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Abstract— In this paper we design a hybrid predictive con-
troller for the tracking of a sinusoidal reference signal. The
stability and forward invariance of a set of points around the
reference state, named the tracking ellipse, is established by
using tools for hybrid dynamical systems. Moreover, prediction
of solutions for a finite number of switching events is used
to minimize the number of switches. The control algorithm is
shown to be robust to small perturbations and input distur-
bances. Simulations illustrating the main results are included.

I. INTRODUCTION

The future of power generation and distribution is strongly
and inevitably connected to the idea of smart grid. This
concept is based on a two-way flow of electricity and in-
formation, and on the capability of monitoring power plants,
individual appliances and customer preferences. It incorpo-
rates into the grid the benefits of distributed computing and
communications to deliver real-time information and enable
the near-instantaneous balance of supply and demand at the
device level. In such a system, an essential role is played by
the interconnection between appliances, energy storage units
and renewable energy sources, such as photo-voltaic arrays,
solar panels, wind turbines and hydroelectric plants. In such
an interconnection, the DC/AC power conversion stage is
critical when taking into account the high dependence of the
power generation process on environmental conditions, as in
the case of renewable energy sources.

This paper focuses on the analysis of a single-phase
inverter, the most widely used device for DC/AC power con-
version. The vast majority of modern controllers for DC/AC
inverters implement algorithms designed using Pulse Width
Modulation (PWM) techniques [1], [2]. The basic idea in
most PWM-based algorithms for the control of the H-bridge
in a DC/AC converter is to compare a sinusoidal carrier
signal at the desired frequency to a triangular waveform.
The frequency of the triangular waveform establishes the
inverter switching frequency and, along with its amplitude,
is generally kept constant [1]. An input voltage regulator is
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typically used to provide constant amplitude and overcome
the lack of robustness of the PWM scheme to DC input
perturbations [3]. Another drawback of this approach is the
high harmonic distortion it produces, which is an important
limitation when considering the increasing demand of output
power quality, especially in the case of grid-tied inverters.

In this paper, we present a hybrid predictive controller for
the tracking of a sinusoidal reference signal in a single-phase
DC/AC inverter. The proposed control strategy includes an
algorithm that guarantees uniform local asymptotic stability
of a tunable (in size) set of points described by an ellipse
centered at the reference state. This local asymptotic stability
property is enforced by selecting one among a finite set of
admissible switching configurations of the H-bridge in the
DC/AC inverter. To optimize such a selection, we propose a
prediction-based algorithm that maximizes the time between
switches. Robustness to small perturbations, input voltage
disturbances and impulsive resets of the reference signal is
shown numerically, along with frequency domain analysis
of the output signal which reveals that the total harmonic
distortion complies with IEEE standard specifications for
grid-tied inverters.

The remainder of this paper is organized as follows.
Section III illustrates the model describing the dynamics of
the single-phase DC/AC inverter. Detailed analysis of the
reference dynamics and the control algorithm are provided
in Section III. Finally, Section IV illustrates the main results
obtained with the proposed controller. Proofs of the results
and some details are omitted due to space limitations, and
will be published elsewhere.

II. ANALYTICAL MODEL OF A SINGLE-PHASE DC/AC
INVERTER

A single-phase DC/AC inverter consists of four controlled
switches forming an H-bridge and a series RLC filter, as
shown in Figure 1. The purpose of this circuit is to convert
a DC input signal VDC in order to obtain an approximation
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Fig. 1: Single-phase DC/AC inverter circuit diagram.



of a sinusoidal voltage vC across the output capacitor C. The
current across the inductor L is denoted as iL. The control
action consists in toggling switches S1 to S4 according to a
specific logic. In this model, the switches are assumed to be
ideal, therefore the “ON” and “OFF” stages correspond to
closed and open circuit connections, respectively. Moreover,
we consider a negligible switching time. Depending on the
position of the switches, three different configurations are
possible for the voltage Vin to the RLC filter: VDC , −VDC
or 0. These combinations lead to the following dynamics of
the circuit in Figure 1:

i̇L =



VDC

L − R
L iL −

1
LvC when S1 = S3 = ON,

and S2 = S4 = OFF;

−VDC

L − R
L iL −

1
LvC when S1 = S3 = OFF,

and S2 = S4 = ON;

−RL iL −
1
LvC when S1 = S4 = OFF,

and S2 = S3 = ON;

v̇C = 1
C iL.

