ, in turn
guaranteeing that the solution actually converges to A.

The design of networked systems with such finite time convergence prop-
erties can be designed using the tools in [13], in particular, to guarantee
network formation in finite time.

1.4.3 Forward invariance

A setK is said to be forward invariant for a dynamical system if every solution
to the system from K stays in K for all future time. Also referred in the
literature as flow-invariance and positively invariance, this property assure,
the key property of interest in dynamical systems that solutions remain in a
desired region of the state space. For a hybrid system H on Rn, a given set

K ⊂ C ∪D

is said to be forward pre-invariant for H if for each x ∈ K, each solution φ
to H with initial condition φ(0, 0) = x is such that

φ(t, j) ∈ K ∀(t, j) ∈ domφ

The condition on K belonging to C ∪D is so that a set being pre-invariant is
such that a solution exist from each point in it.5 The prefix “pre” indicates
that the notion does not enforce that maximal solutions are complete, and
when every maximal solution from K is complete, then the notion reduces
to forward invariance as defined in [14] – see therein also “weak” notions of
forward invariance.

Sufficient conditions guaranteeing forward pre-invariance of sets are given
in [14, 15, 16] for general hybrid systems modeled as H in (1.9). In particular,
these conditions can be used as design tools to certify safety in a networked
system.

1.4.4 Robustness

In real-world settings, networked systems are affected by a variety of per-
turbations that may compromise the satisfaction of the properties that they
were designed for. Unmodeled dynamics in the models used for the agents

5 The solution might be trivial though, in the sense that its domain might be just one
point – otherwise, points that are neither in C nor in D would satisfy the invariance

notion vacuously.



1 Networked Hybrid Dynamical Systems: Models, Specifications, and Tools 19

Hai leads to perturbations of the data (Cai , F
a
i , D

a
i , G

a
i , E

a
i , H

a
i ). In particular,

additive (in the general set-valued sense) perturbations to the flow map F ai
and the jump map Gai can be used to capture terms that were omitted at the
modeling stage, potentially with the intention of providing a simplified agent
model that would enable analysis and design. Deflations and inflations of the
sets Cai and Da

i can be defined to model perturbations in the conditions al-
lowing flows and jumps. Similar perturbations may appear in the models of
the networks and algorithms. When such perturbations are not know at the
design stage, one typically performs the design in nominal conditions, with
the expectation that when the perturbations are present and have small size,
then the established properties will hold, practically and semiglobally.

A semiglobal and practical (on the size of the perturbation) version of
the asymptotic stability property of a set A defined in Section 1.4.1 would
guarantee, for every compact set M ⊂ Rn and every level of closeness ε > 0,
the existence of a maximum allowed perturbation size δ∗ > 0 such that every
complete solution φ̃ to H under perturbations with size smaller that δ∗ that
has initial condition φ̃(0, 0) ∈ M is such that, in the limit as t or j grow

unbounded, the distance from φ̃ to A is less than or equal to ε. When A is
an asymptotically stable compact set for H, this property is guaranteed to
hold under mild conditions on the data of H. Such a result can be found in
Chapter 7 of [12]; see Definition 7.18, Lemma 7.19, and Theorem 7.21 therein.

The property outlined above can be formally written in terms of a KL
bound. First, when H is nominally well-posed and a compact set A is asymp-
totically stable, then there exists a class-KL function β such that every so-
lution φ to H satisfies

|φ(t, j)|A ≤ β(|φ(0, 0)|A, t+ j) ∀(t, j) ∈ domφ (1.13)

See [12, Theorem 7.12]. Then, [12, Theorem 7.21] implies that for each com-
pact set M ⊂ Rn and every level of closeness ε > 0, there exists δ∗ > 0 such
that

|φ̃(t, j)|A ≤ β(|φ(0, 0)|A, t+ j) + ε ∀(t, j) ∈ dom φ̃ (1.14)

for every solution φ̃ that starts from M and that is under the effect of per-
turbations with size smaller than δ∗. A similar result for the case of finite
time convergence is in Theorem 4.1 in [13].