(1)

We denote the configuration of the H-bridge by q ∈ Q :=
{−1, 0, 1}, where q = −1 corresponds to Vin = −VDC ,
q = 0 to Vin = 0, and q = 1 to Vin = VDC . Then, we may
model the system as in [4]:

ż =

[
i̇L
v̇C

]
= fz(q, z) :=

[
VDC

L q − R
L iL −

1
LvC

1
C iL

]
, (2)

where VDC is the input DC voltage and R, L, C are
parameters of the circuit. As mentioned in Section I, a PWM-
based controller switches among some of these configura-
tions depending on the difference between a reference carrier
and a modulating signal. On the other hand, the proposed
hybrid controller selects the configuration of the switches
using the measured values of iL, vC , the reference state to
be tracked, and the current switch configuration q.

III. HYBRID PREDICTIVE CONTROL FOR THE TRACKING
OF A SINUSOIDAL VOLTAGE

In this section, a hybrid predictive control strategy for
tracking of a reference trajectory for a single-phase DC/AC
inverter is developed. This approach is inspired by the work
in [4] and provides an alternative to traditional PWM-based
controls. The general idea behind the proposed approach
is to generate an AC voltage at the output of the inverter
circuit by tracking a sinusoidal reference signal. This task is
accomplished by guaranteeing that the state of the inverter
converges to a tracking ellipse centered at the moving
reference state.

The system architecture is depicted in Figure 2. The
hybrid controller Hc locally controls the state z so as to
remain inside a given neighborhood of the reference state
zr, which we will refer to as “tracking ellipse”. In the
following section, we introduce the reference dynamics and
the algorithm implemented by the controller. The properties
of the resulting closed-loop system are then analyzed.

The closed-loop system dynamics can be described by the
following states:

ż =
[
i̇L
v̇C

]
=
[
VDC

L q − R
L iL −

1
LvC

1
C iL

]

żr =
[
i̇r
v̇r

]
=
[
−ω2Cvr

1
C ir

]

H-bridge + filter

Hc
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zq

zr ∈ Zr
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Fig. 2: Block diagram of the closed-loop system.

- z := (iL, vC) ∈ R2 is the state of the circuit with
dynamics defined in (2);

- zr := (ir, vr) ∈ R2 is the reference state;
- q ∈ Q is a logic variable denoting the configuration of

the H-bridge switches.

A. Reference Trajectory

The objective of the proposed hybrid predictive controller
is to track a sinusoidal reference signal t 7→ zr(t). The
reference dynamics can be computed by first considering the
desired output voltage as vr(t) = A sin(ωt + θ), where A
and ω are the desired amplitude and frequency for the output
AC voltage, respectively, and θ is the initial phase angle. By
using Kirchoff’s laws for the circuit in Figure 1, the reference
trajectory t 7→ zr(t) can be seen as the unique solution to
the initial value problem:

żr = fzr (zr) :=

[
−ω2Cvr

1
C ir

]
, zr(0) =

[
ωCA cos θ
A sin θ

]
, (3)

where fzr defines a linear oscillator. On the phase plane
(ir, vr), the reference trajectory describes an ellipse with
axes a = ωCA and b = A, and aspect ratio a

b = ωC,
as depicted in Figure 3. In a practical application scenario,
the reference signal can either be internally generated by
the controller or, more generally, received from an external
source. An example can be the output synchronization of a
network of inverters in a microgrid, in which the combination
of these signals has to be further synchronized to the grid
AC voltage. In this paper we assume that zr evolves in the
compact set

Zr :=

{
zr ∈ R2 :

i2r

(ωCA)
2 +

v2r
A2

= 1, A ∈ [0, Ar]

}
,

which includes all the admissible periodic orbits generated
by the sinusoidal reference signal, where the value of the
parameter Ar will be defined in Section III-B.



B. Tracking ellipse

Consider the dynamics of the error state e := (ei, ev) :=
(iL − ir, vC − vr) ∈ R2 given by

ė =

[
ėi
ėv

]
=

[
0 −ω2C
1
C 0

]
e+

[
ν(q, z)

0

]
=: Aee+ be(q, z),

(4)

where

ν(q, z) :=
VDC
L

q − R

L
iL +

LCω2 − 1

L
vC . (5)

Given the parameters h ∈ R>0, ψ ∈ R≥0, the ellipse
centered at the origin e = (0, 0) is identified by the set of
points in a level set of the function V : R2 → R given by

V (e) := e>
[
h ψ/2
ψ/2 (Cω)2

]
e = e>Pe. (6)

The ellipse axes are rotated with respect to the (ei, ev) frame
by an angle Θ ∈

[
−π

4
,
π

4

]
given by (see Figure 3)

Θ =
1

2
tan−1

(
ψ

h− (Cω)2

)
.

Remark 1: In this paper, we will use h = 1 and ψ =
RC
L to simplify the design of the controller. It is possible,

however, to derive similar constructions for generic values
of such parameters.

Let the parameter ρ ∈ R>0 denote the size of the tracking
ellipse, whose axes in the rotated frame are determined by
aρ =

√
ρ
h and bρ =

√
ρ

Cω (see Figure 3). Given scalars h, ρ ∈
R>0 and ψ ∈ R≥0, the set Λ(ρ) defines the closed tracking
ellipse of size ρ centered at the reference state:

Λ(ρ) :=
{
e ∈ R2 : V (e) ≤ ρ

}
. (7)

ir, iL

vr, vC

zr

a

b
aρ

bρ
Θ

Λ(ρ)

Fig. 3: Tracking ellipse Λ(ρ) evolving along the periodic
orbit Zr.

Next, we present some key properties of V . Let X :=
Q× R2 ×Zr and Γ ⊂ R be defined as

Γ :=

{
vC ∈ R : |vC | ≤

VDC − ωRCA
k

}
, (8)

where k := |LCω2 − 1|.

Lemma 1: Consider positive scalars ρ, L,C,R, ω, VDC ,
h = 1, ψ = RC

L , such that k > 0 and R < 2ωL. Then
for all vC ∈ Γ there exists at least one q ∈ Q such that

V̇ (e, q, z) ≤ −R
L
V (e). (9)

When conditions satisfying Lemma 1 are met, it is always
possible to select one among the values of q ∈ Q such
that function V is strictly decreasing, i.e., solutions to the
error dynamics (4) flow towards smaller level sets of V .
Then, since Λ(ρ) is a sublevel set of V itself, it is possible
to design a controller with the objective of rendering the
tracking ellipse Λ(ρ) uniformly locally asymptotically stable.

Let us introduce the notion of admissible tracking set,
which will be used to characterize any sublevel set of V
in which V̇ can be guaranteed to be strictly negative.

Definition 1: Given positive scalars ρ, L,C,R, ω, VDC ,
h = 1, ψ = RC

L , such that k > 0 and R < 2ωL,
a δ-sublevel set of V , denoted as Λ(δ), is an admissible
tracking set if vC ∈ Γ for all (z, zr) ∈ R2 × Zr such that
e = (z − zr) ∈ Λ(δ).

Proposition 1: Given positive scalars ρ, L,C,R, ω, VDC ,
h = 1, ψ = RC

L , such that k > 0 and R < 2ωL, matrix P
is positive definite. Moreover, the set Λ(δ) is an admissible
tracking set if the scalar A characterizing Zr satisfies

A ≤

(
VDC
k
−
√

δ

(Cω)2 −
(
RC
2L

)2
)(

k

k + ωRC

)
=: Ar.

Remark 2: Following Definition 1 and Proposition 1, the
largest admissible tracking set is given by the compact set
Λ(δ), where

δ :=

(
(Cω)2 −

(
RC

2L

)2
)(

VDC −A (ωRC + k)

k

)2

≥ ρ.

It is useful to notice that ρ is a given scalar that characterizes
the tracking precision, while δ depends on A and ρ itself,
and defines the largest sublevel set of V that is guaranteed
to be in the basin of attraction.