Another typical perturbation in networked systems is the presence of noise
in the quantities measured and transmitted by the network, and the values
that finally arrive to the agents. When such noise is small, a semiglobal
property that is practical on the size of the noise can be established using the
tools mentioned above. When the noise is large, one is typically interested
in characterizing the effect of the noise on the nominal asymptotic stability
property, namely, on the distance to the set A. The notion of input-to-state
stability (ISS) is one way to characterize the effect of large noise. Denote
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by H̃ as the hybrid system under the effect of an exogenous disturbance d.
The hybrid system H̃ is input-to-state stable with respect to A if there exist
β ∈ KL and κ ∈ K such that each solution φ̃ to H̃ with associated disturbance
d satisfies

|φ̃(t, j)|A ≤ max{β(|φ(0, 0)|A, t+ j), κ(‖d‖(t,j))} (1.15)

for each6 (t, j) ∈ dom φ̃. Several characterizations and Lyapunov-based tools
to certify ISS in hybrid systems are given in [17]. The set KL is the set of
KL functions and K is the set of K functions; see [12, Section 3.5].

A direct approach to design algorithms conferring robustness is to perform
the design task using a model that explicitly includes a model of the pertur-
bations. Such an approach allows for a variety of perturbations, as long as
they can be modeled and a certificate guaranteeing the desired properties
can be found. When robust asymptotic stability is of interest, robust control
Lyapunov functions for hybrid systems can be employed to guarantee robust
asymptotic stability of sets; see [18]. Forward invariance of sets with robust-
ness to perturbations can be certified for hybrid dynamical systems when the
model includes the perturbations. Tools for the design of algorithms confer-
ring robust forward invariance to general sets and, in particular, to sets given
by sublevel sets of Lyapunov functions are available in [16].

Delay is a perturbation that is of particular interest in networked sys-
tems as it is unavoidable in real-world settings. Compared to the tools to
deal with the sources of perturbations mentioned above, design methods to
guarantee robustness to delays are much less developed. Works pertaining
to systems with hybrid dynamics and delays have focused on guaranteeing
pre-asymptotic stability through the use of Razumikhin functions [19, 20]
and Lyapunov functionals for retarded functional impulse differential equa-
tions [21]. Results for switched systems with delays are also available in
[22, 23, 24, 25]. Results for linear reset systems with delays developed us-
ing passivity appeared in [26, 27]. Tools for the study of delays in hybrid
systems modeled as in (1.9) have recently appeared in the sequence of arti-
cles [28, 29, 30, 31], which provide tools to study the effects of general delays.
Along a different vein, in [32], we have recently proposed a way to exploit
well-posedness and a KL bound as in (1.13) to handle the sole effect of delays
on events in hybrid systems.

6 A pair (φ̃, d) defines a solution to H̃ if it satisfies its dynamics. Given a hybrid arc d, its sup
norm at (t, j) ∈ dom d is

‖d‖(t,j) := max

{
ess sup

(s,k)∈dom d\Γ (d),s+k≤t+j
|d(s, k)|, sup

(s,k)∈Γ (d),s+k≤t+j
|d(s, k)|

}

where Γ (d) denotes the set of all (t, j) ∈ dom d such that (t, j + 1) ∈ dom d.
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1.5 Applications

The models and tools presented in the previous sections have recently been
used to solve problems pertaining to certain classes of networked hybrid dy-
namical systems. In [1, 2], a distributed hybrid observer to estimate the state
of a linear time-invariant system was designed to guarantee asymptotic sta-
bility of a set on which the state estimation error is zero. In [3], a solution
to the control problem of steering the state of the agents with point-mass
dynamics to the same value over a network that only allows exchange of in-
formation at isolated, aperiodic time instances is proposed. The algorithm
discretely updates the input to the point-mass system at communication
events and, in between events, changes continuously according to a linear
differential equation. A hybrid control algorithm for the synchronization of
multiple systems with general linear time-invariant dynamics over a similar
communication network appeared in [33, 7]. The remainder of this section
presents a summary of these results.

1.5.1 Distributed Estimation

State estimation in networked systems has seen increased attention recently.
These include continuous-time algorithms for distributed estimation of the
state of a plant in [34] with robustness guarantees and in [35, 36], both when
information is exchanged continuously. Algorithms for which information ar-
rives at common discrete time instances include the network of local observers
proposed in [37] for linear time-invariant plants and the optimal estimators
in [38], for time-varying networked systems, both in discrete time and with
information shared at each discrete time instant. Approaches that keep the
continuous dynamics of the plant and treat the communication events as im-
pulsive events include the observer-based controller [39] for network control
systems modeled as time-varying hybrid systems, the observer-protocol pair
in [40] to asymptotically reconstruct the state of a linear time-invariant plant
using periodic measurements from multiple sensors, the distributed observer
in [41] designed by partitioning the dynamics into disjoint areas and attach-
ing an algorithm to each area that updates the estimates over time windows
with common length, and the robust continuous-time observer for estimation
in network control systems in [42] designed via an emulation-like approach
and exploiting trajectory-based and small-gain arguments. Other approaches
that mix continuous and discrete dynamics have appeared in the nonlinear
and stochastic systems literature; see [43, 44, 45, 46, 47, 48, 49, 50, 51].

In this section, we consider the problem of estimating the state of a dy-
namical system from intermittent measurements of functions of its output
over a network with N ′ nodes, each running a decentralized state estimator.
The communication events occur according to one of the models in Exam-
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ple 4. Under nominal conditions, the model governing the dynamics of the
system to estimate the state of is given by a linear time-invariant system.
The algorithm we propose builds from the hybrid observer in [52], which
is shown to guarantee global exponential stability of the zero-estimation er-
ror under sporadic measurements. Without loss of generality, following the
model in (1.2) and defining N = N ′ + 1, we assume that the first agent
corresponds to this dynamical system, while the dynamics of agents with
i ∈ V ′ := {2, 3, . . . , N ′ + 1} implement the decentralized state estimators. In
this way, the dynamics of the first agent are given by

ż1 = Az1 (1.16)

where z1 ∈ Rna1 denotes its state and A ∈ Rna1×na1 is the system matrix. For
each i ∈ V ′, the i-th agent running a state estimator receives the measurement

yi = Hiz1 (1.17)

and the outputs yk of its neighbors, that is, for each k ∈ N (i), at time
instances tij satisfying

tij+1 − tij ∈ [T i1, T
i
2], j > 0 (1.18)

where Hi ∈ Rpai×nai is the local output matrix of the i-th agent and T i2 ≥
T i1 > 0 are parameters that, as T2 and T1 in (1.5), determine the minimum
and maximum amount of time to elapse between communication events for
the i-th agent. Following the network models proposed in Section 1.2.2, in
particular, those in Example 4, we employ the model

τ̇i = 1 τi ∈ [0, T i2] (1.19a)

τ+
i ∈ [T i1, T

i
2] τi = 0 (1.19b)

to trigger the events at which the i-th agent receives yi and the yk’s. Since
the information from all neighbors to agent i arrives simultaneously, we can
employ a single state µi for each agent, rather than din

i states µik for each
agent, i ∈ V ′. A model as in (1.3) can be derived following the construction
in Example 4, where the state µi would be given by τi and the input ωi by
the information to transmit, namely, yi and the yk’s.

We propose a decentralized hybrid algorithm that, at each agent and by
employing information received from the neighbors over a communication
graph, generates a converging estimate of the state of the first agent. More
precisely, at the i-th agent, i ∈ V ′, the hybrid algorithm has a state with
a variable ẑi ∈ Rna1 storing the estimate of the state z1 and an information
fusion state variable, denoted `i, storing the measurements received from its
neighbors. These state variables are continuously updated by a differential
equations
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˙̂zi = Aẑi + `i (1.20a)

˙̀
i = hi`i (1.20b)

when no information is received, while when information is received, the
states ẑi and `i are updated according to

ẑ+
i = ẑi (1.21a)

`+i =
∑

k∈N (i)

Gkoi(ẑi, ẑk, yi, yk) (1.21b)

with

Gkoi(ẑi, ẑk, yi, yk) =
1

dini
Kiiy

e
i +Kiky

e
k + γ(ẑi − ẑk) (1.22)

where, for each i, k ∈ V ′, yei = Hiẑi − yi is the output estimation error; the
scalars hi and γ, and the matrix Kik define the parameters of the algorithm.
The constants gik in (1.21) and dini in (1.22) are associated with the com-
munication graph, which is assumed to be given. The map Gkoi defines the
impulsive update law when new information is collected from the first agent
and the k-th neighbor for agent i. The information fusion state `i is injected
into the continuous dynamics of the local estimate ẑi and, at communication
events, injects new information impulsively – the right-hand side of (1.21) is
the “innovation term” of the proposed observer. The specific update law in
(1.22) is such that the second term in (1.22) uses the output error of each k-th
agent that is a neighborhood of the i-th agent, and the third term in (1.22)
uses the difference between the estimates ẑi and ẑk. These are the quantities
that are transmitted (instantaneously) at communication events only.