C. Control algorithm and properties of the closed-loop

We propose a hybrid controller Hc = (C, f,D, Gq) with
the objective of rendering uniformly locally asymptotically
stable the set Λ(ρ). The controller has state q ∈ Q and input
η = (z, zr) ∈ R2 × Zr, assigned to the outputs of the plant
and of the reference generator. The controller is given by the
hybrid system

Hc
{
q̇ = 0 (q, η) ∈ C
q+ ∈ Gq(η) (q, η) ∈ D, (10)

where C, D, and Gq are to be defined. In the following, we
first introduce the switching logic Gq implemented by the
controller and then define the flow and jump sets C and D.

We propose a jump logic which selects one among the ad-
missible values of q, according to a cost function; namely, the
goal is to maximize the time between consecutive switches,
in order to reduce the switching frequency and the utilization



of the transistors. The approach we propose to evaluate
such a cost function relies on the prediction of trajectories
associated to each admissible switching configuration. In the
following, let TP ∈ R>0 denote the prediction horizon.

Let φ ∈ SH denote a maximal solution to the closed-
loop system H = (C, f,D, G), where C, f,D, G are to be
defined. Consider (tJ , J) ∈ dom φ such that (qJ , ηJ) ∈ D,
where qJ = q(tJ , J) and ηJ = (z(tJ , J), zr(tJ , J)). The
continuous time dynamics of the predicted state (ξ, ξr) ∈
R2 ×Zr is given by[

ξ̇

ξ̇r

]
=

[
fz(q, ξ)
fzr (ξr)

]
,

[
ξ(0)
ξr(0)

]
= ηJ , (11)

for all q ∈ Q. Then, at each jump, the proposed algorithm
performs the following tasks:

1) Generate the set of admissible H-bridge configurations
via the map

Ĝq(η) :=


{q ∈ Q : q ≤ q} if ei > −RC2L ev,
{q ∈ Q : q ≥ q} if ei < −RC2L ev,

Q if ei = −RC2L ev,

where

q :=
Rir − (LCω2 − 1)vC

VDC
.

By rearranging (8), it can be shown that q ∈ [−1, 1] for
all vC ∈ Γ. With such a construction, the value of the
map Ĝq is a subset of Q whose elements satisfy (9);

2) If Ĝq(ηJ) is set valued, compute the solution t 7→
(ξ(t), ξr(t)) to (11) for all q̂ ∈ Ĝq(ηJ) in a given
prediction time window [0, TP ], with TP > 0;

3) For each q̂ ∈ Ĝq(ηJ), evaluate the time-to-impact
function with respect to D, defined by TI : Q × R2 ×
Zr → R≥0 ∪ {∞}, where

TI(q̂, ηJ) := inf {t > 0 : (q̂, ξ(t), ξr(t)) ∈ D} , (12)

where t 7→ (ξ(t), ξr(t)) is the unique solution to (11)
with initial condition ηJ and input q assigned to q̂ ∈
Ĝq(ηJ);

4) Pick the new value q+ of q according to the jump map

Gq(ηJ) := argmax{TI(q̂, ηJ) : q̂ ∈ Ĝq(ηJ)}, (13)

which might be set valued.
We can now define the jump and flow set as

D := {(q, η) ∈ X : ρ ≤ V (e) ≤ δ, V̇ (e, q, z) ≥ −λRLV (e)},

C := X \ D,

where the parameter λ ∈ (0, 1) rules out the existence of
multiple consecutive jumps. In particular, Lemma 1 implies
that for all vC ∈ Γ there always exists at least one q ∈ Q such
that (9) is satisfied. Then, λ < 1 guarantees G(D) ⊂ C \ D,
meaning that solutions always flow for a finite amount of
time after each jump. Moreover, λ > 0 ensures V̇ is always
strictly negative.

Remark 3: The presented switching logic Gq can be ap-
plied to the general case of multilevel inverters. In such
an approach, the connection of multiple inverters increases
the number of degrees of freedom for the controlled input
voltage. More specifically, the admissible values of the state
q are called “levels” and belong to the set [−1, 1].

When controller Hc is used as a controller for the switch-
ing system in (2), the hybrid closed-loop system with state
x := (q, z, zr) ∈ X can be written as an autonomous hybrid
system H = (C, f,D, G) given as

H
{
ẋ = f(x) x ∈ C
x+ ∈ G(x) x ∈ D, (14)

with flow and jump maps defined as

f(x) :=

 0
fz(q, z)
fzr (zr)

∀x ∈ C, G(x) :=

Gq(z, zr)z
zr

∀x ∈ D.
We proceed with stability analysis by showing that the
closed loop system H satisfies the hybrid basic conditions
introduced in [5, Assumption 6.5].