The continuous and discrete dynamics in (1.20) and (1.21) can be modeled
as a hybrid algorithm HKi as in (1.8) with state ηi = (ẑi, `i), input vi =
(yi, {(ẑk, yk)}k∈N (i), µi), and data given by

FKi (ηi, vi) :=

[
Aẑi + `i
hi`i

]
CKi := {(ηi, vi) : µi ∈ [0, T2]}

GKi (ηi, vi) :=

[
ẑi∑

k∈N (i)
1

dini
Kii(Hiẑi − yi)+Kik(Hkẑk − yk)+γ(ẑi − ẑk)

]
DK
i := {(ηi, vi) : µi = 0}

HK
i (ηi, vi) := ẑi

and EKi the entire state and input space of HKi . Note that the input to the
algorithm includes the output µi = xi of the network model in (1.7). Due to
µi triggering the jumps in HKi , for each i ∈ V ′, jumps of the network and the
hybrid algorithm for the i-th agent occur simultaneously.
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The goal of the algorithm is to guarantee that, for each i ∈ V ′, the estimate
ẑi converges to the state z1. When the estimates are equal to z1, the update
law maps `i to zero. Noting that the timers τi (= µi) in the model of the
network remain within the set [0, T i2], the goal of the algorithm is to render
the set

A :=
{
x : z1 = ẑi, µi ∈ [0, T i2], `i = 0 ∀i ∈ V

}
(1.23)

for the resulting closed-loop system with state x, which is given by the stack
of the state variables of the first agent (z1), each algorithm (ηi’s), and each
network (µi’s).

A result for the design of the parameters of the proposed hybrid algo-
rithm can be found in [2] to guarantee that the set A in (1.23) is globally
exponentially stable for the closed-loop hybrid system H. Given the network
parameters 0 < T i1 ≤ T i2 for each i ∈ V ′, it is assumed that the N ′ agents are
connected via a digraph Γ = (V, E ,G) that is such that there exist a constant
δ > 0 and matrices Kg, P = P> > 0, Qi = Q>i > 0 satisfying7

M(τ) :=

[
He(Aθ, P ) −P + Ã>θ K>Q̃(τ)

? −δQ̃(τ)−He(K̃, Q̃(τ))

]
< 0 ∀τ ∈ T (1.24)

where τ = (τ2, τ3, . . . , τN ), T := [0, T 2
2 ]× [0, T 3

2 ]× · · · × [0, TN2 ],

Aθ = IN ⊗A+K
K = (KgHg) ∗ (IN + G) + γL ⊗ In
Hg = diag(H2, H3, . . . ,HN )

Ãθ = Aθ − H̃
K̃ = K − H̃
H̃ = diag(h2In, h3In, . . . , hNIn)

Q̃(τ) = diag
(
Q̃2(τ2), Q̃3(τ3), . . . , Q̃N (τN )

)
Q̃i(τi) = exp(δτi)Qi

These design conditions are obtained using sufficient conditions for asymp-
totic stability in [53] (specifically, Proposition 3.29 therein), which for the
current data turns out to be exponential, and a convenient change of coor-
dinates. The Lyapunov function used to show global exponential stability of
the set A in (1.23) is given by

V (x) := e>Pe+ θ>Q̃(τ)θ

where e = (e2, e3, . . . , eN ), ei = ẑi−z1, τ = (τ2, τ3, . . . , τN ), θ = (θ2, θ3, . . . , θN ),
and

7 Given matrices A and B, He(A,B) = A>B+B>A, A⊗B defines the Kronecker product,

and A ∗B the Khatri-Rao product. The matrix In is the n× n identity matrix.
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θi = Kiiy
e
i +

∑
k∈N (i)

Kiky
e
k+γ

∑
k∈N (i)

(ẑi − ẑk)− `i (1.25)

for each i ∈ V ′, with P and Q̃ as defined above. Note that V (x) = 0 for
each x ∈ A, while for any x 6∈ A, V (x) is positive. More importantly, intu-
itively, regardless of which timer triggers a jump, this function satisfies the
useful property that V (x+)− V (x) is upper bounded by a nonpositive func-
tion of θi for all x in the jump set. Such a property is possible due to the
convenient choice of the update law of the observer used at jumps, which,
in the coordinates in (1.25), leads to e being mapped by the identity and θi
to zero. The injection of `i in the flows of the local estimate in (1.20) and
the continuous dynamics of `i further permit a decrease of V during flows,
which conveniently uses exponential functions in the definition of Q̃. These
properties are exploited to arrive to the result above. The interested reader is
referred to [2], where in addition to several other results pertaining to design,
nominal and ISS-type robustness of the above algorithm, several examples
are provided.

1.5.2 Intermittent Consensus

Consensus emerges in a variety of applications, such as spiking neurons, for-
mation control and flocking maneuvers [54, 55, 56, 57], distributed sensor
networks [58, 59], satellite constellation formation [60], and in communica-
tion of computer network systems [61]. Consensus for continuous-time and
discrete-time systems has been widely studied in the literature; see, e.g., [55]
and [62]. On the other hand, the sometimes unavoidable limitation that in-
formation is available only at intermittent time instances imposes a challenge
to the design of such algorithms, as much of the literature that departs from
the standard settings reveal [63, 64, 65, 66, 67]. In this section, we consider
the problem of steering the state of a group of N agents with dynamics

żi = ui i ∈ V (1.26)

to consensus under intermittent information constraints over a digraph Γ =
(V, E ,G), where zi ∈ R is the state and ui ∈ R is the control input of the
i-th agent. The i-th agent receives the states of its neighbors at the events
triggered by network model as in Example 4. As in Section 1.5.1, we attach
a single event to each agent and employ the communication model given in
(1.7) with common minimum and maximum time in between events, i.e.,
T i1 = T1 and T i2 = T2 for each i ∈ V. Following [55, 56], the goal is to
design a decentralized algorithm assigning the input ui of each agent so that
every resulting maximal solution φ is complete and its z = (z1, z2, . . . , zN )
component φz satisfies
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lim
t+j→∞

|φzi(t, j)− φzk(t, j)| = 0

for each i, k ∈ V, namely, global attractive synchronization with respect to
z, as defined in Section 1.3.2.

Due to the aperiodic and impulsive arrival of information, analysis tools
that have been shown useful for continuous-time or discrete-time consensus
algorithms do not apply for the design of an algorithm accomplishing the
stated goal. Motivated by this, we solve this problem with a hybrid control
algorithm that assigns ui to a variable in the controller, which is denoted `i,
that at communication events collects information about its states from its
neighbors, computes a local quantity determining how far apart the received
state information is relative to its own state, and, in between events, changes
according to a linear differential equation. For each i ∈ V, given the parameter
T2 of the network model, the i-th hybrid controller has state `i with the
following dynamics:

ui = `iµi

˙̀
i = h`i µi ∈ [0, T2]

`+i = −γ
∑

k∈N (i)

(zi − zk) µi = 0
(1.27)

where γ and h are parameters of the algorithm. The continuous and discrete
dynamics in (1.27) can be modeled as a hybrid algorithm HKi as in (1.8) with
state ηi = `i, input vi = (zi, {zk}k∈N (i), µi), and data given by

FKi (ηi, vi) := h`i

CKi := {(ηi, vi) : µi ∈ [0, T2]}
GKi (ηi, vi) := −γ

∑
k∈N (i)

(zi − zk)

DK
i := {(ηi, vi) : µi = 0}

HK
i (ηi, vi) := ηi

and EKi the entire state and input space of HKi .
The resulting hybrid system from interconnecting the plant model in

(1.26), the network model in (1.7), and the algorithm model in (1.27) has
state x = (z, `, τ), where z = (z1, z2, . . . , zN ), ` = (`1, `2, . . . , `N ), and
µ = (µ1, µ2, . . . , µN ). The hybrid system H is then given by

ẋ =

 `
0
−1

 =: F (x) x ∈ C := RN × RN × T ,

x+ ∈ G(x) x ∈ D :=
⋃
i∈V

Di

(1.28)
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where 1 is the column vector of dimension N and all entries equal to 1,

Di :=
{
x ∈ RN × RN × T : µi = 0, µk > 0 ∀k ∈ V \ {i}

}
Gi is defined as

Gi(x) := (z, η1, η2, . . . , ηi−1, G
K
i (ηi, vi), ηi+1, . . . , ηN , µ1, µ2, . . . , µi−1,

[T1, T2], µi+1, . . . , µN )

for each x ∈ Di, and otherwise as the empty set, and T = [0, T2]N . The
definition of Gi is such that only the i-th component of η and of µ are
updated, where i ∈ V.

Due to the fact that the timer variable µi being zero is the only trigger of
the jumps, some properties of the domain of solutions can easily be charac-
terized. In particular, a solution φ to the hybrid system H is such that every
(t, j) ∈ domφ satisfies

(j − 1)T1 ≤ t ≤ (j + 1)T2 ∀ j ≥ 1

Moreover, due to the assumption that T1 > 0, every maximal solution φ is
complete and the hybrid time domain is unbounded in both t and j.