Lemma 2: The sets C, D and the maps f , G satisfy the
following:

(A1) the sets C and D are closed;
(A2) the map f : C → X is continuous;
(A3) the map G : D ⇒ X is outer semicontinuous and

locally bounded relative to D. Moreover, D ⊂ dom G.

Remark 4: Lemma 2 implies that the closed-loop system
H satisfies the hybrid basic conditions and is therefore well-
posed; see [5, Assumption 6.5].
To prove local asymptotic stability of the closed-loop system
H from Λ(δ) we follow [5, Proposition 7.5] and show
that the tracking ellipse Λ(ρ) is (strongly) forward invariant
(as defined in [6]) and uniformly attractive from Λ(δ). As
already mentioned in Section I, proofs are omitted due to
space constraints and will be published elsewhere.

Theorem 1: Given positive scalars ρ, L,C,R, ω, VDC ,
h = 1, ψ = RC

L , such that k > 0 and R < 2ωL, the set Λ(ρ)
is uniformly locally asymptotically stable for H with basin
of attraction containing the admissible tracking set Λ(δ).

Sketch of the proof: From [5, Proposition 7.5], local
asymptotic stability of Λ(ρ) is directly implied by forward
invariance and uniform local attractivity of Λ(ρ). Forward
invariance comes from G(D ∩ Λ(ρ)) ⊂ Λ(ρ) and from the
flow map f(x) pointing towards the interior of Λ(ρ) for all
x ∈ ∂Λ(ρ) ∩ C, where ∂Λ(ρ) indicates the boundary of the
compact set Λ(ρ). Local attractivity of Λ(ρ) is guaranteed
by (9) during flows and by solutions flowing for at least
a finite amount of time after each jump, due to G(D) ⊂
C \ D. Then, uniform local attractivity of Λ(ρ) from the
admissible tracking set Λ(δ) follows from ρ > 0 and V >
0 on the boundary of Λ(ρ). Since the closed-loop system
H is a well-posed hybrid system (see Lemma 2), and the
attractor Λ(ρ) is compact, [5, Theorem 7.12] implies that
Λ(ρ) is uniformly locally asymptotically stable with basin
of attraction containing the admissible tracking set Λ(δ).



IV. SIMULATION RESULTS

In this section, we show simulation results obtained with
the controller proposed in this article. The closed-loop sys-
tem is implemented in MATLAB and simulated via the
Hybrid Equations (HyEQ) Toolbox [7] 1. The following
constants are common to all the simulations: R = 1Ω,
L = 2mH , C = 1.063mF , VDC = 220V , ω = 120π (or
f = 60Hz), A = 100V , ρ = 16.06, h = 1, ψ = 0.5315,
and δ = 2241.2.

Figure 4 shows simulations of the closed-loop system
H with initial conditions inside the admissible tracking
set Λ(δ). The resulting trajectories are presented in error
coordinates (ei, ev) = z − zr to highlight the uniform
local asymptotic stability property of the tracking ellipse
guaranteed by Theorem 1. In fact, with an initial condition
inside the estimate Λ(δ) of the basin of attraction, solutions
toH converge to the tracking ellipse Λ(ρ) and are kept inside
such a set.
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Fig. 4: Simulation of H with initial conditions inside the
estimate Λ(δ) of the basin of attraction.

A validation of the robustness properties of the controller
is provided in Figure 5. In this simulation, the perturbed DC
input voltage V dDC is simultaneously subjected to two noise
signals:

V dDC(t) = VDC + ds(t) + du(t),

where
• t 7→ ds(t) ∈ R is a sinusoidal disturbance ds(t) =
Ad sin 2πft, with Ad = 2V , f = 200Hz;

• t 7→ du(t) ∈ R represents step changes of the form

du(t) =


0 t ∈ [0, 0.1)

−20 t ∈ [0.1, 0.2)
20 t ∈ [0.2, 0.3)
40 t ∈ [0.3, 0.4)
0 t ∈ [0.4,∞).