The decentralized hybrid control algorithm proposed above can be de-
signed to guarantee the desired consensus property with an exponential decay
rate and, furthermore, to render Lyapunov stable the set

A := {x : zi = zk = z̄, `i = 0, µi ∈ [0, T2] ∀i, k ∈ V} (1.29)

for some constant z̄. Such a result appeared in [3]. Given two positive scalars
such that T1 ≤ T2 and a strongly connected and weight balanced digraph Γ ,
if there exist scalars γ, h ∈ R, and σ > 0, positive definite diagonal matrices
P and Q such that[

γHe(P,L) −PΠ +K>1 QE(τ)
? −σQE(τ)−He(QE(τ),K2)

]
≤ 0 ∀τ ∈ T (1.30)

where Π = I − 1
N 1N1>N , K1 = γK2L, K2 = γL − hI, and

E(τ) = diag(exp(στ1), exp(στ2), . . . , exp(στN ))

then the set A in (1.29) is globally exponentially stable (GES) for the hybrid
system H in (1.28).

The case when all of the agents exchange information intermittently, but at
the same time instances, can be modeled using a single timer. In such a case,
the timer state of the model in (1.28) reduces to the single timer µ ∈ [0, T2],
T to [0, T2], the jump set to D =

{
x ∈ RN × RN × T : µ = 0

}
, and the

jump map to G(x) = (z,GK1 (η1, v1), GK2 (η2, v2), . . . , GKN (ηN , vN ), [T1, T2]).
Furthermore, the sufficient condition in the result above can be further sim-
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plified. It can be shown that the set A in (1.29) is GES for the hybrid system
in (1.28) with a single timer if either one of the following properties hold:

(1) the digraph is strongly connected, and there exist a positive scalar γ and
a positive definite symmetric matrix P satisfying

A>g exp
(
A>f τ

)
P exp (Afτ)Ag − P < 0 ∀τ ∈ [T1, T2], (1.31)

with Af =

[
0 I
0 0

]
, Ag =

[
I 0
−γL̄ 0

]
, and L̄ is a diagonal matrix with diag-

onal elements (λ2, λ3, . . . , λN ) with λi’s being the positive eigenvalues of
L.

(2) the digraph is completely connected, and there exist a positive scalar γ
and a positive definite symmetric matrix P satisfying

A>g exp
(
A>f τ

)
P exp (Afτ)Ag − P < 0 ∀τ ∈ [T1, T2], (1.32)

with Af =

[
0 1
0 0

]
and Ag =

[
1 0
−γ 0

]
.

Note that, as a difference to (1), the condition in (2) does not involve the
graph. This is possible due to the assumption therein about the graph being
completely connected.

Interestingly, if in addition to either one of the conditions above the di-
graph Γ is weight balanced, then every maximal solution φ = (φz, φ`, φµ)
satisfies limt+j→∞ φ`(t, j) = 0 and

lim
t+j→∞

φz(t, j) = ρ(φ(0, 0)) =: z̄

where

ρ(φ(0, 0)) :=

(
1

N

(
1>Nφx(0, 0) + 1>Nφ`(0, 0)φµ(0, 0)

))
1N . (1.33)

This property not only characterizes the value of z̄ in the set A in (1.29) but
also implies that A is pointwise exponentially stable.

The conditions for the design of the proposed consensus algorithm were
obtained using Lyapunov functions for the entire networked hybrid system.
The details can be found in [3]. In particular, the key idea to derive the
conditions for the single timer case is to exploit properties of the Laplacian
matrix for a strongly connected digraph Γ . For such graphs there exists

a nonsingular matrix T = [1N , T1] such that T−1LT =

[
0 0
0 L̄

]
, which is

a diagonal matrix containing the eigenvalues of L, where L̄ is a diagonal
matrix with diagonal elements (λ2, λ3, . . . , λN ) with λi’s being the positive
eigenvalues of L. This property leads to the change the coordinates z̃ = T−1z
and ˜̀= T−1`, and the resulting dynamics
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˙̃z = T−1ż = T−1` = ˜̀
˙̃
` = T−1 ˙̀ = 0.

during flows, and

z̃+ = T−1z+ = T−1z = z̃

˜̀+ = −γT−1Lz = −γT−1LT z̃ = −γ
[
0 0
0 L̄

]
z̃

at jumps. These new coordinates are convenient as they allow to analyze the
evolution of the scalar states z̃1 and ˜̀1 separately from the remaining state
components of z̃ and ˜̀.