A profile plot of signal t 7→ V dDC(t) is shown in Figure 5b.
An analysis of the frequency spectrum of the AC output
signal is presented in Figure 6. The FFT for the signals

1Code at https://github.com/HybridSystemsLab/HybridPredictiveInverter
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Fig. 5: Simulation of H with perturbed VDC input.

t 7→ vC(t) and t 7→ iL(t) are computed for the given
set of parameters and eight different initial conditions of
the state zr, with z always initialized inside the tracking
ellipse Λ(ρ) centered at zr. The fundamental harmonic of
the output voltage is estimated to be at 60Hz, with the FFT
having a frequency resolution of 0.2Hz. The amplitude of the
output signals vC and iL at other frequencies is at least 60dB
and 50dB smaller, respectively, than that of the fundamental
component, with peaks occurring mostly at odd harmonics
(180Hz and 300Hz). This confirms that the controller Hc
allows tracking a sinusoidal signal at the given frequency ω.
High output power quality is one of the crucial characteristics
required in an inverter and is typically measured in terms of
Total Harmonic Distortion (THD) of the output signal. The
THD of a signal t 7→ X(t) is given by

THD(X) =

√∑∞
n=2(X2

n)rms
(X1)rms

,

where (Xn)rms is the rms value of the nth harmonic of X(t),
while (X1)rms is the rms value of the fundamental frequency
component. For grid-tied inverters, the IEEE standard 1547
[8] sets the maximum harmonic distortion of the output
current to a value of 5.0%. Simulations of the closed-loop
system H for eight different initial conditions show that, on
average, THD(vC) = 0.806% and THD(iL) = 1.001%.

The benefits of adopting a prediction-based selection of
q can be observed in Figure 7. The closed-loop system
H is simulated separately with and without prediction, i.e.
implementing the jump maps G and Ĝ, respectively. More
specifically, when Ĝ is used as switching logic, the controller
merely selects q among all the ones satisfying (9). Such an
approach guarantees uniform local asymptotic stability of the
tracking ellipse, but does not allow to select q according to
a specific criterion. On the other hand, when G is used as
switching logic in the control algorithm, q is selected in order
to maximize the time between consecutive switches. For
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Fig. 6: Frequency analysis of the output voltage and current.

the results presented in this paper, prediction of solutions is
performed by an ODE solver with event detection capability.
Solutions to (11) are predicted for all the admissible values
of q until they hit the jump set. Then, the q minimizing
the time to impact function defined in (12) is selected. It
can be noticed how a prediction-based approach (Figure 7b)
generates a more regular switching pattern if compared to the
case without prediction (Figure 7a), leading to a reduction
of the number of switches. In this simulation, the variable
q experiences a 32.82% decrease – from 131 to 88 – of the
number of switches in a 20ms time window.
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Fig. 7: Simulation of H with and without a prediction-based
switching logic.

Robustness of the tracking algorithm to changes in the
reference signal is shown in Figure 8. Every 50ms, both
the amplitude and the phase of the reference are reset to
a random value which satisfies the controller constraints.
Disturbances in the reference signals can be associated to
several scenarios, e.g. voltage or current sags due to failure

of other devices connected to the grid, execution of anti-
islanding policies or synchronization-related resets. As can
be observed, uniform local asymptotic stability of the track-
ing ellipse guarantees that the output voltage vC converges
in finite time to vr and remains close to it until a new reset
occurs.
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Fig. 8: Simulation of H with impulsive reference resets.

V. CONCLUSIONS

In this paper, we presented a hybrid predictive controller
for a single-phase DC/AC inverter. The proposed algorithm
guarantees tracking of a reference signal by uniformly locally
converging to a forward invariant tracking ellipse around
the reference trajectory, under an appropriate selection of
the system parameters. Simulations show that the control
algorithm is robust to impulsive changes of the reference
signal, to small perturbations, and to variations of the DC
input voltage, while obtaining harmonic distortion of the
output signal within the standard 5% limit for energy dis-
tribution, according to IEEE 1547. In particular, the average
harmonic distortion of the simulated output voltage and
current are equal to 0.806% and 1.001%, respectively. We
also provided simulation results illustrating the effectiveness
of a prediction-based control strategy, which causes a 32.82%
decrease – from 131 to 88 – of the number of switches in a
20ms time window.
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