It can be shown that, for the case of a single timer, the consensus set is
partially pointwise globally exponentially stable, which is a stronger notion
than typical notions of asymptotic stability due to the additional requirement
that each point in the set is Lyapunov stable; see e.g. [68] and [69]. Further-
more, it can be shown that the consensus property is robust to a class of
perturbations on the information. See [3].

1.5.3 Distributed Synchronization

Synchronization is a property of interest in many problems emerging in sci-
ence and engineering, such as spiking neurons [70, 5], formation control and
flocking [54, 56], distributed sensor networks [59], and satellite constellation
formation [60], among others. The literature about synchronization is quite
rich, with numerous contributions employing a variety of techniques, such as
Lyapunov functions [71, 72], convergence [73, 74], contraction theory [75], and
incremental input-to-state stability [76, 77]. Synchronization for continuous-
time systems where communication coupling occurs at discrete events is an
emergent area of study. In [77], the authors study a case of synchroniza-
tion where agents have nonlinear continuous-time dynamics with continuous
coupling and impulsive perturbations. In [78], the authors use Lyapunov-like
analysis to derive sufficient conditions for the synchronization of continuously
coupled nonlinear systems with impulsive resets on the difference between
neighboring agents. In [79], a distributed event-triggered control strategy was
developed to drive the outputs of the agents in a network to synchronization.
Using a sample-and-hold self-triggered controller policy, a practical synchro-
nization result was established in [80] for the case of first-order integrator
dynamics. On the other hand, methods for the design of algorithms that
guarantee synchronization of multi-agent systems with information arriving
at impulsive, asynchronous time instances are not available.

In this section, we consider the problem of synchronizing the state of N
networked agents from intermittent measurements of the state (or of a func-
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tion of it) over a digraph. Each agent runs a decentralized hybrid algorithm
that uses information received from its neighbors. The nominal model of the
agents is given as follows: for each i ∈ V,

żi = Azi +Bui (1.34)

where A is the nominal system matrix and B is the input matrix. The i-th
agent in the network measures its local output, denoted yi, and the informa-
tion received from its neighbors, denoted yk, at the communication events,
where

yi = Hzi (1.35)

with H being the output matrix. Following the network models proposed in
Section 1.2.2, in particular, those in Example 4, we employ the model in (1.7)
to trigger the events at which the i-th agent receives the yk’s.

To globally synchronize the states of the N agents, we propose the fol-
lowing decentralized hybrid algorithm for each i ∈ V: the algorithm has a
memory state, denoted `i, that when information arrives, is updated to the
relative error between the output of the i-th agent and those received from
its neighbors, namely,

`+i = K
∑

k∈N (i)

(yi − yk) = KH
∑

k∈N (i)

(zi − zk) (1.36)

where K is a constant matrix to be designed, and in between communication
events is continuously updated according to

˙̀
i = M`i (1.37)

where M is a constant matrix to be designed. Following the construction of
the hybrid algorithms in Section 1.5.1 and in Section 1.5.2, this algorithm can
be modeled as HKi in (1.8) with state ηi = `i, input vi = (yi, {yk}k∈N (i), µi),
and data given by

FKi (ηi, vi) := M`i (1.38)

CKi :=
{

(ηi, vi) : µi ∈ [0, T i2]
}

(1.39)

GKi (ηi, vi) := KH
∑

k∈N (i)

(zi − zk) (1.40)

DK
i = {(ηi, vi) : µi = 0} (1.41)

HK
i (ηi, vi) := `i (1.42)

and EKi the entire state and input space of HKi . Also, note that the input to
the algorithm includes the output µi of the network model in (1.7), leading to
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jumps of the network and the hybrid algorithm for the i-th agent occurring
simultaneously.

The goal of the synchronization algorithm introduced above is to guaran-
tee that, for each i, k ∈ V, the error between zi and zk converges to zero,
with stability. These requirements correspond to the notions of stable and
attractive synchronization introduced in Section 1.3.2. When the estimates
are equal to z1, the update law maps `i to zero. Noting that when the states
of all of the agents coincide we have that the `i’s are reset to zero and that
the timers τi in the model of the network remain within the set [0, T i2], the
goal of the algorithm is to render the set

A :=
{
x : zi = zk ∀i, k ∈ V, µi ∈ [0, T i2], `i = 0 ∀i ∈ V

}
(1.43)

globally asymptotically stable for the resulting closed-loop system H with
state x, which is given by the stack of the state variables of each agent (zi),
each algorithm (ηi’s), and each network (µi’s).

Results for the design of the parameters M and K of the proposed hybrid
algorithm can be found in [33] to guarantee that the set A in (1.43) is globally
exponentially stable for H, and hence, global exponential synchronization is
achieved. Given the network parameters 0 < T i1 ≤ T i2 for each i ∈ V and
a undirected graph Γ , the set A in (1.43) is globally exponentially stable
for the hybrid closed-loop system H resulting from controlling the agents in
(1.34) with hybrid algorithms as in (1.38)-(1.42) over a network modeled as in
(1.7) if there exist scalars σ > 0, ε ∈ (0, 1), matrices K and M , and positive
definite symmetric matrices Pi, Qi for each i ∈ V ′, satisfying

M(ν) :=

[
He(P, Ā) −PB̄ + exp(σν)(K̄Ā− M̄K̄)>Q

? He(exp(σν)Q, M̄ − K̄B̄ − σ
2 I)

]
< 0 ∀ν ∈ [0, T ]

(1.44)

where Ā = I ⊗ A + Λ ⊗ BKH, B̄ = I ⊗ B, M̄ = I ⊗M , K̄ = Λ ⊗ KH,
Λ = diag(λ2, λ3, . . . , λN ) where λi are the nonzero eigenvalues of L, and

(1− ε)T − α2σT

β
> 0. (1.45)

where T := mini∈V T
i
1, T := maxi∈V T

i
2,

β = − max
ν∈[0,T ]

λ̄(M(ν))

α2 = max{λ(P ), λ(Q) exp(σT )}.

Moreover, every maximal solution φ to the closed-loop system satisfies

|φ(t, j)|A ≤ κ exp (−r(t+ j)) |φ(0, 0)|A ∀(t, j) ∈ domφ (1.46)
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where κ =
√

α2

α1
exp

(
β(1−ε)T

2α2

)
and r = β

2α2N
min

{
εN, (1− ε)T − α2σT

β

}
,

and α1 = min{λ(P ), λ(Q)}.
To arrive to these design conditions, we employed the property that

θi = KH
∑

k∈N (i)

(zi − zk)− `i. (1.47)

is reset to zero at jumps due to the timer τi expiring alone. It follows that
the quantity

V (x) =

[
z
θ

]>
Ψ̄R(τ)Ψ̄>

[
z
θ

]
, (1.48)

with8 Ψ̄ = diag(Ψ̃ ⊗ In, Ψ̃ ⊗ Ip), where Ψ̃ = (ψ2, ψ3, . . . , ψN ) ∈ RN×N−1,
ψi = (ψi1, ψi2, . . . , ψiN ) being the orthonormal eigenvector corresponding

to the nonzero eigenvalue λi of L, i ∈ V (furthermore,
∑N
k=1 ψik = 0),

R(τ) = diag(P,Q exp(στ̄)), τ̄ = 1
N

∑N
i=1 τi, P = diag(P2, P3, . . . , PN ), and

Q = diag(Q2, Q3, . . . , QN ), decreases during flows due to (1.44), while at
jumps, its potential growth can be dominated by imposing (1.45); cf. the
construction of the Lyapunov function in Section 1.5.1, where such a Lya-
punov function decreases during flows and has a nonpositive change at jumps.
To guarantee exponential stability of the synchronization set, the result [53,
Proposition 3.29], which uses a balancing condition between jumps and flows
to guarantee that solutions converge to the desired set, exploited.

1.6 Final Remarks and Acknowledgments

Hybrid systems models, along with their associated notions and tools, lead
to powerful methods for the design of algorithms conferring desired dynam-
ical properties in complex networks. The methods summarized in this book
chapter are suitable for settings in which the combination of continuous and
discrete behavior is unavoidable, digital networks govern the exchange of in-
formation between the agents, information is limited and with uncertainty,
and the algorithms are distributed. The proposed networked hybrid systems
framework allows for hybrid models at the agent, network, and algorithm
level. The applications of the notions and tools to estimation, consensus, and
synchronization over networks are just examples of the power of the hybrid
systems framework, being the hope that they will inspire the formulation of
new notions and tools suitable for networked hybrid systems as well as the
solution to challenging applications.

8 A digraph is undirected if and only if the Laplacian is symmetric. The construction of Ψ̃

is inspired by [81].
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